Skip to main content

Advertisement

Log in

Performance analysis of device-to-device communications underlaying cellular networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Device-to-device (D2D) communications underlaying cellular networks are considered to be promising communication modes to improve network radio resource efficiency and provide higher transmission data rates to devices close to each other. However, when D2D communications reuse cellular resources, the resulting interference will cause significant performance loss to cellular users. In this paper, the spatial distribution of D2D communication users is modeled as a homogeneous spatial poisson point process. With this assumption, the closed-form expressions of the cumulative distribution functions (CDF) of the uplink interference power from the D2D communications and the signal power from the serving cellular users to the base station are derived, respectively. The approximate CDF of the uplink signal-to-interference-ratio of cellular users is also given in our analysis. More attractively, the analytical results can be used to help design the constraints on the configurations of D2D communications considering the minimum requirements of cellular users. Simulation results validate our analysis. Application examples of the analytical results are also given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou, L. (2011). Green service over Internet of Things: a theoretical analysis paradigm. Springer Journal of Telecommunication Systems. doi:10.1007/s11235-011-9638-6.

  2. Janis, P., Yu, C., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., et al. (2009). Device-to-device communication underlaying cellular communications systems. International Journal of Communications, Network and System Sciences, 3, 169–178.

    Article  Google Scholar 

  3. Wang, J., Chen, M., & Leung, V. (2011). Forming priority based and energy balanced ZigBee networks—a pricing approach. Springer Journal of Telecommunications Systems. doi:10.1007/s11235-011-9640-z.

  4. Wang, J., Chen, M., & Leung, V. (2011). A price-based approach to optimize resource sharing between cellular data networks and WLANs. Springer Journal of Telecommunication Systems. doi:10.1007/s11235-011-9451-2.

  5. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-Advanced networks. IEEE Communications Magazine, 47(12), 42–49.

    Article  Google Scholar 

  6. Doppler, K., Rinne, M., Janis, P., Ribeiro, C., & Hugl, K. (2009). Device-to-device communications: functional prospects for LTE-advanced networks. Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops’09) (pp. 1–6). Dresden: IEEE.

  7. Hakola, S., Chen, T., Lehtomaki, J., & Koskela, T. (2010). Device-to-device (D2D) communication in cellular network - performance analysis of optimum and practical communication mode selection. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC’10) (1–6). Sydney: IEEE.

  8. Yu C., Tirkkonen O., Doppler K., & Ribeiro C. (2009). Power optimization of device-to-device communication underlaying cellular communication. Proceedings of IEEE International Conference on Communications (ICC’09) (pp. 1–5). Dresden: IEEE.

  9. Doppler, K., Yu, C., Ribeiro, C., & Janis, P. (2010). Mode selection for Device-to-device communication underlaying an LTE-advanced network. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC’10) (pp. 1–6). Sydney: IEEE.

  10. Xing H., & Hakola S. (2010). The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system. Proceedings of IEEE 21th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’10) (pp. 1775–1780). Instanbul: IEEE.

  11. Janis P., Koivunen V., Ribeiro C., Korhonen J., Doppler K., & Hugl K. (2009). Interference-aware resource allocation for device-to-device radio underlaying cellular networks. Proceedings of IEEE 69th Vehicular Technology Conference (VTC Spring’09) (pp. 1–5). Barcelona: IEEE.

  12. Xu S., Wang H., Peng T., & Huang Q. (2010). Effective labeled time slots based D2D transmission in cellular downlink spectrums. Proceedings of IEEE 71st Vehicular Technology Conference (VTC Spring’10) (pp. 1–5). Taipei: IEEE.

  13. Xu, S., Wang, H., Chen, T., Huang, Q., & Peng, T. (2010). Effective interference cancellation scheme for device-to-device communication underlaying cellular networks. Proceedings of IEEE 72nd Vehicular Technology Conference (VTC Fall’10) (pp. 1–5). Ottawa: IEEE.

  14. Chen, T., Charbit, G., & Hakola, S., (2010). Time hopping for device-to-device communication in LTE cellular system. Proceedings of IEEE Wireless Communications and Networking Conf., (2010). (WCNC’10) (pp. 1–6). Sydney: IEEE.

  15. Zhou, L., Wang, X., Tu, W., Mutean, G., & Geller, B. (2010). Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 409–419.

    Article  Google Scholar 

  16. Zhou, L., Chao, H., & Vasilakos, A. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  17. Yu C., Tirkkonen O., Doppler K., & Ribeiro C. (2009). On the performance of device-to-device underlay communication with simple power control. Proceedings of IEEE 69th Vehicular Technology Conference (VTC Spring’09) (pp. 1–5). Barcelona: IEEE.

