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Spectrum Sensing Via Reconfigurable Antennas:
Fundamental Limits and Potential Gains
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Abstract—We propose a novel paradigm for spectrum sensing different CR users are combined to make a global decision
in cognitive radio networks that provides diversity and capacity at a central unit known as theusion Center(FC). CSS has
benefits using a single antenna at the Secondary User (SU) re-paen widely accepted in the literature as a realizable tqakn

ceiver. The proposed scheme is based orreconfigurable antenna . . . - .
an antenna that is capable of altering its radiation characeristics for extracting spatial diversity. The other alternativeulbbe

by changing its geometric configuration. Each configurationis USing multiple antennas, which is constrained by the space
designated as an antennamode or state and corresponds to limitation in SU recievers [6]+-[14].

a distinct channel realization. Based on an abstract modelof

the reconfigurable antenna, we tackle two different setting for

the cognitive radio problem and present fundamental limitson A, Background and Motivation

the achievable diversity and throughput gains. First, we eglore . . . . .

the “to cooperate or not to cooperdtetradeoff between the Although CSS achieves a diversity gain that is equal to
diversity and coding gains in conventional cooperative andion- the number of cooperating users, it encounters a significant

cooperative spectrum sensing schemes, showing that coopon  cooperation overhead: several decisions taken at SU tefsnin
is not always beneficial. Based on this analysis, we propos&d  paye to be fed back to the FC via a dedicated reporting channel

sensing schemes based on reconfigurable antennas that wenter [5]; global information (including the number of cooperafi
as state switchingand state selectionlt is shown that each of g ! ! Including u pergi

these schemes outperform both cooperative and non-cooperee SU terminals) must be provided to each SU in order to
spectrum sensing under a global energy constraint. Next, we calculate the optimal detection threshold [6]; hard decisi

study the “sensing-throughput trade-off, and demonstrate that taken locally at each SU cause loss of information, which
using reconfigurable antennas, the optimal sensing time iser degrades the performance at low signal-to-noise ratio (SNR
duced allowing for a longer transmission time, and thus betr [7]: and finally, the existence of multiple SUs is not always

throughput. Moreover, state selection can be applied to basi the » . . )
capacity of SU transmission. guaranteed. In addition, in this work, we show that theretexi

- . . _ a trade-off between the coding gain and the diversity order
Index Terms—cognltlve radio; cooperative spectrum sensing; . . . .
diversity; ergodic capacity; reconfigurable antennas; spetrum achieved in both cooperative gnd_non-cooperatlve sche_zmes,
sensing and demonstrate that cooperation is actually not benefitial
the low SNR regime. Motivated by these disadvantages, we
tackle the following questiorcan we dispense with secondary
. INTRODUCTION users cooperation and still achieve an arbitrary divergjgin?
OGNITIVE Radio (CR) is a promising technology of-To answer this question, we propose a novel spectrum sensing
fering a significant enhancement in wireless systens¢heme that can indeed achieve an arbitrary diversity order
spectrum efficiency via dynamic spectrum access [1]. In a R a single SU and still uses a single antenna. The scheme
network, unlicensed secondary users (SUs) can opporturiisbased on the usage wfconfigurable antennas class of
tically occupy the unused spectrum allocated to a licens@dtennas capable of changing its geometry, hence changing
primary user (PU). This is achieved by means of PU signtle current distribution over the volume of the antenna and
detection. Detection of PU signal entails sensing the spect thus altering one of its propagation characteristics: aiey
occupied by the licensed user in a continuous manner. Thifguency, polarization or radiation pattern. Each geoicadt
the process ofspectrum sensings mandatory for a CR configuration thus leads to a different mode of operatiod-ea
system as it helps preserving the Quality-of-Service (Qo#lg to different realizations of the perceived wirelessrotel.
experienced by the licensed PU. Energy detection (ED) $vitching between various antenna modes could be done
one of the simplest spectrum sensing techniques as it ¢#ing microelectromechanical (MEMS) switches][15], nano-
be implemented using simple hardware and does not requéectromechanical switches (NEMS), or solid state swiche
Channel State Information (CSI) at the SU receiver [2]-[3]16].
Generally, the performance of a spectrum sensing techniquén [15], the concept of an electrically reconfigurable anten
severely degrades in slow fading channels. To combat tiwas first introduced based on RF MEMS switches. Many
effect, Cooperative Spectrum Sensing (CSS) schemes heggearch efforts followed this concept and proposed adsal
been proposed to take advantage of the spatial diversitysigns for antennas that can alter their geometric configurat
wireless channel$ [4]H6]. In CSS, hard or soft decisionsifr [17]-[21]. The usage of reconfigurable antennas in wireless
communications was studied in various contexts. For exampl
_The authors are with the Department of Electronics and EatiCommu-  hased on an abstract conceptual model, diversity benefits of
nications Engineering, Cairo University, Gizah, 12613y/fge-mail: {aalaa, . . . .
mismail, htawfik @eece.cu.edu.eg). reconfigurable antennas in MIMO systems were discussed in
Manuscript received XXXX XX, 201X; revised XXXX XX, 201X. [20]. Also, in [22], a new class of space-time codes, termed
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asstate-space-timeodes was introduced, where it was shown Finally, we show that reconfigurable antennas are not only
that reconfigurable antennas can offer diversity benefits theneficial in the sensing phase, but can also offer signifi-
has no impact on the achieved degrees of freedom. Moreoweamt capacity gains in the transmission phase (when the SU
reconfigurable antennas were employed in the context afintaccesses the channel). To that end, we obtain closed-form
ference alignment iri [16], where desirable channel flugtnat expressions for the average transmission capacity usatg st
were created by switching the antenna modes over time. selection, and taking into consideration the impact of chitg
delay.

The rest of the paper is organized as follows: Section Il
presents the signal model adopted in the spectrum sensing
In this paper, we propose a single user CR system tlgbblem and relevant derivations for the false alarm and

employs a reconfigurable antenna at the SU transceivers. ijssed detection probabilities. In Section IlI, we disctiss
switching the antennaadiation statesover time, we can “to cooperate or not to cooperate” tradeoff, identifying th
manipulate the wireless channel thus creating artificiahciel drawbacks of the cooperative scheme. Spectrum sensing via
fluctuations that turn a slow fading channel into a fast fgdineconfigurable antennas is introduced in Section 1V, and the
one. Capitalizing on this property, we show that we cadliversity orders obtained in sensing based on NP and Bayes
dispense with the spatial diversity achieved through coogriterion are derived. In section V, the impact of reconfig-
eration without encountering any degradation in the sensiorable antennas on the sensing-throughput tradeoff isestud
performance. Besides, the proposed scheme has the fofjowshowing the achievable throughput gains. In addition, the
advantages: 1) the full coding and diversity gains are ¢aptu gains achieved in SU transmission and the optimal switching
at any SNR, 2) the space limitation problem that inhibitstrategy are analyzed. Finally, we draw our conclusions in
the usage of multiple antennas is solved by using a sin@ection VI.
compact antenna, 3) unlike multiple antenna systems, only
one RF chain is needed, 4) the availability of CSI at the SU
can be used to even boost the achieved coding gain, and 5)
diversity is achieved with no cooperation overhead, which- System Model and Notations
usually involves setting up a dedicated reporting channel;In this section, we formulate the spectrum sensing problem
feeding back information from the FC to the SU terminalgor the conventional and proposed schemes, and clarify the
and maintaining synchronization between the SU devices. notations ofdiversity orderand coding gain
Another approach for sensing using reconfigurable antennaghe diversity orderl, for a performance metri®, with an
is to select the "best” state instead of randomly switchingverage SNR of is defined as[6]
among various states. When the CSI is available at the SU, loo P
the receiver can select the state that offers the strongest dy = — lim & .
channel gain. Therefore, in addition to the previouslyestat oo logy
advantages, state selection offers an additional SNR g&h, The performance metric®, usually represents either the
we term as theselection gain Based on a comprehensivgorobability of error, the false alarm probability or the sed
diversity analysis, we obtain the achievable diversityeosd detection probability. The metri€, corresponds to the missed
in the conventional and proposed schemes as a function of ttegection probabilityP,,,; in the NP optimization problem,
detection threshold based on Neyman-Pearson (NP) and Baged corresponds to the error probabilRy if the optimization
tests. problem adopts the Bayesian criterion. As for the coding gai
While there exists many antenna switching techniquéss defined as the multiplication factor of the average SNR i
with different ranges of switching delays [18], some classé’. as7 tends to infinity. Thus, ifP. =< % as¥y — oo, the
of switching devices, such as those based on mechanicatling gain is given byd and the diversity order id, where
switches, may exhibit significant switching delays that may denotes asymptotic equality. The diversity order affeloés t
affect the performance of the proposed schemes. Thus, slepe of theP, curve when plotted versus the average SNR
qguantify the impact of an arbitrary switching delay on thén dB), while the coding gain shifts th€, curve along the
performance of the proposed schemes in both the NP &®MNR curve. In spectrum sensing using energy detection, the
Bayesian tests. coding gain is indeed sensitive to the average energy iedolv
Moreover, we revisit a well known trade-off in CR systemsp detection. Hence, the average energy can be used to fyuanti
which is the “Sensing-throughput trade-off”. In a framethe shift of the P, curve. Without loss of generality, we are
structured CR system, each frame duration is divided inioterested in evaluating the asymptotic missed detectiah a
sensing and transmission periods. An optimal sensing tiragor probabilities at high SNR only in order to obtain the
that compromises between the detection performance and dheersity order and coding gain using the previous defingio
achieved throughput was calculated[in|[28]+[25]. We shaat thit is important to note, however, that both gains charaznteri
using reconfigurable antennas, and given a constraint on the performance for all ranges of SNR.
PU detection probability, the SU throughput is improved as aNow, it is required to compare the detection performance
longer period of the frame can be dedicated to transmissioh non-cooperative sensing, cooperative sensing, andnfeco
rather than sensing, in addition to the reduction of theefaldigurable antenna based schemes. Hereunder, we present the
alarm probability, which means better channel utilization system model for the three schemes under study.

B. Summary of Contributions

Il. SPECTRUMSENSING SIGNAL MODEL
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1) Non-cooperative scheme: A conventional non- With the aid of [27, Eq. 7.811.1], the integral is approxigtht

cooperative spectrum sensing scheme involves one &bhigh SNR as

that observesM samples for spectrum sensing. According 1

to the sampling theorem, for a sensing period7ofand a Pp ~ _AeT 30 (1\4101 0 i) (6)

signal with bandwidthi?’, the number of samples &/ = 2 29T (M) B\ M2y )

TW [28]. It is assumed that the instantaneous SNR &nd which can be further reduced into the form of [27, Sec. 7.8]

the primary signali'” sample isS; ~ CN(0,1) [7], where ) M

CN(u,0?) denotes the complex Gaussian distribution with B, 27 (i) : 2\ )

mean . and variances?. The additive white noise is; ~ b= (M) \ 27 M 5 ]’

CN(0,1). Thus, thei*” sample received at the SU receiver is . - .

a binary hypothesis given bif][7] where K(.) is the M*" order modified bessel function of
the second kind.

n; NCN(O,l), Ho . X
T = VA Si i ~CN(0,147), 1) 2) Cooperative SchemeA cooperative CR network con-

sists of N SUs, each senses the PU signal and reports its
where?,, denotes the absence of the PU, while denotes the decision to an FC. The FC employs anmout-of-N fusion
presence of the PU. After applying such signal to an energyle to take a final global decision. We létbe the test
detector, the resulting test statistic¥s= Y";", |r;|2, which ~statistic denoting the number of votes for the presence of a
follows a central chi-squared distribution for bath and?:.  pyU. Hence, the conditional pdfs followtdnomial distribution
The false alarm and detection probabilities are given.by [7]5] where P(I|H,) = (17) PL (1 — Pp)N=!, and P(I|H,) =

T(M,3) N P, (1 - Pp)N~!, where Pr is the local false alarm
Pp(M,X\) = P(Y > AH,) = T probability, andP , is the local detection probability averaged
over the pdf of the SNR. Based on the fusion rule mentioned
and above, the global false alarm and detection probabiliigs
r (M, 2(1/-\w)) and Pp, are
PD(Mv)‘a'Y):P(YSMHla'Y):Wv 2) N /N Nl
PF,G—Z(Z)P}I?O—PF) o
where X is the detection threshold;(.,.) is the upper in- l=n
complete gamma function, arid(.) is the gamma function. NN
We assume Rayleigh fading with an average SNRy&nd Ppg= Z ( )ﬁlD (1 _ﬁD)Nfz. )
that the instantaneous SNR is constant over theobserved I=n !
samples (slow fading). Different observations perceifeedi 3) Single user spectrum sensing using a reconfigurable
ent SNR vaIues.l The SNR varies according to the exponentigdianna: In the proposed scheme, we assume a single SU
probability density function (pdf) that employs a reconfigurable antenna to sense the PU signal.
1 5 Establishing the exact mathematical models for the raatio
fy(v) = %e 7,720 between an antenna mode and the corresponding channel

) o ) realization can be a daunting task. We postulate that re-
Because the detection probability is a function of thggnfigurable antennas have an arbitrary number of possible
slow fading channel gain, we obtain the average detectiggnfigurations/modes (i.e., radiation patterns), and that

probability as corresponding induced wireless channels are indepenaent f
T (M A ) one another (all possible radiation patterns are spatisltor-
B, = / ) 2(1+7) 167% . ) related). For a reconfigurable antenna withradiation modes,
0 (M) ¥ we assume thaf;(2) and E;(2) are the 3D radiation patterns

corresponding to modésand; respectively, an€l is the solid
angle describing the azimuth and elevation planes. Note tha
the solid angle ranges from 0 tbr steradian. The spatial

In order to evaluate the average detection probability, ame c
rewrite the integrands if{4) in terms of the Meijer-G fupati

Gt (n2s) |2) 27, Sec. 7.8] as correlation coefficient between the two radiation patteims
A A given by [21]
(1+7) (1+7) Jon Ei(Q)EZ(2)dQ
Pij = .
and VN Vi |EAQ)PAR [, 1B, () Pa
¢ 7 =Coi (0 %) ' A reconfigurable antenna is designed such that all radiation

| patterns are orthogonal, i.e; ; ~ 0, Vi,j € {1,2,3,...,Q}.
For a rich scattering environment, the equivalent channel
realizations encountered by different antenna states.iade i
A ) ) (independent and identically distributed) and follow a Ra&gh
2(147) v distribution. Various designs for antennas with patteuedity

The Meijer-G representation allows us to write the integma

@) as
v 2,0
7 et (oo

Pp :/ Goy (0
0
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already exist[[1[7]-[20]. The application of reconfigurable the CDF of the sum of weighted chi-square random variables
tennas with orthogonal patterns for MIMO systems was inveaas proposed in_[31]. Based on Eqgs. (20)—(23)Lnl [31], the
tigated in [22]. Moreover, in [16] and [28], blind interfaree probability of missed detection will be given by the minimum
alignment was proposed based on reconfigurable antenof$wo functionsH (w) and G(w) of an auxiliary parameter
with independent channels for each statel In [29], indepehdw as follows
channel realizations were also exploited while studying th

benefits of applying reconfigurable antennas in the MIMO

Z interference channel. The impact of independent changghere

Pmd = InlIl{H(’LU), G(w)}a

realizations perceived for different states result in aedsity w — A
gain that is similar to the spatial diversity gain attained i M+Z?:1 lj’}/j7
multiple antenna systems_[30]. A conceptual model for the '
reconfigurable antenna that resembles an antenna selection M 144, T (m, ﬁ)
scheme is adopted in this paper. The analyses we present G(w) = Zw L X A )
herein are abstract in the sense that they do not consider j=1 A F(Qw(lﬂﬂ)
a specific antenna design. Fig. 1 depicts the SU receivgid
employing a reconfigurable antenna withavailable antenna T (M A )
modes. Hw) = DN ()Y

In a slow fading channel, reconfigurable antennas \jth I'(M)

T}?des can Oﬁe_'Q different channe} rea}lizatiqns. Thus, the[hus, the missed detection probability in terms of the chan-
i*" sample received at the SU receiver is a binary hypotheﬁléI realizations is given by (11) wheré(-,) is the lower

given by incomplete gamma function. EqL_{11) is general for any
_f ni~CN(0,1), H, ©) antenna state switching pattern. For state selection,ahees
i = Vi Si+ni ~CN(0,147;), Hi result still applies withl, = M, wherek = max;~; and

fr— / / PR
wherey; € {71,72, -+ ,7g} is the channel realization ob-l’“' =0,k #k K €{1,2,-,Q}

served by thei®® sample. The set of) channel gains are

independent identically distributed (i.i.d.) Rayleighndam B. Equivalence of NP and Bayesian Optimization to Diversity
variables. It is assumed that the antenna states are sdi€gheOrder Maximization

times within the sensing period such that channel reatinati The only design parameters in the spectrum sensing
J is observed byl; samples whereZ?zl l; = M. We problem are the detection thresholds. Usually, the thidsho
designate this scheme agate switching spectrum sensingare selected such that the detection performance is optimiz
As an alternative, if the CSI is available at the receiveify terms of either the NP or Bayesian criteria. Obtaining the
the SU could possibly select the strongest channel for thptimal detection threshold is essential for calculatihg t
entire sensing interval, and we call this schestade selection diversity order achieved by the SU receiver. However, the
spectrum sensingGenerally, the test statistic resulting at th@roblem of obtaining the detection thresholds that maxémiz
output of the energy detector when the PU is active can & detection or minimize the error probabilities is not

written as L always mathematically tractable, especially in the coathes
V- Z(l ) scheme [[I7]. In this subsection, we formulate an equivalent
Vi) E problem for obtaining these optimal thresholds and we

=1 . L .
. ! ] ) _show that maximizing (minimizing) a performance metric
where is the number of antenna states involved in sensing s equivalent to maximizing the diversity ordet. at

(L < @), v; is one of @ independent channel realizationgssymptotically high SNR. Thus, as an alternative approach
{71,792, -, 7} assigned to thé; samples, and;; is a chi- one can obtain closed-form expressions for the diversitgior
square distributed random variable with) degrees of freedom ;i terms of the detection thresholds and get the thresholds
(the sum of ; normally distributed random variables). For statgat maximized, instead of maximizing (minimizing)P.
selection,/, = 1 andl; = M as only the highest channel gainyhich is usually a mathematically tractable problem. This i

. . . L
is selected. For state switching, < @ and > ._,l; = M. formulated in the following two lemmas.
Thus, the probability of missed detection is given by

L Lemma 1: Based on the NP criterion, maximizing the
Pua(71,--7Q) =P Z(l + ;)@ < MHi,7,---570 |, high SNR asymptotic probability of detection under a false
=1 alarm probability constraint is equivalent to maximiziniget

