Skip to main content

Advertisement

Log in

An underwater wireless group-based sensor network for marine fish farms sustainability monitoring

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

One of the main problems in marine fish farms sustainability is the amount of uneaten feed and fecal waste dispersed and deposited on the seabed under the cages. It damages the fauna and flora, and decreases the economic benefits because the wastage of the uneaten food. Several country governments and international associations have published laws and rules about the maximum permitted pollution on the seabed in order to avoid having high impact on the environment. In this paper, we propose an underwater wireless group-based sensor network in order to quantify and monitor the accurate amount of pollution that is deposited on the seabed. First, we present an analytical model and study the best location to place the sensor nodes. The mobility of the nodes and the group-based protocol operation is described. Our wireless group-based sensor network proposal is able to determine the amount of food that is wasted while it measures the amount of deposits generated. This data can be used to compute and estimate more accurately the amount of food that should be thrown into the cage. Finally, several simulations are presented in order to show the network traffic and to verify the correct operation of the wireless sensor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682–1690.

    Article  Google Scholar 

  2. Goulão, M. V., Andrade, C. A. P., Gouveia, N. M. A., Gomes, J. R. J., Timóteo, V. M. F. A., & Soares, F. (2001). Evaluación de pérdidas de piensos en una piscifactoría en mar abierto y su uso en modelos del crecimiento de peces de cultivo y de la ración diaria”, AquaTIC no: 13. http://www.revistaaquatic.com/aquatic/art.asp?t=h&c=113. Accessed 3 September 2012.

  3. Porrello, S., Tomassetti, P., Manzueto, L., Finoia, M. G., Persia, E., Mercatali, I., et al. (2005). The influence of marine cages on the sediment chemistry in the Western Mediterranean Sea. Aquaculture, 249, 145–158.

    Article  Google Scholar 

  4. Mantzavrakos, E., Kornaros, M., Lyberatos, G., & Kaspiris, P. (2007). Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination, 210, 110–124.

    Article  Google Scholar 

  5. Cromey, C. J., Thomas, T. D., & Black, K. D. (2002). DEPOMOD—Modeling the deposition and biological effects of waste solids from marinecage farms. Aquaculture, 214, 211–239.

    Article  Google Scholar 

  6. Gowen, R. J., & Bradbury, N. B. (1987). The ecological impacts of salmonid farming in coastal waters: A review. Oceanography and Marine Biology, an Annual Review, 25, 563–575.

    Google Scholar 

  7. Silvert, W. (1992). Assessing environmental impacts of finfish aquaculture in marine waters. Aquaculture, 107(1), 67–79.

    Article  Google Scholar 

  8. Gowen, R. J., Smyth, D., & Silvert, W. (1994). Modelling the spatial distribution of loading of organic fish farm waste to the seabed. Modelling benthic impacts of organic enrichment from marine aquaculture. Canadian technical report of fisheries and aquatic sciences (pp. 19–30).

  9. Hevia, M., Rosenthal, H., & Gowen, R. J. (1996). Modelling benthic deposition under fish cages. Journal of Applied Ichthyology, 12, 71–74.

    Article  Google Scholar 

  10. Parametrix Inc. (1990). State of Maine Aquaculture Monitoring Program. Report prepared for Maine Department of Marine Resources. Bellevue, Washington.

  11. Lloret, M. G., & Lloret, M. J. (2007). Simulator software for marine fish farms sustainability. WSEAS Transactions on Environment and Development, 3(12), 214–222.

    Google Scholar 

  12. Garcia, M., Sendra, S., Atenas, M., & Lloret, J. (2011). Underwater wireless ad-hoc networks: A survey. Mobile ad hoc networks: Current status and future trends (pp. 379–411). Boca Raton, FL: CRC Press, Taylor and Francis.

    Chapter  Google Scholar 

  13. Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power saving and energy optimization techniques for wireless sensor networks. Journal of Communications, 6(6), 439–459.

    Article  Google Scholar 

  14. Pal, A. (2010). Localization algorithms in wireless sensor networks: Current approaches and future challenges. Network Protocols and Algorithms, 2(1), 45–73. doi:10.5296/npa.v2i1.279.

    Article  Google Scholar 

  15. Mulligan, R., & Ammari, H. M. (2010). Coverage in wireless sensor networks: A survey. Network Protocols and Algorithms, 2(2), 27–53. doi:10.5296/npa.v2i2.276.

    Google Scholar 

  16. Lloret, J., Sendra, S., Garcia, M., & Lloret, G. (2011). Underwater group-based wireless sensor network for marine fish farms sustainability. In Proceedings of IEEE global communicatins conference (IEEE Globecomm 2011), Houston, Texas (USA).

  17. Heidemann, J., Ye, W., & Li, Y. (2006). Research challenges and applications for underwater sensor networking. IEEE Wireless Communications and Networking Conference, 2006(1), 228–235. doi:10.1109/WCNC.2006.1683469.

    Google Scholar 

  18. Perez, O. M., Ross, L. G., Telfer, T. C., & del Campo Barquin, L. M. (2003). Water quality requirements for marine fish cage site selection in Tenerife (Canary Islands): Predictive modelling and analysis using GIS. Aquaculture, 224(1–4), 51–68.

    Article  Google Scholar 

  19. Neumeier, U., Friend, P. L., Gangelhof, U., Lunding, J., Lundkvist, M., Bergamasco, A., et al. (2007). The influence of fish feed pellets on the stability of seabed sediment: A laboratory flume investigation. Estuarine, Coastal and Shelf Science, 75(3), 347–357.

    Article  Google Scholar 

  20. Stigebrandt, A., Aure, J., Ervik, A., & Kupka Hansen, P. (2004). Regulating the local environmental impact of intensive marine fish farming: III. A model for estimation of the holding capacity in the modelling-ongrowing fish farm-monitoring system. Aquaculture, 234(1–4), 239–261.

    Article  Google Scholar 

  21. Han, S., Kang, Y., Park, K., & Jang, M. (2007). Design of environment monitoring system for aquaculture farms. In Frontiers in the convergence of bioscience and information technologies (pp. 889–893). doi:10.1109/FBIT.2007.77.

  22. Gowen, R. J., Bradbury, N. B., & Brown, J. R. (1989). The use of simple models in assessing two of the interactions between fish-farming and the marine environment. In Aquaculture-A Biotechnology in Progress. European Aquaculture Society (pp. 1071–1080).

  23. Ackerfors, H., & Ennel, M. (1990). Discharge of nutrients from Swedish fish farming to adjacent sea areas. Ambio, 19, 28–35.

    Google Scholar 

  24. Hansen, P. K., Pittman, K., & Ervik, A. (1991). Organic waste from marine fish farms-effects on the seabed. In Marine aquaculture and environment (pp. 105–119).

  25. Stigebrandt, A., & Aure, J. (1995). A model for critical loads beneath fish farms. Fisken and Havet Institute of Marine Research, 26, 1–27.

    Google Scholar 

  26. Atanasova, R., Hadajinikolova, L., & Nikolova, L. (2008). Investigations on the biochemical composition of carp fish (Cyprinidae) blood al conditions of organic acuaculture. Bulgarian Journal of Agricultural Science, 14(2), 117–120.

    Google Scholar 

  27. Menna, M., & Poulain, P. M. (2010). Subsurface (350 m) circulation in the Mediterranean Sea based on Argo data. http://modb.oce.ulg.ac.be/colloquium/2010/Presentations/Monday/AM/Menna_M_et_al.pdf. Accessed 3 September 2012.

  28. Baschek, B., & Farmer, D. (2012). Energy dissipation in extreme tidal environments. http://www.burkard.baschek.info/research_extreme_tidal.html. Accessed 3 September 2012.

  29. Statnikov, E. (2002). Speed of ocean currents. http://hypertextbook.com/facts/2002/EugeneStatnikov.shtml. Accessed 3 September 2012.

  30. Magill, S., Thetmeyer, H., & Cromey, C. (2006). Settling velocity of faecal pellets of gilthead sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) and sensitivity analysis using measured data in a deposition model. Aquaculture, 251, 295–305.

    Article  Google Scholar 

  31. Jurdak, R., Ruzzelli, A. G., O’Hare, G. M. P., & Lopes, C. V. (2008). Mote-based underwater sensor networks: Opportunities, challenges, and guidelines. Telecommunication Systems, 37(1–3), 37–47.

    Article  Google Scholar 

  32. Industrial sensors catalogue with UM18-X111X specifications. In Sickusa web site. http://www.sick.com/us/en-us/home/products/product_portfolio/industrial_sensors/Pages/industrial_sensors.aspx. Accessed 3 September 2012.

  33. Natalizio, E., & Loscrí, V. (2011). Controlled mobility in mobile sensor networks: advantages, issues and challenges. Telecommunication Systems. doi:10.1007/s11235-011-9561-x.

  34. Liu, Y., & Ge, X. (2006). Underwater blue-green laser sensor network: Challenges and approaches. WSEAS Transactions on Communications, 5(6), 421–425.

    Google Scholar 

  35. Jeong, Y.-J., Shin, S.-Y., Park, S.-H., & Kim, C.-H. (2007). PBA: A new MAC mechanism for efficient wireless communication in underwater acoustic sensor network. WSEAS Transactions on Communications, 6(3), 401–407.

    Google Scholar 

  36. Lloret, J., Palau, C., Boronat, F., & Tomas, J. (2008). Improving networks using group-based topologies. Computer Communications, 31(14), 3438–3450.

    Article  Google Scholar 

  37. Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A group-based protocol for large wireless ad hoc and sensor networks. Journal of computer science and technology, 23(3), 461–480.

    Article  Google Scholar 

  38. Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2014). Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommunication Systems, 57(1–2).

  39. Sendra, S., Fernández, P. A., Quilez, M. A., & Lloret, J. (2010). Study and performance of interior gateway IP routing protocols. Network Protocols and Algorithms, 2(4), 88–117.

    Google Scholar 

  40. OPNET Modeler network simulator. http://www.opnet.com. Accessed 3 September 2012.

Download references

Acknowledgments

This work has been partially supported by the “Ministerio de Ciencia e Innovación”, through the “Plan Nacional de I+D+i 2008-2011” in the “Subprograma de Proyectos de Investigación Fundamental”, project TEC2011-27516, and by the Polytechnic University of Valencia, though the PAID-15-11 multidisciplinary projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lloret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloret, J., Garcia, M., Sendra, S. et al. An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommun Syst 60, 67–84 (2015). https://doi.org/10.1007/s11235-014-9922-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9922-3

Keywords

Navigation