  18. Yu C., Doppler K., Ribeiro C., & Tirkkonen O. (2009). Performance impact of fading interference to device-to-device communication underlaying cellular networks. Proceedings of IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’09) (pp. 858–862). Tokyo: IEEE.

  19. Kingman, J. F. C. (1993). Poisson processes. Oxford: Oxford University Press.

    Google Scholar 

  20. Chan, C., & Hanly, S. (2001). Calculating the outage probability in a CDMA network with spatial poisson traffic. IEEE Transactions on Vehicular Technology, 50(1), 183–204.

    Article  Google Scholar 

  21. CATT. (2010). Link evaluations of ACK/NAK transmission with convolutional coding. 3GPP TDocs (written contributions) at meeting: R1-62. Document number: R1-104956. http://www.3gpp.org/DynaReport/TDocExMtg-R1-62-28032.htm.

  22. 3GPP. (2011). 3rd generation partnership project; technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 10). 3GPP specification. Document number: 3GPP TS 36.101 V10.4.0. http://www.3gpp.org/ftp/specs/archive/36_series/36.101/.

  23. Sousa, E. S., & Silvester, J. A. (1990). Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal of Sel. Areas. Commun., 8(5), 762–771.

    Article  Google Scholar 

  24. Feller, W. (1971). An introduction to probability theory and it’s application (Vol. II). New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program) under Grant: 2012CB316005, the Program for New Century Excellent Talents in University under Grant: NCET-11-0600 and the National Key Technology R&D Program of China under Grant: 2012ZX03004001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Zheng.

Appendices: Derivation of the statistical characteristics of the sum of received power

Appendices: Derivation of the statistical characteristics of the sum of received power

Assume \(\varPi _Y\) is an SPPP on \(\fancyscript{A}\) with intensity \(\lambda \), we will analyze the statistical characteristics of the sum of received power at an arbitrary point \(x\) in the two-dimensional plane comprised of all the points in \(\varPi _{Y}\).

Since shadow fading is a random variable, it is necessary to form a marked SPPP. Define by \(Q_{Y} \in R^{+}\) as the random marking of \(\varPi _{Y}\). For any two different points \(y_{1}\) and \(y_{2}\), \(Q_{y_1}\) and \(Q_{y_2}\) are independent. The distribution of \(Q_{Y}\) is the same for all the points in \(\varPi _{Y}\), and \(10{\log _{10}}({Q_{Y}}) \sim \mathcal {N}(0,{\sigma ^{2}})\), where \(\sigma ^{2}\) is the variance. The probability density function (PDF) is

$$\begin{aligned} {f_{{Q_Y}}}\left( q \right) = \frac{1}{{q \sqrt{\pi a_y} }} \mathtt{e ^{ - \frac{{{{\left( {\ln q} \right) }^2}}}{a_y}}}. \end{aligned}$$
(24)

where \(a_y = {2{\beta ^2}{\sigma ^2}}\) and \(\beta = \left( {\ln 10} \right) /10\).

The pair \(\left( Y,{Q_Y}\right) \) can then be regarded as a random point \({Y^{*}}\) in the product space \(\mathbb {C}=\fancyscript{A}\times \mathbb {R}^{+}\). The totality of points \({Y^{*}}\) forms a random countable subset \(\varPi _{Y}^{*}=\left\{ {\left( {Y,{Q_Y}} \right) ;Y \in {\varPi _{Y}}} \right\} \) of \(\mathbb {C}\). According to the Marking Theorem [19], \(\varPi _{Y}^{*}\) is still a SPPP on \(\mathbb {C}\), with mean measure \({\mu ^{*}}\) given by

$$\begin{aligned} {\mu ^*}\left( \mathbb {C} \right)&= {\iint \limits _{{\left( y,{Q_y}\right) } \in \mathbb {C}} {{\mu \left( {\mathrm{{d}}y} \right) p\left( {\mathrm{{d}}{Q_y}} \right) }}} \nonumber \\&= {\iint \limits _{(y,{Q_y}) \in {\mathbb {C}}} {{{\lambda \, \mathrm{{d}}y {f_{{Q_Y}}}\left( q\right) \, \mathrm{{d}}q}}}}. \end{aligned}$$
(25)

Define the received power from a transmitter \(y\) to the particular receiver \(x\) as

$$\begin{aligned} {P_{r,x,y}} = g\left( y,Q_y\right) = {P_{t}} {r_y}^\alpha {Q_y}. \end{aligned}$$
(26)

where \(r_y\) is the distance between \(y\) and \(x\). The sum of the received power is

$$\begin{aligned} {P_\Sigma } = \sum \limits _{y \in {\varPi _Y}} {g\left( y,Q_y\right) }. \end{aligned}$$
(27)