(10) diversity order of the detection probability.
where the threshold is adjusted such that the false alarm
probability Pr = « in the NP test, or adjusted to minimize proof See Appendix A.
the error probability in the Bayesian test. It is obviousttha Lemma 2: Based on the Bayes detection criterion, minimiz-
the probability of missed detection is the cumulative distr ing the high SNR asymptotic probability of error is equivdle
tion function (CDF) of the linear combination of chi-squaréo maximizing the diversity order of the error probability.
random variables. An extremely accurate approximation f@roof See Appendix B.
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T M, D — A A
( &Y 1—[?1(1+%)li) % w L+ X ! (2w(1+%)’ 1+7i) (12)

Pmd('ylv s 77@) = min
L) i=1 A r (2w(1>\+’)’11))

In the next section, we utilize these equivalent problentefined in Section Il, the diversity order and coding gain
to compare the performance of the cooperative and na#-are, respectively, given by

cooperative schemes.
log (ﬁ(M—l))
dmag = — lim — =1,
[1l. To CoOPERATE ORNOT TO COOPERATE F—00 log7
Although cooperation is widely adopted as a means ahd M1
improving the performance of spectrum sensing via diversit A= (12)
gain, it can actually be shown that cooperative spectrum A

sensing does not outperform the non-cooperative scheme s (12) shows the diversity order and coding gain in terms
the whole SNR range. Deciding whether to cooperate or r@ft the threshold\. It is clear that for the non-cooperative
to cooperate should then depend on the operating aver&{e test, any choice of the local threshold does not affect the
SNR. Specifically, for a fixed total energy constraint, the-no diversity order and the optimal threshold is selected sheh t
cooperative scheme offers a better detection performancét#gatisfies the constraint oRr. The coding gain, on the other
low SNR. This is because, at low SNR, the impact of SNR lo§g@nd, depends on the number of samples involved in energy
in the cooperative scheme due to hard decisions taken yocaletection as well as the local threshaldThe more samples

at each SU is higher than the gain offered by Coopergﬂm involved in detection, the higher coding gain is achieved. O
the other hand, a large diversity gain is observed at high SNife other hand, large thresholds corresponding to strise fa
making cooperation favorable. Therefore, cooperationlgvoualarm constraints result in small coding gains. Note that fo
not be beneficial at low SNR ranges where it is required &0 a-level NP test, the local threshold is decided by the value
improve the detection performance. In addition to that, td o when settingPr = a.

knowledge of the number of cooperating users at each SU ifNow considering the Bayes optimization problem, the op-
essential to achieve full diversity order. Thus, even athhidgimal threshold is given by the following lemmaemma 3:
SNR, cooperative schemes may fail to capture full diversitthe optimal threshold that minimizes the average probigbili
gain if global network information are not provided to locapf error in non-cooperative spectrum sensing is given by
SUs. In the following two subsections, we compare the two e

schemes and evaluate their performance in terms of diyersit Nopt = Mﬁ exp <_W_1 (L)) ,

and coding gains, both for NP and Bayes tests. 2(M 1)

at high SNR, wherg: = £ x 2M*2;(M—1) andW_,(.)

A. Non-cooperative scheme analysis is the Lambert Wfunction %":i
Considering the NP test, the asymptotic expansion Bfoof See Appendix C.
Ky (x), which appears in the; expression in[{7), as — 0 In order to investigate the impact of the threshold on the
is given by [14] diversity order, we calculate the diversity order achiewith
9M =31 ()[)z2 a non-optimal threshold in the following Lemmiaemma 4:

For conventional spectrum sensing with a detection thrigsho
of A = 60X, Whered € R and \,,; is the optimal Bayes
threshold given by Lemma 3, the achieved diversity order
for the Bayes optimization problem & = min{6,1}. The

Note that. /2 s 0 ande® — 1 as7 s co. The asymptotic corre_spondlng false alarm and missed detection probadsslit
7 are given by Eq.L(T3)

expansion of the detection probability is consequenthegiv Proof See Appendix D

Ky(z) < zM (2M*1F(M) I

9M—6T(\[)z
(M)z +)

T D -2

by As stated in Lemma 4, for any threshold with > 1
A A2 (or equivalentlyh > A,p), the maximum diversity order is
25 (M —1) + 852 (M — 1)(M —2) LIRS achieved. However, given the expressionff, in Eq. (113),

) o T R
Thus, at large average SNR, the first two terms dominate Ahg coding gain isdng = 5 if 0 > 1, and Ap = (5)° if

ﬁDXI—

Pp=1- 4 2{71 + O(7~2). Hence, the average misse S. 1. Thus, it is clear that Fheodlng ga!ndecreases with
detect Wt() b'I'% P 1P ~ A\ A the increase of. Thus, the optimum Bayesian threshold corre-
etection probablilty 18F'ma = 1 = F'o & sy AS sponds to theninimum that achieves the maximum diversity

1 ) ) o order d, = d,nq. Becauselr is an increasing function of
No SNR degradation would be encountered if SUs send sofsidesi to ma®

the FC. However, this is not practically feasible as the répg channel is 0» we can Obtain.the.qptimum thres_hmd by equattt)g to
usually limited [5]. dmq instead of minimizingP., which is not mathematically
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and g M1
Pog =< =log (7_17 T ) (13)
v 'M—1)m-1
T —— when the SUs do not know the number of cooperating SUs
= = False alarm probability diversity order dp . . .
a5k ) ) I N. In this case, cooperation does not reach the maximum
e Missed detection probability diversity order d,q . . . L. .. . .
o possible diversity gain in addition to having a poor coding
2l = = = Error probability diversity order d. . . .
gain, questioning its usefulness. Hereunder, we present a
a5l e , ‘ comprehensive study for the performance of the cooperative
g scheme.
& 3 * Based on[(8), the global missed detection probability is
S i given by
Z7 U
g ’ s
g S N\ =n~N-i —
A7 i' Prma,a(n,A) = Z ( I ) Prg (A) (1— Pmd()‘))l- (14)
150 2 1=0
. ! .
1\.1'_ It is obvious thatP,,,; — 0 as¥ — oo. The last term in the
PRamms LR e series in [(IT¥) dominates and the asymptotic value’gf;
ost Q:’\ becomes
'o” N A N—-n+1
ol ‘ ‘ ‘ ‘ ‘ ‘ j P ) = . 15
os ! e Drizft factor 1‘2).5 : * ! md.’G(n’ ) n—1 27(M - 1) ( )
Thus, by rearranging (15) in the form Gfi5) ¢, the diversity

Fig. 1. Diversity ordersdg, d,,q andd.) versus the drift factof for the : . )
conventional spectrum sensing scheme. order d,,4 and coding gain4,,q in terms of the local and

global thresholds are given by

tractable. The behavior of the achieved diversity ordeswer dma,c =N —=n+1,
the factord, that we denote as tharift factor, is depicted in N \TT M1
Fig. 2. It is shown that the optimal threshold corresponding Apmd.c x ( )
6 = 1 represents the intersection @f andd,, . This implies A
the following proposition. Clearly, the global threshold that maximizes the diversityer
Proposition 1. The optimal Bayesian threshold can bés n = 1, which is known as the OR rul&l[5]. Hence, if only
obtained by solving the transcendental equation one SU votes for the presence of a primary user, the fusion
center adopts its decision. The local threshold chosen such
dp(A) = dma(A)- that Prc = a.
_ _ Based on the above analysis, it can be concluded that
B. Cooperative scheme analysis: the good, the bad, and f§yperative spectrum sensing with SU receivers can offer a
ugly diversity order ofN. The largerN is, the higher the diversity
In cooperative sensing, local thresholds are employed byder is, but the more information is lost due to hard deoisio
individual SU receivers to take local hard decisions, wiaile taken locally at each SU. This is demonstrated by the fa¢t tha
global threshold (an integer number) is used by the fusidine coding gaimd,,q.c « M atn = 1, which is as low as}v
center to take the final decision. In this subsection, weteelaf the total number of samplesV(M) involved in detection,
the local and global thresholds, andn, to the coding gain but the diversity gain will be maximized and,,qc = N.
and diversity order. Next, we select the thresholds so thatthe low SNR region, information loss due to poor coding
the global false alarm probabilitr ¢ = o and the diversity gain is more critical and we do not benefit from multiuser
order is maximized, which corresponds to the NP test. Thatiyersity. Thus, for a fixed total energy constraint, it igtbe
we select the thresholds that maximize the error probgbilibhot to cooperate when the SNR is low as assigning the total
diversity order, which corresponds to the Bayesian test. WWaergy to a single SU leads to a better detection performance
characterize the performance of energy constrained CSS a$o demonstrate the tradeoff between coding and diversity
being multifaceted with three basic aspectsigadd aspect, gains, we compare a cooperative network wittsU terminals
which is achieving diversity order ofV at assymptotically and M samples per terminal with a non-cooperative network
high SNR; a bad' aspect, which is the poor coding gainwith a single SU andV M samples. Note that the total sensed
causing performance degradation at low SNR; andwagly" energy is constant in both cases to ensure a fair comparison.
aspect, which is the inability to achieve the full diversityder Let the local thresholds in the multiple and single-useesas

n—1
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1 ; LM, 3)  ~M-1 ) B2
= CoOperative scheme Based on the Serle_s expansi M) T Zizo 2i1—‘_(|1:+1)6 2
oot . with VNI SU [6], we can approximate the false alarm probability as
= mom = Non-cooperative N )\M*l n
08r . scheme with 1 SU P ~ 2n
ra(n,\) ~ — ] e2". 16
e N~ )\ s=man (16)

°
3
T

We substituteX in (I4) and [(Ib) with the locally optimal
threshold multiplied by the factdtr. Our objective is to obtain
the value of# that maximizes the diversity order of the
global error probability. The global false alarm and detect
probabilities in terms ob are given in[(II7).

From [17), it is obvious thatl,,q.c = N — n + 1, while
dr.c = nd. Thus, the diversity order of the error probability
is

Probability of missed detection P4
o o o o
w S (5] (2]
T T T T

o
N
T

de ¢ = min{N —n + 1,n6}.

o
=
T

We investigate the achievable diversity order in two difer
scenarios as follows:
o The number of cooperating usersN is unknown at

Fig. 2. To cooperate or not to cooperate tradeoff. SU receivers:In this case, we aim at selecting the global
thresholdn and the local thresholé),,;, such that is
not a function ofN. The optimal thresholds are obtained

be Ay s andA; s, respectively. Based on the above results, based on the following optimization problem

the coding gain would bé% in the cooperative scheme and

NM_1in the non-cooperative scheme. Thus, the coding gain

A1NM

o )
-20 -15 -10 -5 0 5
Average SNR (dB)

max min{nf, N —n+ 1}

of the non-cooperative scheme is boosted by a factaN of st.nd=N—n+1.
This factor is reduced asy 5; and Ay yas are not generally )
equal. Because the number of SUs is unknown at each SU,

Fig. 3 depicts the tradeoff under study. Simulations were W€ Select a locally optimal threshold for each SU by

carried out for cooperative and non-cooperative schemds an  Settingd = 1. Combining this fact withProposition 1
the missed detection probability is plotted versus the ayer we obtain the optimal global threshold by solving the
SNR. TheNM product is fixed for both schemes and is set equat|0rr]$+:l N —n+1, which yields a global threshold
to 4, 25 and 100. This product represents the total energy °f 7= [72~] B. Thus, the corresponding diversity order
constraint involved in detection. For each valuei/, the 1S

cooperative scheme employ&V M SU terminals and/N M 4. — min { LN + 1J [N + 11} B LN + 1J
samples per terminBl On the other hand, the non-cooperative < 2 7 2 N 2

scheme empon; 1SsU usi_rYgM samples. By applying the Thus, the “ugly” face of CSS appears when global
NP test and setting = 0.01, it is found that av / = 100, the information are not provided to local SUs. Note that for
non-cooperative scheme outperforms the cooperative sthem 5, _ 2, cooperation without global knowledge Bfyields

by 3 dB at low SNR. Thus, it is better not to cooperate if the 4 diversity gain at all.

operating SNR is less thar5 dB, which is the SNR value | 1he number of cooperating users N is known at
corresponding to the intersection of tli%,; curves for both SU receivers: |t is obvious thatd, .. ¢ is maximized by
schemes. The _SNR gain is reduced in i@/ = 25 scenario settingn = 1. Applying Proposition71 the optimal value
and nearly vanishes wheN 1/ = 4. On the other hand, the of 9 is N. The corresponding diversity ordeg ¢ = N,
cooperative scheme offers large gains in the high SNR region ;s the full diversity order is achieved in this case.

For instance, atP,,; = 0.03 andNM = 100, cooperation

i . . . It is worth mentioning that global knowledge d¥ is also
outperforms non-cooperative sensing by an SNR gain of 7 cgBeeded in the NP test. However, the lack of knowledg® o

due to the multiuser diversity. The largaf is, the more gain the NP problem has no effect on the diversity order. Instigad,

one g(_ats at high SNR, bu_t at the expense of the coding 98ihs the problem into discrete hypothesis detection problem
for a fixed energy constraint.

For the Bayesian optimization problem, we obtain the glob ?fZ]’ where only discrete values dfr. = o are realizable.

false alarm probability by taking the dominant term of theS mentioned earlfer, to!eratmg a Iarge_r comes at the
. : S éxpense of the coding gain and not the diversity order.
binomial expansion in(8)

To sum up, whether to cooperate or not to cooperate depends
N T(M,2) " on several factors. If the operating SNR is low, it is better
Pra(n,\) < ( ) T]\E ; not to cooperate as the coding gain is severely degraded in

" the cooperative systems impacting performance at low SNR.

2Any combination of the number of SU terminals and the number o 3Throughout this paper, the operatal is the flooring operator, whilg.]
samples that keeps th€ M product constant can be used in the analysis. is the ceiling operator.
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M—1
_ M1 =y On(M—1
b N ( (M 1)910g( (M_l)M517A] 1)) I‘(M—l)lel ( ) 1

BE= A\ n 2M=1T(M) M—1 ~on

(17)

Moreover, if the number of SUs is not known, we can ndhe unknown parameters, no Uniformly Most Powerful (UMP)
achieve the full diversity order in the Bayesian test. Fdest exists, and we adopt a suboptimal test that involveplsim
small number of cooperating users (e.y.,= 2), the system energy detection without assigning weights to energy sasapl
will not offer significant diversity gain and cooperation yna In the state switching scheme, we blindly select an arlyitrar
not be worth it. Stemming from this analysis, we study theumber of channels over the sensing period such kh&tQ
performance of the proposed single reconfigurable anten‘:made:1 l; = M. On the other hand, if the CSl is available at
schemes in the next section. Such schemes are capabl¢hefSU, we adopt the state selection scheme instead, wheere th
overcoming all the drawbacks of cooperation and achievistrongest channel realization is selected for the entinsisg

the full diversity and coding gains thus offering a superigveriod (i.e.L = 1,1, = M, andk = max; ;).

performance compared to the conventional schemes for the

entire SNR range. A. Optimal sensing based on NP Criterion

1) Spectrum Sensing via State Switchifighe missed de-

IV. SPECTRUM SENSING VIA RECONFIGURABLE tection probability for an arbitrary antenna mode switchin

ANTENNAS pattern is given by[(11). Given thaf(M,z) = % as ¥y

As stated earlier, reconfigurable antennas can artificialy oo [27] the asympt0t|c values off (w) and G(w) are
Irl AM 1+, . .

induce fluctuations in the slow fading channel. This would DT, ()0 and ZJ 1w —*, respectively, which

create temporal diversity for a single SU network, Wh'cnnplles thatmln{G( ), H(w)} = H(w) at high SNR. Thus

can offer a gain similar to the spatial diversity gain in th%ne can calculate the diversity order basedRyy, = H (w).

cooperative scheme We mvestlgaFe two basic schemes 'f‘Plre asymptotic missed detection probability will then beegi
spectrum sensing using a reconfigurable antennatate

b
switching scheme (when the CSI is unknown) andstate y
selectionscheme (when the CSI is available). Based on the - AM 8
Si [ del d in Secti : : md(Vla---a'YQ)”\ Q L (18)
gnal model presented in Section Il, we derive the optimal I'(M + 1)1_[7-:1(1 + ;)b

test statistic for spectrum sensing with an arbitrary s&lac
of antenna modes over time, where each mgds selected
for [; sensing samples.

Lemma 5: For spectrum sensing using reconfigurable ane-? M o0 o0 o 1
tennas with arbitrary antenna state selection over time, let ™4 = (M +1) / / / Q L
. ' 0 0 =0 1+,)b
ZJ = Zi] l;+1l+1 |TZ|2 .] € {1727' ' 7Q} lO - O L is the " b e H7 ! 73)
number of antenna states invoked within the sensing period 1 -
(L < Q), and 7 is an arbitrary detection threshold. The —g¢ 7 dndy...dy

T . Y
Likelihood Ratio Test (LRT) reduces to
el I ( ) ! which can be reduced to

By averaging the missed detection probability[in] (18) ower t
pdf of @@ independent Rayleigh channel realizations we get

L ) Ha
Yl Pt = = Q/OO L L= a9
=T MR J Sy )BT T
proof See Appendix E. It can be easily shown that the integral [n](19) is given by
Note that the LRT described in Lemma 5 requires the N Q
knowledge of the channel realizations corresponding te dif Py = A Hifzje%r (1 — 1, é) .
ferent antenna states, and involves a test statistic that is DM +1) 24

calculated viaweighted energy detectiorather than simple

energy detection. If the CSl is not available at the SU (itee, At large SNR, eF > 1 andI'(1 — %) =
set of channel realizationgy:, vz, - - - , 7o} is unknown), the v
test in Lemma 5 denoteshy/pothesis detection problem with P A 1 (20)

md = X .
unknown parametef82]. Because the test statistic depends on NM+1) 79 H;‘.’?:l(lj —1)



XXXX, VOL. XX, NO. X, XXXX 201X 9

Optimizing the coding gain depends on the choice of tHa order to simplify the analysis, we focus on the dominant
number of sampleg associated to an antenna realizatign fading density at assymptotically largewhich can be written
It is obvious from [[2D) that minimizing the missed detectioas [16]
probability is achieved by maximizing the quantlfj/?zl(l
1). We can obtain the optimum values of thi&s via a simple

Q -vmax
Srmas (Ymaz) ~ 7_Q€ 7 'Vf?zamlv

Lagrange optimization probleras and the probability of missed detection as a function of the
instantaneous channel gain is obtained from (11) by setting
max H(li —1) Iy = M, Wh_ere.k: = max; v, andy is the corresponding
channel realization
A
Q P (M ) W)
s.t. Zli = M. md = T(M) :

The average missed detection probability is thus given by
By constructing the auxiliary functio®(l1,12,...,lg,A) =

H (lLi=1) + A (ZQ I, — M) (whereA is the lagrange  _— Q [ T (M, m) i .

mult|pI|er) and solving forv ldornig)© UL, 12, .. g, A) = Prng = 7 /. T(M) ¢ . (21)

0 (whereyy is the gradient operator) we obtam the optimum e

solution as For simplicity, assume that + v ~ 7. The integrands in

=1 ; LMJ (Z21) can be represented in terms of the Meijer-G function as
Q 5} _ Q -1 -2k 1,1 1 A
. o . Pmi= ———5 e G12 M, 0 dyy.-
Thus, the optimum antenna switching pattern is to change the (M) Jo 29

yeenQp

antenqa .radl_e}tlon mode evefy | sqmp_les. Note_ that this Using the property Gon (Z o ) _
result is intuitive as all channel realizations are indejssn \brdby |1 Lo )
and identically distributed, which means that the optim&fqy" (_1._(11:....:1_@1 #7"), the average missed detection
antenna mode switching pattern is obtained when employipgpbability will be g|ven by the following integral
every mode for an equal time interval during the sensing 9 1w 1 a2
period. P = W 7k € G I dyk
From [20), the achieved diversity order is 7
Using [27, Eq. (7.813)], the average missed detection proba
_ bility is

_%Holo log7 ' _

! P — Q 1,2 [(1-Q,1-M, 1 2'7
Note that if the number of samples is less than the number of md (M) 31 0 DA

antenna states, only/ channel realizations can be employed
during the sensing period. Thus, the diversity order is galye

which can be represented as

given by Fde% 1F2(Q;Q+1,—M+Q+1;i_)

dma = min{M, Q}. 2l 275
The threshold) is selected such thaPr = «, where ’C]é VB (M; M +1,—M +Q + 1; A 2, (22)
it has no impact on the diversity order. The average PU 275

signal energy input to the energy detection is given hyhere K, and K, are constants,F, (a1, ..., ap; by, .., by; )
Var ZJ 1 Z; l§+1l+1 \/775} = ZJ 1 Zj lfllﬂ_ = is the generalized hypergeometric function, and
M#. Thus, the coding gain is”proportional to the total numbe®y (a1, ...,ap; b1,...,b4;2) — 1 asz — 0. Thus, it can
of samples involved in detection, and the full coding gain ise easily concluded that the diversity order of the state
achieved. selection scheme will be given by

2) Spe_ctrum Sensing via State Selectidn: the non- d = min{M, Q}.
cooperative scheme, knowledge of the CSI at the SU can
provide neither coding nor diversity gain to the detectioNote that this is the same diversity order of the state switch
performance. In the proposed scheme, the CSI is utilized goheme. Thus, availability of the CSI at the SU in state
selectthe “best” antenna mode (the mode with largest chanregdlection sensing offers no diversity gain compared tcestat
gain) rather tharswitch the antenna modes over time. Thiswitching. Selecting the best channel state every sensing
resemblesselection combiningn multiple antenna systems.period, on the other hand, offers an SNR gain (coding gain)
Thus, an SNR gain is obtained that is termed alkection that we define as theelection gain The ratio between the
gain. The pdf of the maximum oy Rayleigh distributed average SNR in the state selection scheme relative to the sta
channel gains is given by [34] switching scheme is given by

’Wnar —Ymax _
5 )Q 1

(- Ty o 23)

frvmae (Ymaz) = ge Selection gain=
Y
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where H, is the Q' harmonic number defined al; = order negatively. The number of samplgsassigned to a
1+ % + % + ...+ % [34]. For large number of antenna states;hannel realizatiorj must be greater tha. The maximum
the selection gain tends to number of channel realizations that can appear within

sensing samples is thu¥. If Q > 2, we can not achieve
the maximum diversity order. In fact, if the sensing period

where ¢(.) is the digamma functionand —(1) is the is limited compared to the switching delay, the diversitynga
Euler-Mascheroniconstant. Thus, the coding gain obtaine@ffered by reconfigurable antennas becomes less significant

from state selection grows logarithmically with the numbdf M = D, the system behaves like the conventional non-
of antenna states. cooperative scheme.

2) Impact on state selection schem#é:the SU requires
D samples to select the maximum channel realization, the

achieved SNR gain is perceived fof — D samples only. In
1) Spectrum Sensing via State Switchinfhe achieved this case, the selection gain tends to

diversity order in this case will be obtained according te th

Selection gairn~ log(Q) — (1),

B. Optimal sensing based on Bayes Criterion

following lemma: Selection gain= D + M- DHQ.
Lemma 6: The achieved diversity order for the pro- ) ) M M )
posed scheme using a threshold @f., is d. = More_over, the dlverslty or_der is also impacted as the _eﬁfect
min {# min{ M, Q}, min{ M, Q}}, whered € R. sensing period that is subje(_:t to 'Fhe selected channélisD
Proof See Appendix F. samples only. Hence, the diversity order becomes

As stated in Lemma 6, spectrum sensing using a reconfig- d = max{1, min{M — D,Q}}.

urable antenna witl modes can achieve a diversity order of
Q. This is equivalent to the diversity order of a cooperative9ain, atM = D, the system acts in an identical way to the
scheme withQ) SUs. Even if the SU is using a suboptimal®9acy single antenna non-cooperative scheme as all sample
threshold off\,:, the achieved diversity order & which €xperience an arpltrary cha}nne_l without selection. This th
is  times larger than the diversity order achieved by th@minating diversity order is either 1, whel = D, or
conventional scheme that employs a threshold)of,;. min{M — D,Q} otherwise. The switching delay degrades
2) Spectrum Sensing via State Selecti®y observing the diversity order of the state switching scheme, and both
Eq. (17), the missed detection diversity order is given Hpe diversity order_and selection gai_n of the state switghin
min{Q, M}. The same diversity analysis applied for the stafgcheéme. The design of the reconfigurable antenna should
switching scheme in Lemma 6 can be carried out for tH@ke into account the possible values of the sensing period.
state selection scheme. In fact, both schemes have the sdnig essential to employ high speed switching devices with
diversity order and the same optimal threshold at high SNRWitching times that are significantly smaller than the sens
Similar to the NP problem, the state selection scheme offdtgriod. If the switching speed is inevitably low, one has to

an extra coding gain as the average SNR is boosted by a fagstend the sensing period such that diversity and coding gai
of Hy. benefits of the reconfigurable antenna are attained. However

this will be at the expense of the system throughput.

C. Impact of Switching Delay D. Performance Evaluation

In this subsection, we quantify the impact of switching In thi bseci luate th ; ¢ th
delay on the detection performance of state switching aaté st n 'Sd suhsec on, \éve evalua eth e p?{;] othance N " N |
selection schemes. L& be the equivalent number of sample§Jroloose | schemes and compare them wi 1€ conventiona

goperative and non-cooperative schemes. It is important t

that a particular switching device needs to change from off ; . ; .
antenna state to the other. We assume that throughout th g that 6.1” th.e pare_lmeter settings useq |n.the S|mulat|ons
D samples, the old channel realization is perceived by the ' cu_ssed n this sectlc_)n are selected arbitrarily for mcak
receiver. A new channel realization appears affesamples and_ simulation convenience. However, the analys_es ananpl
which means that the maximum achievable switching rate higtions presented in the paper are generic and suit anyqaiact
L whereT, is the system sampling peridﬂi values for the system parameters. For all curves, MonteoCarl
s .

DL’ o ) . simulations are carried out with 1,000,000 runs. In Fig. 4, w
1) Impact on state switching schemea:the state switching lot the error probability curves for the non-cooperatg'lskm

h ithD del les, th hieved di ity order & . : )
scheme wi eldy samples, the achieved diversiy order Icooperatlve (withN being known and unknown), the state

d = min{Q, ﬂ}_ switching as well as the state selection (wiph= 15 antenna
D states) schemes. An overall energy constraint is imposed by
The SU tries to rapidly switch the antenna modes such tHiting the total number of samples to 30. It is shown that the
maximum number of channel realizations is utilized in segsi cooperative scheme with 15 cooperating SUs outperforms the
The limited switching speed affects the achieved diversityon-cooperative scheme at high SNR as it achieves a diyersit
order of 15. However, cooperation performs worse at SNR
4Various switching devices experience different rangesiroé tdelay. For values below—5 dB due to the poor coding gain. When the

instance, a MEMS switch may have a switching timd @f20 us [18]. Other

i i i gptl | =
electronic switching devices, such as PIN diodes or fidldegftransistors number of SUs is unknown, a dlver3|ty Ordert 2 J =38

(FETSs), can offer a much faster switching speed [21]. is only achieved. Thus the offered diversity gain at high SNR
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is generally less than that offered whén is known. State o045

switching and selection are shown to outperform coopexati —>&— Non-Cooperative Scheme (M = 30)

and non-cooperative schemes at any SNR. For state switchi ~ %4£%3 = = = Cooperative Scheme with known N at SUs (M =2, N =15)
a diversity order ofnin{15, 30} = 15 is achieved, which is the 0357\\‘ =W Cooperative Scheme with Unknown N at §Us (M =2, N = 15)
same diversity order of the cooperative scheme, leadinly b | S\g 78 75w Swicing (Q= 15,4130

curves to have the same slope. However, the state switch o os g N e Scection (@ =15, M =30

scheme uses 30 samples for sensing, which maintains £ *

same coding gain of the non-cooperative scheme. It is sho‘fo 0.25¢ NN

that state switching acts like a non-cooperative schemevat | = YW

SNR, and provides a diversity gain at high SNR. As for th% o2
state selection scheme, it attains the same diversity afler £ o5
min{15,30} = 15, and in addition, offers a coding gain of

His = 1+ 3 +...4+ & =~ 5dB. Thus, an SNR gain  o1f
of about 5 dB compared to state switching is obtained v
antenna state selection. Similar simulations are carnigday
the NP test with 100 samples, false alarm probability of 0.0 0
and 10 antenna states. Fig. 5 shows that state switching i ™ -
selection act in a similar manner to that depicted by Fig. 4.

