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Spectrum Sensing Via Reconfigurable Antennas:
Fundamental Limits and Potential Gains
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Abstract—We propose a novel paradigm for spectrum sensing
in cognitive radio networks that provides diversity and capacity
benefits using a single antenna at the Secondary User (SU) re-
ceiver. The proposed scheme is based on areconfigurable antenna:
an antenna that is capable of altering its radiation characteristics
by changing its geometric configuration. Each configurationis
designated as an antennamode or state and corresponds to
a distinct channel realization. Based on an abstract model for
the reconfigurable antenna, we tackle two different settings for
the cognitive radio problem and present fundamental limitson
the achievable diversity and throughput gains. First, we explore
the “ to cooperate or not to cooperate” tradeoff between the
diversity and coding gains in conventional cooperative andnon-
cooperative spectrum sensing schemes, showing that cooperation
is not always beneficial. Based on this analysis, we propose two
sensing schemes based on reconfigurable antennas that we term
as state switchingand state selection. It is shown that each of
these schemes outperform both cooperative and non-cooperative
spectrum sensing under a global energy constraint. Next, we
study the “sensing-throughput” trade-off, and demonstrate that
using reconfigurable antennas, the optimal sensing time is re-
duced allowing for a longer transmission time, and thus better
throughput. Moreover, state selection can be applied to boost the
capacity of SU transmission.

Index Terms—cognitive radio; cooperative spectrum sensing;
diversity; ergodic capacity; reconfigurable antennas; spectrum
sensing

I. I NTRODUCTION

COGNITIVE Radio (CR) is a promising technology of-
fering a significant enhancement in wireless systems

spectrum efficiency via dynamic spectrum access [1]. In a CR
network, unlicensed secondary users (SUs) can opportunis-
tically occupy the unused spectrum allocated to a licensed
primary user (PU). This is achieved by means of PU signal
detection. Detection of PU signal entails sensing the spectrum
occupied by the licensed user in a continuous manner. Thus,
the process ofspectrum sensingis mandatory for a CR
system as it helps preserving the Quality-of-Service (QoS)
experienced by the licensed PU. Energy detection (ED) is
one of the simplest spectrum sensing techniques as it can
be implemented using simple hardware and does not require
Channel State Information (CSI) at the SU receiver [2]–[3].
Generally, the performance of a spectrum sensing technique
severely degrades in slow fading channels. To combat this
effect, Cooperative Spectrum Sensing (CSS) schemes have
been proposed to take advantage of the spatial diversity in
wireless channels [4]–[6]. In CSS, hard or soft decisions from

The authors are with the Department of Electronics and Electrical Commu-
nications Engineering, Cairo University, Gizah, 12613, Egypt (e-mail:{aalaa,
mismail, htawfik}@eece.cu.edu.eg).

Manuscript received XXXX XX, 201X; revised XXXX XX, 201X.

different CR users are combined to make a global decision
at a central unit known as theFusion Center(FC). CSS has
been widely accepted in the literature as a realizable technique
for extracting spatial diversity. The other alternative would be
using multiple antennas, which is constrained by the space
limitation in SU recievers [6]–[14].

A. Background and Motivation

Although CSS achieves a diversity gain that is equal to
the number of cooperating users, it encounters a significant
cooperation overhead: several decisions taken at SU terminals
have to be fed back to the FC via a dedicated reporting channel
[5]; global information (including the number of cooperating
SU terminals) must be provided to each SU in order to
calculate the optimal detection threshold [6]; hard decisions
taken locally at each SU cause loss of information, which
degrades the performance at low signal-to-noise ratio (SNR)
[7]; and finally, the existence of multiple SUs is not always
guaranteed. In addition, in this work, we show that there exists
a trade-off between the coding gain and the diversity order
achieved in both cooperative and non-cooperative schemes,
and demonstrate that cooperation is actually not beneficialin
the low SNR regime. Motivated by these disadvantages, we
tackle the following question:can we dispense with secondary
users cooperation and still achieve an arbitrary diversitygain?
To answer this question, we propose a novel spectrum sensing
scheme that can indeed achieve an arbitrary diversity order
for a single SU and still uses a single antenna. The scheme
is based on the usage ofreconfigurable antennas; a class of
antennas capable of changing its geometry, hence changing
the current distribution over the volume of the antenna and
thus altering one of its propagation characteristics: operating
frequency, polarization or radiation pattern. Each geometrical
configuration thus leads to a different mode of operation lead-
ing to different realizations of the perceived wireless channel.
Switching between various antenna modes could be done
using microelectromechanical (MEMS) switches [15], nano-
electromechanical switches (NEMS), or solid state switches
[16].

