Skip to main content
Log in

Performance analysis of mobility management architectures in cellular networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Flattened cellular network architecture for the mobile internet is expected to meet the demands of rapidly increasing traffic from mobile users. Dynamic mobility anchoring (DMA) mechanism distributes the mobility management functions using such network architecture. In this paper, we compare DMA with a classical mobility protocol like proxy mobile IP (PMIP). A major cost factor of a mobility protocol is the management of contexts and tunnels. We propose an analytical model to compute the number of contexts and tunnels with DMA and with PMIP in a homogeneous network with random mobility of mobile nodes. The model is used under different configurations by varying the traffic loads and the capacities of access nodes in order to analyze the distributed and dynamic characteristics of DMA. The results show that the required number of contexts on an anchor node with DMA is significantly less than that required on an anchor node with PMIP and the required number of visitor contexts with DMA is significantly less in magnitude than that with PMIP for most of the configurations. The results also show that the number of required tunnels with DMA is less than those required with PMIP for most configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akl, R. G., Hegde, M. V., & Naraghi-Pour, M. (2005). Mobility-based CAC algorithm for arbitrary call-arrival rates in CDMA cellular systems. IEEE Transactions on Vehicular Technology, 54(2), 639–651.

  2. Bertin, P., Bonjour, S., & Bonnin, J.-M. (2009). Distributed or centralized mobility? In Proceedings of global communications conference (GlobeCom 2009).

  3. Bertin, P., Bonjour, S., & Bonnin, J.-M. (2009). An evaluation of dynamic mobility anchoring. In IEEE 70th vehicular technology conference fall (VTC 2009-Fall) (pp. 1–5).

  4. Bertin, P., Bonjour, S., & Bonnin, J.-M. (2008). A distributed dynamic mobility management scheme designed for flat IP architectures. In Proceedings of 3rd international conference on new technologies, mobility and security (NTMS 2008).

  5. Castelluccia, C. (2000). HMIPv6: A hierarchical mobile IPv6 proposal. ACM Mobile Computing and Communications Review, 4(1), 48–59.

    Article  Google Scholar 

  6. Chan, H.-A., Yokota, H., Xie, J., Seite, P., & Liu, D. (2011). Distributed and dynamic mobility management in mobile internet: Current approaches and issues. Journal of Communications, 6(1), 4–15.

    Article  Google Scholar 

  7. Corujo, D., Guimaraes, C., Santos, B., & Aguiar, R. L. (2011). Using an open-source IEEE 802.21 implementation for network-based localized mobility management. IEEE Communications Magazine, 49(9), 114–123.

    Article  Google Scholar 

  8. Enrico, D. R., Fantacci, R., & Giambene, G. (1999). Performance evaluation of different resource management strategies in mobile cellular networks. Springer Telecommunication Systems, 12(4), 315–340.

    Article  Google Scholar 

  9. Frikha, M., & Maalej, L. (2006). Micro mobility in the IP networks. Springer Telecommunication Systems, 31(4), 337–352.

    Article  Google Scholar 

  10. Giust, F., De La Oliva, A., Bernardos, C. J., & Da Costa, R. P. F. (2011). A network-based localized mobility solution for distributed mobility management. In 14th international symposium on wireless personal multimedia communications (WPMC), 2011 (pp. 1–5).

  11. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile IPv6. IETF RFC 5213. http://www.ietf.org/rfc/rfc5213.txt. Accessed 25 Dec 2014.

  12. Hong, & Rappaport, S.-S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures. IEEE Transactions on Vehicular Technology, 35(3), 77–92.

    Article  Google Scholar 

  13. Hossain, M. S., & Atiquzzaman, M. (2013). Cost analysis of mobility protocols. Springer Telecommunication Systems, 52(4), 2271–2285.

  14. IETF DMM WG, http://datatracker.ietf.org/wg/dmm/. Accessed 25 Dec 2014.

  15. Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility support for IPv6. IETF RFC 3775. http://www.ietf.org/rfc/rfc3775.txt. Accessed 25 Dec 2014.

  16. Lee, J.-H., Ernst, T., & Chung, T.-M. (2010). Cost analysis of IP mobility management protocols for consumer mobile devices. IEEE Transactions on Consumer Electronics, 56(2), 1010–1017.