Again, state selection scheme outperforms all other schemfdg. 3. Performance of various schemes based on the Baytesiain
while state switching still offers a better performancentha
cooperative and non-cooperative schemes. Although aclgiev
the selection gain requires channel estimation and apiptepr ,©6
reconfigurable antenna design (with large number of ind
pendent states), it is still less complex than the coopmrati _ %8|
scenario.

Fig. 6 demonstrates the impact of switching delay @
the sensing performance based on the NP test(for 10
states. For the state switching scheme, switching delay t
no impact on the coding gain. However, the diversity orde
is reduced when the delay is introduced. For a total numk
of sensing sampled/ = 100, we study the effect of the
switching delay with valued = {30,50, 95,100} samples.
For those delay values, the delay-free diversity order ofs10
reduced to bel,,q = min{10, 32} ~ 3, min{10, 22} = 2,
min{10, 42} ~ 1, and min{lo,(%} = 1, respectively. This
is demonstrated by the degradation of the slope of the sa ¢
curves in Fig. 6 as delay increases. When the delay samg 0 o Av_ciage SNR (dB)
are equal to the sensing samples, state switching performs
like the non-cooperative scheme with legacy antenna. When. 4. Performance of various schemes based on NP testawith0.05
a very large delay ofd5 samples is encountered, the SU
does not achieve any diversity gain (it will be shown later

that state selection is less sensitive to large delay seenar . ) ) . L .
ios). At low SNR, all curves coincide as switching delaﬁoes not achieve any diversity gain, which is not the case in

has no impact on the coding gain. Contrarily, the diversilgéjlte selection.l Tfhus,_stzgf‘ge selletl:tion 'OS?S h'ts d(i;/elgiim b
order of the state switching scheme is less sensitive toyde vantages only for signi |ca_nty jarge switc Ing de ayst
and its coding gain degrades with increasing delay. Foraéthe expense of the CSI estimation complexity. Fig. 7 shows

delay of 30 samples, the full diversity order is achieved a@e |mpaqt _Of delay on the error probablll_ty n Fh? Bayesian
max{1, min{100 — 30,10}} = 10. However, the selection test, and it is easy to interpret the results in a similar neann

gain drops fromHyy = 4.667 dB to (5 Hig + -5 = 3.711

dB. Similarly, a delay of 50 samples degrades the coding gainV- SENSING-THROUGHPUT TRADEOFF. THROUGHPUT

but preserves the diversity order. This is depicted in Fig. 6 GAIN IN RECONFIGURABLEANTENNA SCHEMES

by the three dashed curves corresponding to delay® of In this section, we revisit the fundamental tradeoff betwee
0, 30, and 50 samples. The three curves have the same slegesing capability and achievable throughput of the sesognd
(same diversity order) but different coding gains. When theetworks. We will show that there exists an optimal sensing
delay becomes as large as 95 samples, the diversity ortlere for which the highest throughput for the secondary
drops tomax{1, min{100 — 95,10} } = 5, which is reflected network is achieved with sufficient protection for the PUxNe

in Fig. 6 by a significant change in the slope Bf,;. It is we will show that by adopting state selection spectrum sensi
worth mentioning that for 95 delay samples, state switchiris optimal sensing time is reduced, thus allowing for agrev

0.051

0 5
Average SNR (dB)

1

@ Cooperative scheme (N = 10, M = 10)

s Non-cooperative scheme (N = 1, M = 100)

o o o o
> o o ~
T T T T

lissed detection probability (Ppna)
o
w

M

0.2

15
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Fig. 7. Sensing and transmission stages in a CR system.

Fig. 5. Impact of switching delay on proposed schemes bagethe NP
test with M = 100 andx = 0.05.

for fair comparison, as the throughput achieved by CSS is

" State switching (Q = 15) divided among the cooperating users. Besides, we only con-
0.45 -G -O - State sclection (@ — 15) sider state selection and not state switching, as the @ontstr
on detection probability are usually given at low SNRI[23],

I
IS
T

which takes away any advantage of state switching. In amditi
to that, it is obvious that state switching can not improve th
ergodic capacity as it has no CSI.

e

w

@
T

o
w
T

D =0, 10, 25, and 30

A. Problem Formulation

Probability of Error (P.)
o
o N
N o
L d

As depicted by fig. 8, we assume a frame structured
secondary network consisting of an SU transmitter and an SU
receiver. The frame is divided into a sensing period of lengt
and a transmission period @f— 7. The SU transmitter senses
the PU signal for a period of and if the PU is absent, the

s 20 -15 -10 5 0 5 o SU transmitter sends data to the SU receiver in a period of
Average SNR (dB) T — 7. For a sampling period df,, we haver = MT, and
Fig. 6. Impact of switching delay on proposed schemes baséaeoBayesian T= K_TS’ where) is the number of s_amples used in sensing
test. and K is the total number of samples in the frame. We assume
that the SU transmitter employs a reconfigurable antenra wit
Qr states, while the SU receiver has a reconfigurable antenna
higher throughput given the same PU protection constrainigith ) states. The SU transmitter is engaged in two phases:
Furthermore, we show that the SU transmitter and receiver
can utilize reconfigurable antennas to maximize the seagnda °
channel capacity by selecting the “best” antenna statestht b
secondary parties. Thus, not only do reconfigurable antenna P op
improve the performance in the detection phase, but they {17,
can also be utilized to enhance the channel capacity in the PU. o .
transmission phase as well. Finally, we investigate theceff ° Trgnsm|SS|on phase:wh_ere.tr_\e SU transmitter and re-
of switching delay on the achievable capacity and quantiéy t ceiver apply state selection Jo!ntly and select the_ strc_ange
possible degradation caused by such delay. chgmngl out ngTQR possible channel realizations

The sensing-throughput tradeoff was studied thoroughly 892 %0r0a
in [23]-[25]. We are concerned here with the impact ofhus, the SU transmitter selects the best antenna state for
reconfigurable antenna spectrum sensing on throughput givesensing and then switches to the best state for transmission
constraint on the detection probability. In the next subeas, We assume the availability of full CSI at the SU parties. If
we compare the reconfigurable antenna state selection schemitching delay is considered, thdn samples are wasted to
with the conventional one. We omit CSS from our discussi@awitch between the different modes.

0.15

0.1r

0.051

Sensing phase:where the SU transmitter senses the
PU signal after applying state selection and selects the
strongest channel out of th€@; channel realizations
vVST} between the SU transmitter and the
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B. Normalized throughput maximization

The average throughput for the secondary network as

function of the sensing period is given hy [23]
R(r) = (1-7) {C’OP(HO)(1—PF(7-))+01P(7-1,1)Pmd(7)%.
(24

If v, is the channel between SU receiver and the PU,and
is the secondary transmission channel, thgn= log(1 + ;)
andCy = log(1+ = ) BecauseP(H;) is usually less than
P(H,) andCy < CO, a reasonable approximation f&(r) is
adopted in[[2B]+[24] as

R(r) ~ C,P(Ho) (1= %) (1 = Pr(7)),

-
1— —
T

(25)

From [25), we note that two factors affect the average se

ondary throughput. First, as the sensing time increases,

throughput decreases as less time is dedicated to transmis:

13

0.35

Normalized throughput R(7)

o
-

[ | = = = Conventional sensing
m— State selection with Q = 2

0.05 == State selection with Q =2 and D = 2

1@ State selection with Q =2 and D =4

0 i i i i
4 6 8

Sensing samples (M)

within a frame. Second, a high value for the false alarm

probability degrades the throughput as it implies that weteva
opportunities to access the channel. The average norrdali

throughput is defined ag(r) = CDI;((Q_)[O), which can be
expressed as
R(r) = T (1~ Pe(r))

The optimal sensing time is obtained by maximiziﬁiyf)
while keepingPp(7) above a certain threshold

max R(7)

S.t. FD(T) > Dd-

Itis easy to prove thak(7) has a unique maximum by proving
its unimodality. The derivative of?(7) with respect tor is

(26)

given by
MO~ -y ea- 7 (-0 @
~—_———

Ay Ao

Notice that the tern#; is always negative aBr(7) is always
less than 1. Also, a®r»(7) decreases with increasing then
Ay is a monotonically decreasing functionafAs for the term
A, it is always positive becausBr(7) is a monotonically
decreasing function im, which means that dPF(T) is always
positive. Moreover, ag < T', then (1 — %) |s also positive
and A, is positive for all 7. Finally, it can be shown that

%(T) is @ monotonically decreasing functionofthus A,
is also monotonically decreasing in Now, the sum of the
two monotonic functionsi; and A is positive if | A3| > | A4]
and negative otherwise. TherefoRé7) is unimodal and has
an extremum point atds| = | 44].

Fig. 8. Optimal sensing time in conventional and state sielecschemes
#8NR = 0 dB andP, = 0.9).

Thus, to satisfy the constraint dPp(7) = pg with state
selection at low SNR, we only neeﬁw— samples for sensing.

If the optimal sensing time for the “conventional scheme is
M,p+ and the corresponding false alarm probabilityAs .,
and if the false alarm probability of the state selectionesat

with %’fﬁ sensing samples iz, then the normalized
throughput gain is
M
l—gp- 1-P
Normalized througput gais: I;fQT X Fa
— _;(pt 1- PF,C

Note thatPr , is always less tha#’r . for a constant detection
probability. The reason for this is that, for a fixed threshb|

M,
F( opt X\
(M, H ’2 .
we havel(er::2) or as the false alarm probability
F(Mopt) r Mopt
H

is a monotoically decreas?ﬁg function of the number of semsi
samples. In addition to that, the state selection scheneesodf
diversity gain, which means that even when the sensing sam-
ples are only@ the state selection scheme still outperforms
the conven'uonal scheme with/,,; samples at any SNR.
Thus, for a fixed detection probability, the optimal thrdsho

in the state selection scheme is greater than that used in the
conventional scheme. Therefore, the false alarm prolalsli
reduced by state selection even if the detection probgbilit
is kept constant. This means that by using reconfigurable
antennas, a multifaceted throughput gain is achieved. For a
fixed detection probability, the optimal sensing time isueet
allowing for longer transmission period, and the false ralar
probability is reduced, which in turn, means a better watiian

It is shown in [23] that the optimal solution t¢_{26) isof the channel when the PU is absent.

achieved with equality constraint. Assume that for the emav

Fig. 9 depicts the normalized throughput gain obtained

tional spectrum sensing scheme, the optimal number ofrsgnsby deploying state selection witfp = 2. Assuming that the

samples isM,,;. For this number of samples, the detectio
probability satisfies the equality constraiRty (1) = pg. For
state selection spectrum sensing wih- antenna states, we
have shown that a coding gain tflog(Hg,.) dB is obtained.

detection probability is set to 0.9 at an average SNR of 0 dB,
the normalized throughput curves for conventional andestat
selection schemes are plotted versus the number of samples
M. It is shown that the optimal sensing time for the conven-
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6

tional scheme isM= 6, which is reduced to 4 in the state

selection scheme as the required number of samples to at = State sclection (Qr = 4, Qr = 4)
the same detection probability becom%2 = 4. Besides, 5| | —= State selection (Qr =3, Qr = 3)
the false alarm improvement in the state selection schel —6— State selection (Qr = 2, Qr = 2)
contributes to the total throughput gain. It can be dedug@mu f 5 | | = = = Conventional scheme

the peak values that the maximum normalized throughput g 4
boosted from 0.2 to 0.325 when state selection is applieis. T/ £
gain degrades when switching delay is considered, which .
depicted in Fig. 9 forD = 2 and 4. ForD = 2, the maximum
normalized throughput drops from 0.325 to 0.3, while a del:
of D = 4 results in a maximum normalized throughput of 0.2
only.

y (bi

Ergodic Capacit;

C. Transmission Channel Capacity

In the previous subsection, we demonstrated the normaliz ==
throughput gain achieved by using a reconfigurable anter Average SNR (dB)
in the sensing phase. It is worth mentioning that the SU
transmitter can select different antenna states for sgnskig. 9. Capacity gains for various numbers of antenna states
and transmission to achieve diversity in PU signal detactio
and SU-to-SU signal transmission. The maximum achievable

average throughput is approximated as - %dt is the exponential integral function. Thus, the
v ergodic capacity of the state selection scheme is given by
R= sup <1 - —) PrP(H,)E{log(1+~7)}, QrQr—1 . .
1<i<Qr,1<j<Qr K { 2 Cs = QrQ TZR QrQr) (L1’ oo p; (141
° r i )i+l Ys )

where %-SJ- is the SU transmitter and receiver channel that i=0
corresponds to transmitter and receiver antenna states
and j, wherel < ¢ < Qr and1 < j < Qgr. We drop
the term (1 — 2£)PpP(#,) as it depends on the selecte
antenna state in the sensing phase. We assume that

possible QrQr channel realizations are independent and . . i
identically distributed (which matches with the conce|btua;iIt high SNR. Fpr ms?ance, at an SNR of 10. dB, the.capacny
f state selection with 4 antenna states is 1.75 times the

model in Section IlI), and that the average SNR of th . : i .

SU link is 5. The average (ergodic) transmissior(]:onventlonal scheme capacity. This gain can be transformed

channel capacitSyE{ log(1 + V,S,)} depends on the pdf into an SNR gain of 7.5 dB. In other words, the transmission
2,7 1

of the selected antenna state. By selecting the maximlﬂﬁ’tﬁ of the conventional scheme at an SNR of 10 dB can be

channel out ofQrQx channel realizations, the pdf of — achieved by state selection at an SNR of only 2.5 dB.
i S .8 S 5 S For a switching delay oD, the SU transmits on two parallel
MAX1 < <Qr 1< <QriVI 1 Vi2r -+ T.Qns Vols -+ 2 Vor.Qn )

I channels: the channel utilized for sensing is still effesti
's given by [34] for the first D samples of the transmission period, and the
£(y) = QTQRe;_;(l . e;_;)QTQR,l best transmission channel becomes effective for the rengain
K Y ’ K — M — D samples. The effective average capacity in this
case is given by[(30) on top of the next page. Note that

when the SU transmits on the previously selected sensing

(30)
Assuming that the SU transmitter applies equal power allo-
&ation for simplicity, Fig. 10 shows the ergodic capacitynga

a nieved by state selection for various number of comhmnati
antenna states. The capacity gain becomes more significan

which can be rewritten using the binomial theorem as

QTQr-1 QrQr\ (=1)F _ausn channel for the firstD samples, it attains the same capacity
() = QrQr Z ( T R) ~—~¢ ~7s . (28) of the conventional scheme. Fig. 11 demonstrates the impact
i=0 ! Vs of switching delay on the average capacity of state selectio

Thus, the ergodic capacity, of the state selection transmis-With 4 antenna states. When the proportion of switchingydela

sion is given by averaging shannon capacity over the pdf t the total transmission time is 0.2, the capacity gain at

@9 SNR = 10 dB reduces from 1.75 to 1.625. Moreover, if
the switching delay reaches half of the transmission time,

Q=1 O\ (=1)F [ R the capacity gain reduces to 1.375. We infer from Fig. 11
Cs=QrQr Z ( ; )H—l/ log(1 +7)%d7- that as long as the proportion of the switching delay to the
=0 =0 s (29) total transmission time is less than 0.2, the SNR loss is less

than 1 dB. The effect of switching delay on the achieved
The ergodic capacity of the conventional single anteng@pacity depends on the transmission period and the swgchi

L s Sy .,y technology. An electronic switching device should be addpt
scheme is given by = e7s Ei (%) [35], whereEi(x) = if the transmission period is comparable to the switchinigye
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6 T log(Pma(A)) i -tO- _
= State selection with no switching delay hmV*}OO logvy - Note that there is a one-to-one map

ping betweenf(gxg andlog(f(x)), and that thelog(-) func-

_ tion preserves monotonicity. Thus, maximizing,,.()\) is
, equivalent to maximizingog(P,,4()\)). Dividing the objective

function by the constanibg? yields the equivalent problem

= = = Conventional scheme
[| =—&— State selection with ﬁ =0.2

-0~ State selection with =05

_D_
K-M

IN
T

P & . N
o o 108(Pra(X)
. A log®

L st.Pp <a. (A.31)

N

e° L. It is clear that agy — oo, the optimization problem tends to
. maximizing the diversity order. This concludes the proof of
. the lemma.

Ergodic Capacity (bits/sec/Hz)
w
T

3 APPENDIXB
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Average SNR. (dB) The Bayesian optimization problem is equivalent to mini-
mizing the average probability of error, viz.,

Fig. 10. Impact of switching delay on the average capad@y (= Qr =

4). min Pe(A) = P(H1) Prma + P(Ho) Pr.
_ Recall that the receiver operating characteristics (RQg (
of MEMS switches. plot of P versusPp) is a strictly concave and monotonically
increasing function [32], which implies the following
VI. CONCLUSIONS dPF(/\) dPF(/\)/d)\
. . . — 0, and ———+— > 0. (B.32)
In this paper, we discussed a tradeoff between the diver- dPp(\) dPp(\)/dA

sity and coding gains achieved in various spectrum sensing APE(N /AN .
schemes. By obtaining the diversity and coding gains PEcause 7z 597s is always positive, we deduce that
terms of the detection thresholds, we proved that cooperatil=(N/dX s g\ways negative. Thus, the derivatives

schemes are not always beneficial as hard decisions takerjgﬁt%%)ﬁa and dP,,4(\)/d)\ have opposite signs, i.e., op-

local SUs cause loss of .coding g.ain, which can be Signiﬁca}%site monotonic behaviors. Therefore, we conclude that th
at low SNR. Based on this analysis, we proposed a novel Sp§9érage error probabilit, () = P(H1) Pyua+ P(Ho) Pr is

trum sensing scheme that utilizes a reconfigurable antenna, g imodal function and the optimal threshold can be obthine
the SU to exploit the diversity of its radiation states, agirig by solving the equation

full diversity and coding gains without SU cooperation. The

proposed scheme can outperform cooperative sensing, which dPe(N) —0. (B.33)
involves significant overhead, at all SNR ranges. Two sclseme dA

based on reconfigurable antennas were presented: statb-swiConsidering the derivative dbg(P.) instead ofP, yields
ing and state selection. Based on a conceptual model for the dlog(P.(\) 1 dP.(\)

reconfigurable antenna, we obtained the fundamental liomits o\ =P o) dr =0,
the achievable diversity order, throughput, and trandoniss €
capacity for the proposed schemes. Furthermore, the imp#ttch is equivalent to[(B.33), thus the Bayesian optimizati
of the state switching delay on the detection performanggoblem at high SNR reduces to trying to find the threshold
and the achievable capacity was quantified. It was shown tRétsuch that

even with significant switching delay, detection and thfougt A" = max de, (B.34)

ains are still attainable. .
g which concludes the proof of the lemma.

APPENDIXA APPENDIXC
PROOF OFLEMMA 1 PROOF OFLEMMA 3
The NP optimization problem is formulated as The average probability of error at high SNR is given by
max Pg(\) = min Pq()\) (M, 3) A
2 X PN = P(H)—2) L pey)— 2 (C.35
(\) < P(H,) ran (Hl)ﬂ(M_l) (C.35)

s.t. Prp < o, . . . .
Through the second derivative test, it can be easily shoan th

where P,,,4(\) is the missed detection probability as a funcP.()\) is concave for\ < 2M and convex elsewhere. Thus,
tion of the detection threshold. It follows from the def-P.(\) has one maximum ak,,.. and one minimum ak,,;,.
inition of the diversity order in Section Il thatl,,;, = The optimum threshold i%,,;, and is greater thai,,,,. The
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QrQr—1 i .
_ D a1 K—-M-D QrQr\ (=1)" w . (i+1
Cob = —77° SE1<75)+ = Qr@r ; ( . )Hle 7 Bi(=—)- (30)

maximum and minimum ofP, are obtained by equatiné% W#FEM) :_By sef[ting)\ = fA,pt, the asymptotic false
to zero alarm probability is given by
e AN ! 1 M-1 "
PHo)=— +PH1)——— =0. (C.36) - _ 1
QM1 (M 25 (M —1 Pp=<—"|O0(M—-1)log| —————7" ! X
(M) ( ) L(M) ( ) (M — 1)w=
The solutions of the transcendental Eq.[in (C.36) are giwen b L O(M=1)
the principal and lower branches of the Lambert W function [ I'(M —1)7-1
as [33] (M — 1)y¥T
)\1 e /’Lﬁ exp _Wfl LM s and
AM —1) 9 M -1 !
i Phpg=x=log| —————~ ™71 |. (D.38)
)\2 = MZ\/I—I exp <_Wo (%)) , Y F(M — 1)M71
Recalling the definitions in Section I, it is straightformgato

P(H1) 2M =21 (M-1) see thatdp = 6 andd,,q = 1. Thus, the achieved diversity

where p = & . Given that—W_;(x) is ot
(Ho)
always greater thanWo(W) for < 0, the optimal threshold order is given by 4 — minf6. 1
is simply A\,,: = A1, which concludes the proof. e = min{f, 1}.
APPENDIX E

APPENDIXD b ! i
PROOF OFLEMMA 4 ROOF OFLEMMA

The series expansion of the Lambert W function is given ' "€ likelihood function is given by

by l33] f(?”l T9, ... T‘MlHl)
A(r1, 7oy ag) = L2 .
{+m (Tl " TM) f(r17T27"'vrM|H0)

o (-1)f [ } | R -
€+1 f—mrm Based on the signal model presented in Section I, the joint
Wor(z) =Ly — Ly + Z Z T pdf of the sensed samples under hypothd¢esand %, are

£=0 m=1

where L; = log(—z) and Ly = log(—log(—z)). As =z — B
0, the first two terms dominate and_,(z) ~ log(—x) — flrira,ru|H) = Hf(”ml)
log(—log(—x)). Thus, from Lemma 3, the optimal threshold -

can be written as M r2
e 2(1+’Yi,j)’ (E39)
AopiE = /Lﬁ eXp(_Ll + L2)a £[1 \/ 1 + ’71,])
which can be expanded as and
1 /Lﬁ M 1 2
)\opt X uM-texp| — 10g m + f(/rla r2,... 7T]\'1|HO) = g \/%e 2. (E4O)
1 1 uﬁ By combining [E.3B) and(E.40), the Log Likelihood Ratio
o8 | —log 2(M —1) (LLR) test reduces to
M
2(M -1 . Hl
— oM - Dlog (2 =D ) (D.37) 2 2, (E.41)
MZ\/I—I i=1 1+ 1,7 Ho
Thus, asy — oo, and assuming thaP(#,) = P(#.), the  Because the factof=— is constant over every; samples
optimal threshold can be approximated as and;j varies from 1 toQ we can rewrite the LLR test as
M—-1 1 Q H
Aopt = 2(M — 1) log (7171»11)_ Yj <
_1\m=1 Zi =, E.42
(M — 1)1 < 1+ ;077 ( )
The false alarm probability in (2) can be expressed in the '
series form asPr = 3211 5ase ™ [6]. At high SNR, whereZ; = 0714 | |r|* andl, = 0. This concludes the

the last term in the series representation dominatesfang:  proof of the lemma.
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[8] Z. Quan, S. Cui, and A. H. Sayed, “An Optimal Strategy faoperative
Spectrum Sensing in Cognitive Radio NetworkBfoceedings of IEEE
Global Telecommunications Conference, (GLOBECOM '07shWagton,

As stated in Proposition 1, the optimum threshold can be DC. pp. 2947 - 2951, Nov. 2007 .

obtained by solving the equatioty () = d,q(A) for A. Un-

like the NP test, we do not know hody,,; affects the diversity

order as the functional form of,,, in terms ofy is unknown.
Thus, applying the definition of diversity order in Sectidnd
Eq. (22), we havel,,, = %{()g)()\)

factor min{@Q, M} results from the fact that i) > M, we

can switch the antenna moddg times only. The diversity
Hence, the error

order at large SNR is given b%.

probability diversity order is

= min —log(PF)
de = { Tog(7)

_Mlog(h) min{Q,M}}.

e
el (F.43)

From Proposition 1, we need to find,, that satisfies

dma(N\) = dr()\), which can be reduced tgLe*% =

M —
M=TT(M)

AMAmin{ M@} - Thys, similar to the solution of the transcen-
dental equation in Appendix D, the optimum threshold is give[ls]

by the Lambert W function as

1
)\opt = 2W0 <i> )

where¢ = 5~ min{M.Q}gM—11()r), By replacing the Lam-

[9] Z. Quan, S. Cui, and A. H. Sayed, “Optimal Linear Coopieratfor
Spectrum Sensing in Cognitive Radio Network&EE J. Sel. Topics
Signal Processvol. 2, pp. 28-40, Feb. 2008.

[10] S.-J. Kim, E. DallAnese, and G. B. Giannakis, “CoopemiSpectrum
Sensing for Cognitive Radios Using Kriged Kalman FiltefindeEE Jrl.
Sel. Areas Communvol. 5, pp. 24 — 36, Feb. 2011.

5 + min{Q, M}, where the [11] B. Wang, K. J. Ray Liu, and T. C. Clancy, “Evolutionary Gerative

Spectrum Sensing Game: How to CollaboratéBEE Trans. Commun.
vol. 58, pp. 890-900, Mar. 2010.

[12] S. Maleki and G. Leus, “Censored Truncated SequentjgcBum
Sensing for Cognitive Radio NetworkdEEE Jrl. Sel. Areas Commun.
vol. 31, pp. 364-378, Mar. 2013.

[13] T. Cui, F. Gao, and A. Nallanathan, “Optimization of (aoative
Spectrum Sensing in Cognitive RadidEEE Trans. Veh. Technolol.
60, pp. 1578-1589, May 2011.

[14] E.C. Y. Peh, Y. Liang, Y. L. Guan, and Y. Zeng, “CooperatSpectrum
Sensing in Cognitive Radio Networks with Weighted Decisimsion
Schemes,1IEEE Trans. Wireless Commuyrvol. 9, pp. 3838-3847, Dec.
2010.

[15] E. R.Brown,"RF-MEMS Switches for Reconfigurable Integd Cir-

cuits,” IEEE Trans. Microwave Theory Teckol. 46, pp. 1868 — 1880,

Nov. 1998.

T. Gou, C. Wang, and S. A. Jafar, “Aiming Perfectly in thark-Blind
Interference Alignment Through Staggered Antenna SwitghilEEE
Trans. Sig. Processvol. 59, pp. 2734-2744, Jun. 2011.

[17] Yaxing Cai and Zhengwei Du,“A Novel Pattern ReconfidueaAntenna
Array for Diversity Systems,JEEE Antennas Wireless Propag. Lettol.
8, pp. 1227-1230, Nov. 2009.

[18] L. Petit, L. Dussopt, and J.-M. Laheurte, “MEMS-Swiéth Parasitic-
Antenna Array for Radiation Pattern DiversityEEE Trans. Antennas

bert W function with its asymptotic series expansion and Propag, vol. 54, pp. 2624 — 2631, Sept. 2006.
considering the dominant terms as shown in Appendix E, tHé] D. Piazza, N. J. Kirsch, A. Forenza, R. W. Heath, and KDBndekar,

optimum threshold at large SNR is

Wmiﬂ{MQ}

Fmin{M,Q}

Aopt = 2log

(F.44)

By substituting A with 8X,,; in the asymptotic expression[

of Pp, it is easy to show thatly = 6min{Q,M}. Be-
sides, it is obvious from[(E44) thdﬁmgﬁoo%

0. Combining this result with [{E43), we have,

min{f min{ M, Q}, min{ M, Q}}, which concludes the proof.
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