Skip to main content
Log in

Performance evaluation of pre- and post-FFT beamforming methods in pilot-assisted SIMO-OFDM systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Spatial domain processing using adaptive antenna arrays has been widely used to suppress co-channel interferences and mitigate the channel effect in single-input multiple-output (SIMO) OFDM systems. Two main mechanisms are pre-FFT scheme based on time-domain beamforming and post-FFT scheme based on frequency-domain beamforming. Both schemes have been recently extended to multiple-input multiple-output (MIMO) OFDM systems. However, there is no study, neither in SIMO-OFDM systems nor in MIMO-OFDM systems, to compare these two methods in details and provide specific guidelines to the designers on which scheme to deploy. Since performance improvement due to beamforming in both SIMO- and MIMO-OFDM systems are based on the same principles and noting the complexity of analysis in MIMO-OFDM beamforming systems, in this article we compare these two schemes in the simpler structure of a pilot assisted SIMO-OFDM system. This comparison is performed both from analytical perspective and by simulation results. It is shown under what conditions the more complex post-FFT scheme can exhibit better results and under what conditions the less costly pre-FFT scheme can demonstrate better performance. This greatly helps the designers to choose the right scheme based on their system characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. One FFT operation is also required to convert frequency domain error signal into time domain error signal in the pre-FFT scheme for the LMS implementation of Eq. (18).

References

  1. Kim, C. K., Lee, K., & Cho, Y. S. (2000). Adaptive beamforming algorithm for OFDM systems with antenna arrays. IEEE Transactions on Consumer Electronics, 64(4), 1052–1058.

    Google Scholar 

  2. Lei, M., Zhang, P., Harada, H., & Wakana, H. (2004). Adaptive beamforming based on frequency-to-time pilot transform for OFDM. In: Proceedings of the IEEE Vehicular Technology Conference, vol. 1, pp. 285–289. IEEE

  3. Okada, M., & Komaki, S. (2001). Pre-DFT combining space diversity assisted COFDM. IEEE Transactions on Vehicular Technology, 50(2), 487–496.

    Article  Google Scholar 

  4. Budsabathon, M., & Shoki, H. (2004). Optimum beamforming for pre- FFT adaptive antenna array. IEEE Transactions on Vehicular Technology, 53(4), 945–955.

    Article  Google Scholar 

  5. Li, Y., & Sollenberger, N. R. (1999). Adaptive antenna arrays for OFDM systems with cochannel interference. IEEE Transactions on Communications, 47(2), 217–229.

    Article  Google Scholar 

  6. Venkataraman, V., & Shynk, J. J. (2004). Performance of an OFDM subcarrier adaptive beamformer. In: Proceedings of the IEEE Military Communication Conference, vol. 1, pp. 54–58. IEEE

  7. Sun, Y., & Matsuoka, H. (2002). A novel adaptive antenna architecture subcarrier clustering for high-speed OFDM systems in presence of rich co-channel interferencc. In: Proceedings of the IEEE 55th Vehicular Technology, vol. 1, pp. 1564–1568. IEEE

  8. Chen, Y.-F., & Wang, C.-S. (2007). Adaptive antenna arrays for interference cancellation in OFDM communication systems with virtual carriers. IEEE Transactions on Vehicular Technology, 56(4), 1837–1844.

    Article  Google Scholar 

  9. Matsuoka, H., & Shoki, H. (2003). Comparison of pre-FFT and post-FFT processing adaptive arrays for OFDM systems. In: Proceedings of the IEEE Personal Indoor and Mobile Radio Communications, vol. 2, pp. 1603–1607. IEEE

  10. Lee, Y., Hsieh, Y.-J., & Shieh, H.-W. (2010). Multiobjective optimization for pre-DFT combining in coded SIMO-OFDM systems. IEEE Communications Letters, 14(2), 303–305.

    Article  Google Scholar 

  11. Seydnejad, S., & Akhzari, S. (Feb. 2010). A combined time-frequency domain beamforming method for OFDM systems. In: Proceedings of the International ITG/IEEE Workshop on Smart Antennas Bremen, vol. 1, pp. 292–299. IEEE

  12. Anderson, S., Millnert, M., Viberg, M., & Wahlberg, B. (1991). An adaptive array for mobile communication systems. IEEE Transactions Vehicular Technology, 40, 230–236.