Using Campbell’s Theorem [19], the characteristic function of \({P_\Sigma }\) is

$$\begin{aligned}&\!\!\!{\varPhi _{{P_\Sigma }}} \left( \omega \right) = E \left[ \mathtt{e }^{j\omega {P_\Sigma }}\right] \nonumber \\&\!\!\!\quad = \exp \left[ \;{\iint \limits _{(y,{Q_y}) \in \mathbb {C}} {{\left( \mathtt{e }^{j\omega {g\left( y,Q_y\right) }} - 1 \right) }}{{\mu ^*}\left( {\mathrm{{d}} y,\mathrm{{d}} {Q_y}} \right) }} \right] \nonumber \\&\!\!\!\quad = \exp \left\{ {{E_{{Q_y}}} {\left[ {\int \limits _{{r_y} \in (0,\infty )} { \left( \mathtt{e }^{j\omega {P_{t}} {r_y}^\alpha {Q_y}} - 1\right) 2 \pi \lambda {r_y}\, \mathrm{{d}} {r_y}} } \right] }} \right\} .\nonumber \\ \end{aligned}$$
(28)

Define \(u \buildrel \Delta \over = {P_{t}} {r_y}^\alpha {Q_y}\) that falls under the range of \(\left( {\infty ,0} \right) \) since \(\alpha \) is always negative. With this variable substitution, (28) can be rewritten as

$$\begin{aligned}&{\varPhi _{{P_\Sigma }}} \left( \omega \right) \nonumber \\&\quad = \exp \left\{ \pi {\lambda }{E_{{Q_y}}}\right. \nonumber \\&\quad \quad \left. \times \left[ {\int \limits _{u \in \left( {\infty ,0} \right) } {\left( \mathtt{e ^ {j \omega u} - 1} \right) {{\left( {\frac{1}{{{P_{t}}{Q_y}}}} \right) }^{\frac{2}{\alpha }}}\frac{2}{\alpha }{u^{\frac{2}{\alpha } - 1}}\mathrm{{d}} u} } \right] \right\} \nonumber \\&\quad = \exp \left( {\pi {\lambda }{P_{t}}^{ - \frac{2}{\alpha }} {A_1} {A_2}} \right) . \end{aligned}$$
(29)

where

$$\begin{aligned} A_1= {\int \limits _{u \in \left( {\infty ,0} \right) } {\left( \mathtt{e ^ {j \omega u} - 1} \right) \frac{2}{\alpha }{u^{\frac{2}{\alpha } - 1}}\mathrm{{d}} u} }, \end{aligned}$$
(30)

and

$$\begin{aligned} A_2= {{E_{{Q_y}}}\left[ {{Q_y}^{ - \frac{2}{\alpha }}} \right] }. \end{aligned}$$
(31)

We first simplify \(A_1\) as follows.

$$\begin{aligned} A_1&= \int _{0^+}^\infty {\left( \mathtt{e ^ {j \omega u} - 1} \right) \mathrm{{d}} {u^{\frac{2}{\alpha }}}}\nonumber \\&= {\omega ^{ - \frac{2}{\alpha }}} \left[ {j \cos \left( {\frac{\pi }{2} + \frac{\pi }{\alpha }} \right) - \sin \left( {\frac{\pi }{2} + \frac{\pi }{\alpha }} \right) } \right] \mathrm{{\Gamma }} \left( {1 + \frac{2}{\alpha }} \right) \nonumber \\&= - {\omega ^{ - \frac{2}{\alpha }}} \mathtt{e ^{\frac{{j \pi }}{\alpha }}} \mathrm{{\Gamma }} \left( {1 + \frac{2}{\alpha }} \right) . \end{aligned}$$
(32)

where \(\mathrm{{\Gamma }} \left( x \right) = \int _0^\infty {{t^{x - 1}} \mathtt{e ^{-t}}dt} \).

In order to simplify \(A_2\), the average \(k\)th power of the log-normal distributed random variable \(Q_Y\) is derived as follows.

$$\begin{aligned} E\left[ {{q^k}} \right]&= \int \limits _{m \in {R^ + }} {{q^k} {f_{{Q_Y}}}\left( q \right) \mathrm{{d}} q } \nonumber \\&= \frac{1}{{\sqrt{\pi {a_y}} }} \int _0^{ + \infty } {{q^{k - 1}} {{q^{ - \frac{{\ln q}}{a_y}}}}\mathrm{{d}} q }. \end{aligned}$$
(33)

Defining \({v \buildrel \Delta \over = \ln q}\) \({v \in \left( { - \infty , + \infty } \right) }\), we have

$$\begin{aligned} E\left[ {{q^k}} \right]&= \frac{1}{{\sqrt{\pi {a_y}} }} \int _{ - \infty }^{ + \infty } {\mathtt{e ^{ - \frac{{{v^2}}}{{{a_y}}} + k v}}\mathrm{{d}} v} =\mathtt{e ^{\frac{{{k^2} {a_y}}}{4}}}. \end{aligned}$$
(34)