In [15], the concept of an electrically reconfigurable antenna
was first introduced based on RF MEMS switches. Many
research efforts followed this concept and proposed actualde-
signs for antennas that can alter their geometric configuration
[17]–[21]. The usage of reconfigurable antennas in wireless
communications was studied in various contexts. For example,
based on an abstract conceptual model, diversity benefits of
reconfigurable antennas in MIMO systems were discussed in
[20]. Also, in [22], a new class of space-time codes, termed
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asstate-space-timecodes was introduced, where it was shown
that reconfigurable antennas can offer diversity benefits but
has no impact on the achieved degrees of freedom. Moreover,
reconfigurable antennas were employed in the context of inter-
ference alignment in [16], where desirable channel fluctuations
were created by switching the antenna modes over time.

B. Summary of Contributions

In this paper, we propose a single user CR system that
employs a reconfigurable antenna at the SU transceivers. By
switching the antennaradiation statesover time, we can
manipulate the wireless channel thus creating artificial channel
fluctuations that turn a slow fading channel into a fast fading
one. Capitalizing on this property, we show that we can
dispense with the spatial diversity achieved through coop-
eration without encountering any degradation in the sensing
performance. Besides, the proposed scheme has the following
advantages: 1) the full coding and diversity gains are captured
at any SNR, 2) the space limitation problem that inhibits
the usage of multiple antennas is solved by using a single
compact antenna, 3) unlike multiple antenna systems, only
one RF chain is needed, 4) the availability of CSI at the SU
can be used to even boost the achieved coding gain, and 5)
diversity is achieved with no cooperation overhead, which
usually involves setting up a dedicated reporting channel;
feeding back information from the FC to the SU terminals;
and maintaining synchronization between the SU devices.

Another approach for sensing using reconfigurable antennas
is to select the “best” state instead of randomly switching
among various states. When the CSI is available at the SU,
the receiver can select the state that offers the strongest
channel gain. Therefore, in addition to the previously stated
advantages, state selection offers an additional SNR gain,that
we term as theselection gain. Based on a comprehensive
diversity analysis, we obtain the achievable diversity orders
in the conventional and proposed schemes as a function of the
detection threshold based on Neyman-Pearson (NP) and Bayes
tests.

While there exists many antenna switching techniques
with different ranges of switching delays [18], some classes
of switching devices, such as those based on mechanical
switches, may exhibit significant switching delays that may
affect the performance of the proposed schemes. Thus, we
quantify the impact of an arbitrary switching delay on the
performance of the proposed schemes in both the NP and
Bayesian tests.

Moreover, we revisit a well known trade-off in CR systems,
which is the “Sensing-throughput trade-off”. In a frame-
structured CR system, each frame duration is divided into
sensing and transmission periods. An optimal sensing time
that compromises between the detection performance and the
achieved throughput was calculated in [23]–[25]. We show that
using reconfigurable antennas, and given a constraint on the
PU detection probability, the SU throughput is improved as a
longer period of the frame can be dedicated to transmission
rather than sensing, in addition to the reduction of the false
alarm probability, which means better channel utilization.

Finally, we show that reconfigurable antennas are not only
beneficial in the sensing phase, but can also offer signifi-
cant capacity gains in the transmission phase (when the SU
accesses the channel). To that end, we obtain closed-form
expressions for the average transmission capacity using state
selection, and taking into consideration the impact of switching
delay.

The rest of the paper is organized as follows: Section II
presents the signal model adopted in the spectrum sensing
problem and relevant derivations for the false alarm and
missed detection probabilities. In Section III, we discussthe
“to cooperate or not to cooperate” tradeoff, identifying the
drawbacks of the cooperative scheme. Spectrum sensing via
reconfigurable antennas is introduced in Section IV, and the
diversity orders obtained in sensing based on NP and Bayes
criterion are derived. In section V, the impact of reconfig-
urable antennas on the sensing-throughput tradeoff is studied,
showing the achievable throughput gains. In addition, the
gains achieved in SU transmission and the optimal switching
strategy are analyzed. Finally, we draw our conclusions in
Section VI.

II. SPECTRUM SENSING SIGNAL MODEL

A. System Model and Notations

In this section, we formulate the spectrum sensing problem
for the conventional and proposed schemes, and clarify the
notations ofdiversity orderandcoding gain.

The diversity orderd∗ for a performance metricP∗ with an
average SNR ofγ is defined as [6]

d∗ = − lim
γ→∞

logP∗

log γ
.

The performance metricP∗ usually represents either the
probability of error, the false alarm probability or the missed
detection probability. The metricP∗ corresponds to the missed
detection probabilityPmd in the NP optimization problem,
and corresponds to the error probabilityPe if the optimization
problem adopts the Bayesian criterion. As for the coding gain,
it is defined as the multiplication factor of the average SNR in
P∗ asγ tends to infinity. