Skip to main content
Log in

Mobility support for content centric networking

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The current Internet architecture was designed more than 30 years ago for a very different set of services than those used today. Several new architectures have been proposed for a Future Internet to better meet today’s and future requirements. Content centric networking (CCN) is a prominent information centric networking (ICN) architecture which gains worldwide attention by researchers and the focus of this article. CCN, like other ICN architectures, is based on the idea of naming content instead of hosts, allowing routers to cache popular content. It has been shown that CCN can support point-to-point real-time conversations, for example voice or video calls. However, it has not been defined how node mobility can be achieved in such a scenario with real-time requirements. This article illustrates the problems of mobility in CCN for real-time applications and proposes three different solutions. A testbed has been established to emulate the handover procedures of the different proposals and analyze the quality of experience (QoE) score during handover. The results show that the presented approaches can reduce the handover delay time and also reduce signaling overhead in CCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. CCN is sometimes used as a synonym for ICN. We use the term CCN only for the specific architecture proposed by PARC.

  2. While the hierarchical CCN names allow the aggregation of names with common prefixes to reduce the size of the FIBs, it is currently unclear what happens for example when a user has many accounts from different providers using other prefixes.

  3. We use the abbreviation MN both for a node and the real-time application running on that node.

References

  1. Åhlund, C., Wallin, S., Andersson, K., & Brännström, R. (2008). A service level model and Internet mobility monitor. Telecommunication Systems, 37, 49–70. doi:10.1007/s11235-008-9072-6.

    Article  Google Scholar 

  2. CISCO: The Locator Identifier Separation Protocol (LISP). (2010). http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_11-1/111_lisp.html. Accessed 15 February 2012.

  3. de Meer, H., Hummel, K. A., & Basmadjian, R. (2011). Future Internet services and architectures: trends and visions. Telecommunication Systems. doi:10.1007/s11235-011-9430-7.

  4. Fotiou, N., Trossen, D., & Polyzos, G. (2011). Illustrating a publish-subscribe internet architecture. Telecommunication Systems, 1–13. doi:10.1007/s11235-011-9432-5.

  5. Giannaki, V., Vasilakos, X., Stais, C., Polyzos, G., & Xylomenos, G. (2011). Supporting mobility in a publish subscribe internetwork architecture. In 2011 IEEE Symposium on Computers and Communications (ISCC) (pp. 1030–1032). doi:10.1109/ISCC.2011.5983977.

  6. Goergen, D., Cholez, T., François, J., & Engel, T. (2013). Security monitoring for content centric networking. In Data privacy management and autonomous spontaneous security (Vol. 7731, pp. 274–286). Berlin: Springer.

  7. Hermans, F., Ngai, E. C. H., & Gunningberg, P. (2011). Mobile sources in an information-centric network with hierarchical names: An indirection approach. In Proceedings of the 7th Swedish national computer networking workshop.

  8. Hermans, F., Ngai, E., & Gunningberg, P. (2012). Global source mobility in the content-centric networking architecture. In Proceedings of the 1st ACM workshop on emerging name-oriented mobile networking design: Architecture, algorithms, and applications (pp. 13–18).

  9. ITU: ICT Facts and Figures (2011). http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf

  10. Jacobson, V., Smetters, D. K., Briggs, N. H., Plass, M. F., Stewart, P., Thornton, J. D., & Braynard, R. L. (2009). VoCCN: Voice-over content-centric networks. In Proceedings of the 2009 workshop on re-architecting the internet (pp. 1–6).

  11. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., & Briggs, N. H., Braynard, R. L. (2009). Networking named content. In Proceedings of the 5th international conference on emerging networking experiments and technologies (pp. 1–12).

  12. Jammeh, E., Mkwawa, I., Khan, A., Goudarzi, M., Sun, L., & Ifeachor, E. (2010). Quality of experience (QoE) driven adaptation scheme for voice/video over IP. Telecommunication Systems, 49, 99–111. doi:10.1007/s11235-010-9356-5.

    Article  Google Scholar 

  13. Keller, A. (2012). Trace control of netem. http://tcn.hypert.net/.

  14. Labiod, H., Lin, H., & Nonni, R. (2010). Analytical study of intradomain handover in multiple-mobile-routers-based multihomed NEMO networks. In Computer Networks, 3280–3294.

  15. Lauinger, T. (2010). Security & scalability of content-centric networking. http://tuprints.ulb.tu-darmstadt.de/2275/.

  16. Lee, J., Kim, D., Jang, M., & Lee, B. J. (2012). Mobility management for mobile consumer devices in content centric networking (CCN). In 2012 IEEE International conference on consumer electronics (ICCE) (pp. 502–503). doi:10.1109/ICCE.2012.6161994.

  17. Lee, J., Cho, S., & Kim, D. (2012). Device mobility management in content-centric networking. IEEE Communications Magazine, 50(12), 28–34. doi:10.1109/MCOM.2012.6384448.

    Article  Google Scholar 

  18. Lie, A., & Klaue, J. (2007). Evalvid-RA: Trace driven simulation of rate adaptive MPEG-4 VBR video.

  19. Luo, Y., Eymann, J., Angrishi, K., & Timm-Giel, A. (2011). Mobility support for content centric networking: Case study. In MONAMI 2011 conference, LNICST 97 (pp. 76–89). Aveiro. Portugal ISBN 978-1-936968-16-9.

  20. Meyer, D., Zhang, L., & Fall, K. (2007). Report from the IAB workshop on routing and addressing. RFC 4984 (Informational). http://www.ietf.org/rfc/rfc4984.txt. Accessed 15 February 2012

  21. Narten, T., Nordmark, E., Simpson, W., & Soliman, H. (2007). Neighbor discovery for IP version 6 (IPv6). RFC 4861 (draft standard). http://www.ietf.org/rfc/rfc4861.txt. Accessed 15 February 2012.

  22. NetInf: Network of Information. (2011). http://www.netinf.org/home/home/. Accessed 15 February 2012

  23. Perkins, C. (2002). IP mobility support for IPv4. RFC 3344 (proposed standard). http://www.ietf.org/rfc/rfc3344.txt.

  24. Perkins, C. (2011). Mobility support in IPv6. RFC 6275 (proposed standard). http://www.ietf.org/rfc/rfc6275.txt

  25. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., & Schooler, E. (2002). SIP: Session initiation protocol. RFC 3261 (proposed standard). http://www.ietf.org/rfc/rfc3261.txt. Accessed 15 February 2012

  26. Sadhukhan, P., Das, P. K., & Saha, S. (2011). Hybrid mobility management schemes integrating mobile IP and SIP for seamless invocation of services in All-IP network. Telecommunication Systems,. doi:10.1007/s11235-011-9483-7.

    Google Scholar 

  27. Smetters, D. K., & Jacobson, V. (2009). Securing network content. Tech report, PARC.

  28. Soellner, M., Schefczik, P., Bertin, P., Wei, G., Zhang, X., Nguyen, T. M. T., Mäkelä, J., Pérez, S., Eriksson, A., Biraghi, A. M., Cuervo, F., Ponce de Leon, M., & Dannewitz, C. (2010). Mobility in the future Internet: The 4ward Innovations. In Future internet cluster workshop (FICW 2010) (pp. 1–6). DOI english. INT Phare LIP6.

  29. Tyson, G., Sastry, N., Rimac, I., Cuevas, R., & Mauthe, A. (2012). A survey of mobility in information-centric networks: Challenges and research directions. In Proceedings of the 1st ACM workshop on emerging name-oriented mobile networking design—Architecture, algorithms, and applications, NoM ’12 (pp. 1–6). New York, NY: ACM. doi:10.1145/2248361.2248363.

  30. Vatolin, D. (2012). MSU video quality measurement tool. http://compression.ru/video/quality_measure/video_measurement_tool_en.html. Accessed 15 February 2012.

  31. Villamizar, C., Chandra, R., & Govindan, R. (1998). BGP route flap damping. RFC 2439 (proposed standard). http://www.ietf.org/rfc/rfc2439.txt.

  32. Wang, Z., Lu, L., & Bovik, A. (2004). Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication, 19, 1–9.

    Google Scholar 

  33. Xylomenos, G., Vasilakos, X., Tsilopoulos, C., Siris, V., & Polyzos, G. (2012). Caching and mobility support in a publish-subscribe internet architecture. IEEE Communications Magazine, 50(7), 52–58. doi:10.1109/MCOM.2012.6231279.

    Article  Google Scholar 

  34. Yuan, H., Song, T., & Crowley, P. (2012). Scalable ndn forwarding: Concepts, issues and principles. In 2012 21st International Conference on computer communications and networks (ICCCN) (pp. 1–9). doi:10.1109/ICCCN.2012.6289305.

  35. Zhang, P., Durresi, A., & Barolli, L. (2009). A survey of internet mobility. In International conference on network-based information systems, 2009. NBIS’09 (pp. 147–154). doi:10.1109/NBiS.2009.94.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqi Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Eymann, J. & Timm-Giel, A. Mobility support for content centric networking. Telecommun Syst 59, 271–288 (2015). https://doi.org/10.1007/s11235-014-9960-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9960-x

Keywords

Navigation