    Article  Google Scholar 

  13. Alihemmati, R., & Jedari, E. (2006). Performance of the pre/post-FFT smart antenna methods for OFDM-based wireless LANs in an indoor channel with interference. In: Proceedings of the IEEE International Conference on Communication, pp. 4291–4296. IEEE

  14. Rahman, M. I., Das, S. S., Fitzek, F. H., & Prasad, R. (2005). Pre- and post-DFT combining space diversity receiver for wideband multi-carrier systems. In: Proceedings of the 8th Conference on Wireless Communication, vol. 1, pp. 12–17. IEEE

  15. Lei, Z., & Chin, P. S. (2004). Post and pre-FFT beamforming in an OFDM system. In: Proceedings of the IEEE Vehicular Technology Conference, vol. 1, pp. 39–43. IEEE

  16. Bartolome, D., & Perez-Neira, A. I. (2003). MMSE techniques for space diversity receivers in OFDM-based wireless LANs. IEEE Journal on Selected Areas in Communications, 21(2), 151–160.

    Article  Google Scholar 

  17. Borio, D., Camoriano, L., & Presti, L. L. (2006). Wiener Solution for pre and post-FFT beamforming. In: Proceedings of the 14th European Signal Processing, vol. 1.

  18. Matsuoka, H., Kasami, H., & Tsuruta, M. (2006). A smart antenna with pre and post-FFT hybrid domain beamforming for broadband OFDM system IEIC Technical Report, 1916–1920.

  19. Hara, O., Tran, Q., Jia, Y., et al. (2006). A pre-FFT OFDM adaptive antenna array with eigenvector combining. IEICE Transactions on Communications, E89–B(8), 2180–2188.

    Article  Google Scholar 

  20. Pham, D. H., Gao, Jing, Tabata, T., et al. (2008). Implementation of joint pre-FFT adaptive array antenna and post-FFT space diversity combining for mobile ISDB-T receiver. IEICE Transactions on Communications, E91–B(1), 127–138.

    Article  Google Scholar 

  21. Liu, B., Jin, R., & Fan, Y. (2004). Modified pre-FFT OFDM adaptive antenna array with beam-space channel estimation. Eelectronics Letters, 40(5), 287–288.

    Article  Google Scholar 

  22. Chi, C.-Y. (2008). A block-by-block blind post-FFT multistage beamforming algorithm for multiuser OFDM systems based on subcarrier averaging. IEEE Transactions on Wireless Communications, 7, 3238–3251.

    Article  Google Scholar 

  23. Seydnejad, S., & Akhzari, M. S. (Feb. 2011). CCI suppression and channel equalization in pilot-assisted OFDM systems by space-time beamforming. In: Proceedings of the International Conference on Communications and Signal Processing (ICCSP), pp. 14–18. IEEE

  24. Choi, J., & Heath, R. W. (2005). Interpolation based transmit beamforming for MIMO-OFDM with limited feedback. IEEE Transactions on Signal Processing, 53(11), 4125–4135.

    Article  Google Scholar 

  25. Liang, Y.-W., Schober, R., & Gerstacker, W. (2009). Time-domain transmit beamforming for MIMO-OFDM Systems with finite rate feedback. IEEE Transactions on Communications, 57(9), 2828–2838.

    Article  Google Scholar 

  26. Gao, B. (Aug 2009). Computationally efficient approaches for blind adaptive beamforming in SIMO-OFDM systems. In: Proceedings of the IEEE Pacific Rim Conference on Communications and Signal Processing, pp. 245–250. IEEE

  27. Haykin, S. O. (2001). Adaptive Filter Theory (4th ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  28. COST 207 Management Committee (1989). COST 207: digital land mobile radio communications, Commission of the European Communities, Luxembourg.

  29. Jakes, W. C. (Ed.). (1994). Microwave Mobile Communications. New York: Wiley-IEEE Press.

    Google Scholar 

  30. Ribeiro, F. C. J., Gomes, I. R., Castro, B. S. L., & Cavalcante, G. P. S. (2010). Comparison between known adaptive algorithms for pre-FFT beamforming in OFDMA systems. In: Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1–5. IEEE

  31. Mestre, X., & Perez-Neira, A. I. (2004). Asymptotic performance evaluation of space-frequency MMSE filters for OFDM. IEEE Transactions on Signal Processing, 52, 2895–2910.

    Article  Google Scholar 

  32. Islam, M. T. (2008). MI-NLMS adaptive beamforming algorithm for OFDM system. In: Proceedings of the IEEE Antennas and Propagation Conference, pp. 369–372. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid R. Seydnejad.

Appendices

Appendix 1

From (9), (33), and (36) and ignoring the noise term, the post-FFT weights \(\vec {W}(k)\) are obtained as,

(50)

Using the eigenvalue decomposition of , (50) yields,

(51)

Note that for a normalized channel as assumed here we have \(\sqrt{\xi _1}=1\). If we define, then (51) becomes,

$$\begin{aligned} {\vec {g}} \vec {g}^{H} \vec {W}(k)=\frac{\sigma _0^{2}}{\xi _1} {\vec {g}} \end{aligned}$$
(52)

Equality holds when \( {\vec {g}}^{H} \vec {W}(k)= \sigma _0^{2}/\xi _1 \). This means \( \vec {W}(k) =\left( {\sigma _0^{2}/\xi _1} \right) {\vec {g}} /\left\| {{\vec {g}}} \right\| ^{2}\), which gives rise to (37).

Appendix 2

From (17), (33), and (36), the pre-FFT weights \(\vec {V}\) are obtained as,

(53)

For the left-hand side of (53) we can write,

(54)

Since,

$$\begin{aligned}&\sum _{k=1}^N {{\vec {g}} (k)} {\vec {g}}^{H}(k)\nonumber \\& \quad =\frac{1}{\xi _1}\sum _{k=1}^N {\left\{ {\sum \limits _{i=1}^{P} {\alpha _i e^{-j\frac{2\pi k}{N}\tau _i}{\vec {S_{0,i}}}}} \right\} } \left\{ {\sum \limits _{p=1}^{P} {\alpha _p^{{*}} e^{j\frac{2\pi k}{N}\tau _p}{\vec {S_{0,p}}}^{H}}} \right\} \nonumber \\& \quad =\frac{N}{\xi _1}\left( {\sum \limits _{i=1}^{P} {\left| {\alpha _i} \right| }^{2}{\vec {S_{0,i}}} {\vec {S_{0,i}}}^{H}} \right) \end{aligned}$$
(55)

we get,

$$\begin{aligned} \left( {\sum \limits _{i=1}^{P} {\left| {\alpha _i} \right| }^{2}{\vec {S_{0,i}}} {\vec {S_{0,i}}}^{H}} \right) \vec {V}=\sigma _0^{2}\alpha _1 {\vec {S_{0,1}}} \end{aligned}$$
(56)

Appendix 3

Consider the set of symmetric positive matrices with maximum eigenvalues \(\xi _{\max ,i}\) and minimum eigenvalues \(\xi _{\min ,i}\). Define \(\chi _i =\frac{\xi _{\max ,i}}{\xi _{\min ,i}}, i=1,\ldots ,N\). Now if we define and denote its maximum eigenvalue by \(\xi _{\max }\) and its minimum eigenvalue by \(\xi _{\min }\) then \(\chi =\frac{\xi _{\max }}{\xi _{\min }}\). On the other hand, \(\xi _{\max } = \mathop {\max }\limits _{\left\| {\vec {X}} \right\| =1} \left( {\vec {X}^{H}G\vec {X}} \right) \) and \(\xi _{\min } = \mathop {\min }\limits _{\left\| {\vec {X}} \right\| =1} \left( {\vec {X}^{H}G\vec {X}} \right) \) then

Since both and are symmetric positive definite matrices we can write,

(57)

With the same line of reasoning we can conclude that, \(\xi _{\min } = \sum \limits _{i=1}^N {\xi _{\min ,i}}\). Consequently,

$$\begin{aligned} \chi =\frac{\sum \limits _{i=1}^N {\xi _{\max ,i}}}{\sum \limits _{i=1}^N {\xi _{\min ,i}}} \end{aligned}$$
(58)

Now let’s assume \(\chi _i , i=1,\ldots ,N\) are arranged in ascending order \(\chi _{1} \le \chi _2 \le \cdots \le \chi _{N} \). We would like to show that \(\chi _{1} \le \chi \le \chi _{N} \).

Since \(\chi _i =\frac{\xi _{\max ,i}}{\xi _{\min ,i}}\le \frac{\xi _{\max ,N}}{\xi _{\min ,N}} ,i=1,\ldots ,N\) we get

$$\begin{aligned} \xi _{\max ,i} \quad \xi _{\min , N} \le \xi _{\min ,i} \quad \xi _{\max , N} , i=1,\ldots ,N \end{aligned}$$
(59)

This means,

$$\begin{aligned} \sum \limits _{i=1}^N {\xi _{\max ,i} \quad \xi _{\min , N}} \le \sum \limits _{i=1}^N {\xi _{\min ,i} \quad \xi _{\max , N}} \end{aligned}$$
(60)

Therefore,

$$\begin{aligned} \frac{\sum \limits _{i=1}^N {\xi _{\max ,i}}}{\sum \limits _{i=1}^N {\xi _{\min ,i}}}\le \frac{\xi _{\max ,N}}{\xi _{\min ,N}} \end{aligned}$$
(61)

This in turn means \(\chi \le \chi _{N} \). With the same line of reasoning, we can show that \(\chi _{1} \le \chi \). As a result we obtain \( \chi _{1} \le \chi \le \chi _{N} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seydnejad, S.R., Akhzari, S. Performance evaluation of pre- and post-FFT beamforming methods in pilot-assisted SIMO-OFDM systems. Telecommun Syst 61, 471–487 (2016). https://doi.org/10.1007/s11235-015-0007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0007-8

Keywords

Navigation