    Article  Google Scholar 

  17. Lee, J.-H., Han, Y.-H., Gundavelli, S., & Chung, T.-M. (2009). A comparative performance analysis on hierarchical mobile IPv6 and proxy mobile IPv6. Springer Telecommunication Systems, 41(4), 279–292.

    Article  Google Scholar 

  18. Li, Y., Su, H., Su, L., Jin, D., & Zeng, L. (2009). A comprehensive performance evaluation of PMIPv6 over IP-based cellular networks. In IEEE 69th vehicular technology conference (VTC 2009) (pp. 1–6).

  19. Lim, S.-K., Jang, H.-S., Baek, J.-H., & Jeong, D.-G. (2000). Call/mobility processing capacity of the personal communication exchange. Springer Telecommunication Systems, 14(1–4), 121–139.

    Article  Google Scholar 

  20. Makaya, C., & Pierre, S. (2008). An Analytical framework for performance evaluation of IPv6-based mobility management protocols. IEEE Transactions on Wireless Communications, 7(3), 972–983.

    Article  Google Scholar 

  21. Melia, T., Giust, F., Manfrin, R., De La Oliva, A., Bernardos, C. J., & Wetterwald, M. (2011). IEEE 802.21 and proxy mobile IPv6: A network controlled mobility solution. Future Network & Mobile Summit (FutureNetw), 2011, 1–8.

  22. Pack, S., & Choi, Y. (2004). A study on performance of hierarchical mobile IPv6 in IP-based cellular networks. IEICE Transactions on Communications, E87–B(3), 462–469.

    Google Scholar 

  23. Paxson, V., & Floyd, S. (1995). Wide-area traffic: The failure of poisson modeling. IEEE/ACM Transactions on Networking (TON), 3(3), 226–244.

    Article  Google Scholar 

  24. Perez-Costa, X., Schmitz, R., Hartenstein, H., & Leibsch, M. (2002). A MIPv6, FMIPv6 and HMIPv6 handover latency study: Analytical approach. In Proceedings of IST mobile and wireless communications summit (pp. 100–105).

  25. Perkins, C. (2010). IP mobility support for IPv4, IETF RFC 5944. http://tools.ietf.org/html/rfc5944. Accessed 25 Dec 2014.

  26. Schmidt, T. C., & Wahlisch, M. (2005). Predictive versus reactive-analysis of handover performance and its implications on IPv6 and multicast mobility. Springer Telecommunication Systems, 30(1–3), 123–142.

    Article  Google Scholar 

  27. Thomas, R., Gilbert, H., & Maziotto, G. (1988). Influence of the moving of the mobile stations on the performance of a radio mobile cellular network. In Proceedings of the 3rd nordic seminar on digital land mobile radio communications.

  28. TR 101 112 V3.2.0. (1998). Universal Mobile Telecommunications System (UMTS), Selection procedures for the choice of radio transmission technologies of the UMTS (UMTS 30.03 version 3.2.0). http://www.etsi.org/deliver/etsi_tr/101112/03.02.00_60/tr_101112v030200p.pdf. Accessed 25 Dec 2014.

  29. Xie, J., & Akyildiz, I. F. (2002). A novel distributed dynamic location management scheme for minimizing signaling costs in mobile IP. IEEE Transactions on Mobile Computing, 1(3), 163–175.

    Article  Google Scholar 

Download references

Acknowledgments

The work was done when K. Munir was a post doctoral researcher at Institut Mines Télécom/Télécom Bretagne, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Munir.

Additional information

The work was done when K. Munir was a post doctoral researcher at Institut Mines Télécom/Télécom Bretagne, France.

Appendices

Appendix 1: A steady state numerical solution of CTMC

Solving a continuous time Markov chain (CTMC) with \(n\) states corresponds to solving the set of steady-state equations of the form:

$$\begin{aligned}&\pi Q = 0 \end{aligned}$$
(26)
$$\begin{aligned}&\sum _{i=0}^{n-1} \pi _i = 1 \end{aligned}$$
(27)

where \(Q\) is the \(n \times n\) infinitesimal generator matrix and \(\pi \) is the \(n\)-element steady-state solution vector. \(Q\) is singular and it can be shown that \(Q\) is of rank \(n-1\) for any Markov chain of size \(n\). The resulting set of equations is not linearly independent and one of the equations is redundant. To yield a unique solution, a normalization condition is imposed on Eq. (26). This can be done by substituting one of the columns (usually the last column) of \(Q\) with the unit vector \([1,1,\dots ,1]^T\). The resulting linear system of non-homogenous equations can be rearranged as \(Q^T\pi ^T = c^T\) with \(c=[0,0,0,\dots ,0,1]\) which yields an expression in the form \(Ax=b\). For this expression, a number of well known direct and iterative solution techniques exist. Let \(A=Q^T\), \(x=\pi ^T\), and \(b=c^T\); the system Eq. (26) can be written as:

$$\begin{aligned} Ax=b \end{aligned}$$
(28)

We solve Eq. (28) by implementing a direct method in C++.

Appendix 2: Life-time of a Type-A context

We calculate \(\frac{1}{\mu _A}\) as follows:

$$\begin{aligned}&\frac{1}{\mu _A} = \frac{1}{1-\pi _0} \displaystyle \sum _{k=0}^\infty \pi _k \int _0^\infty \left( 1- \left( 1-e^{- \mu _s t}\right) ^k \right) dt; \\&\text{ where } \text{ k }\; > \; 0 \end{aligned}$$

Using binomial expansion, it can be written as:

$$\begin{aligned} \frac{1}{\mu _A}&= \frac{1}{1-\pi _0} \displaystyle \sum _{k=1}^\infty \pi _k \\&\int _0^\infty { \left( 1 - \displaystyle \sum _{j=0}^k (-1)^j ({^k}\mathrm {C}_j) e^{-j\mu _s t} \right) dt}\!; \end{aligned}$$

where \({^k}\mathrm {C}_j = \frac{k!}{j!(k-j)!}\).

It can be further simplified as follows:

$$\begin{aligned} \frac{1}{\mu _A}&= \frac{1}{1-\pi _0} \displaystyle \sum _{k=1}^\infty \pi _k {\displaystyle \sum _{j=1}^k (-1)^{j-1} ({^k}\mathrm {C}_j) \int _0^\infty e^{-j\mu _s t} dt} \end{aligned}$$

By using the formula, \(\displaystyle \int _0^\infty e^{-ax}dx=\frac{1}{a}\), we have:

$$\begin{aligned} \frac{1}{\mu _A}&= \frac{1}{1-\pi _0} \displaystyle \sum _{k=1}^\infty \pi _k \displaystyle \sum _{j=1}^k (-1)^{j-1} ({^k}\mathrm {C}_j) \frac{1}{j\mu _s} \end{aligned}$$

Appendix 3: Life-time of a Type-V context which is created by a set of k sessions

We calculate \(\frac{1}{\mu _{V,k}}\) as follows:

$$\begin{aligned} \frac{1}{\mu _{V,k}}&= \int _0^\infty \left( 1- \left( 1-e^{- \mu _s t}\right) ^k \right) e^{-\alpha t} dt; k>0 \end{aligned}$$

Using binomial expansion, it can be written as:

$$\begin{aligned} \frac{1}{\mu _{V,k}} = \displaystyle \int _0^\infty \left( 1 - \displaystyle \sum _{j=0}^k (-1)^j ({^k}\mathrm {C}_j) e^{-j\mu _s t} \right) e^{-\alpha t} dt; \end{aligned}$$

where \({^k}\mathrm {C}_j = \frac{k!}{j!(k-j)!}\).

It can be further simplified as follows:

$$\begin{aligned} \frac{1}{\mu _{V,k}} = \displaystyle \sum _{j=1}^k (-1)^{j+1} ({^k}\mathrm {C}_j) \displaystyle \int _0^\infty e^{-(\alpha +j\mu _s)t} dt \end{aligned}$$

By using the formula, \(\displaystyle \int _0^\infty e^{-ax}dx=\frac{1}{a}\), we have:

$$\begin{aligned} \frac{1}{\mu _{V,k}} = \displaystyle \sum _{j=1}^k (-1)^{j+1} ({^k}\mathrm {C}_j) \frac{1}{\alpha +j\mu _s}; k>0 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, K., Lagrange, X., Bertin, P. et al. Performance analysis of mobility management architectures in cellular networks. Telecommun Syst 59, 211–227 (2015). https://doi.org/10.1007/s11235-014-9957-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9957-5

Keywords

Navigation