Substituting (34) in to (31), \(A_2\) can be simplified as

$$\begin{aligned} A_2={{E_{{Q_y}}}\left[ {{Q_y}^{ - \frac{2}{\alpha }}} \right] }={\mathtt{e ^{\frac{{{a_y}}}{{{\alpha ^2}}}}}}. \end{aligned}$$
(35)

As a result, the characteristic function is given by

$$\begin{aligned} {\varPhi _{{P_\Sigma }}} \left( \omega \right)&= \exp \left[ { - \pi {\lambda } {P_{t}}^{ - \frac{2}{\alpha }} {\mathtt{e ^{\frac{{{a_y}}}{{{\alpha ^2}}}}}} \mathrm{{\Gamma }} \left( {1 + \frac{2}{\alpha }} \right) \mathtt{e ^{\frac{{j \pi }}{\alpha }}} {\omega ^{ - \frac{2}{\alpha }}}} \right] \nonumber \\&= \exp \left( { - A \mathtt{e ^{\frac{{j \pi }}{\alpha }}} {\omega ^{ - \frac{2}{\alpha }}}} \right) , \end{aligned}$$
(36)

where \(A \buildrel \Delta \over = \pi {\lambda } {P_{t}}^{ - \frac{2}{\alpha }} {\mathtt{e ^{\frac{{{a_y}}}{{{\alpha ^2}}}}}} \mathrm{{\Gamma }} \left( {1 + \frac{2}{\alpha }} \right) \).

The laws of probability with characteristic functions given by (36) are the stable laws of exponent \(- \frac{2}{\alpha }\) with the restriction of \(0 < - \frac{2}{\alpha } < 1\) [24]. Similar to (22) in [23], we give the PDF of the sum of the received power as

$$\begin{aligned} {f_{{P_\Sigma }}}\left( {p;\alpha } \right) {=} \frac{1}{{\pi p}}\sum \limits _{k = 1}^\infty {\frac{{\mathrm{{\Gamma }} \left( {1 - \frac{{2k}}{\alpha }} \right) }}{{k!}} {\left( {\frac{A}{{{p^{ - \frac{2}{\alpha }}}}}} \right) ^{k}} \sin k\pi \left( {1 {+} \frac{2}{\alpha }} \right) }.\nonumber \\ \end{aligned}$$
(37)

Following the inverse Gaussian probability law for \(\alpha = -4\), we can have a density given by a closed-form expression. The characteristic function is

$$\begin{aligned} {\varPhi _{{P_\Sigma }}}\left( \omega \right)&= \exp \left[ { - \pi {\lambda } {P_{t}}^{ \frac{1}{2}} \mathtt{e ^{\frac{{{a_y}}}{{16}}}} \mathrm{{\mathrm{{\Gamma }}}} \left( \frac{1}{2}\right) \mathtt{e ^{ - \frac{{j \pi }}{4}}}{\omega ^{\frac{1}{2}}}} \right] \nonumber \\&= \exp \left[ { - \pi \sqrt{\frac{\pi }{2}} \left( {1 - j} \right) \left( \lambda \sqrt{{P_{t}}} \mathtt{e ^{\frac{{{a_y}}}{{16}}}}\right) \sqrt{\omega }} \right] . \end{aligned}$$
(38)

The PDF and CDF of \(P_\Sigma \) are given by

$$\begin{aligned} {f_{P_\Sigma }}\left( p \right) = \frac{\pi }{2} \lambda \sqrt{{P_{t}}} \mathtt{e ^{\frac{{{a_y}}}{{16}}}} {p^{ - \frac{3}{2}}} \mathtt{e ^{ - \frac{{{\pi ^3} \lambda ^2 {P_{t}} \mathtt{e ^{\frac{{{a_y}}}{{8}}}}}}{{4 p}}}} \end{aligned}$$
(39)

and

$$\begin{aligned} {F_{P_\Sigma }}\left( p \right) = \mathrm{{erfc}}\left( {\frac{{{\pi ^{\frac{3}{2}}} \lambda \sqrt{{P_{t}}} \mathtt{e ^{\frac{{{a_y}}}{{16}}}} }}{{2\sqrt{p} }}} \right) , \end{aligned}$$
(40)

respectively, where \(\mathrm{{erfc}}\left( x \right) = 1-\frac{2}{{\sqrt{\pi }}} \int _0^x {\mathtt{e ^{ - {t^2}}}dt} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Xiang, W., Zhang, Y. et al. Performance analysis of device-to-device communications underlaying cellular networks. Telecommun Syst 60, 29–41 (2015). https://doi.org/10.1007/s11235-014-9919-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9919-y

Keywords

Navigation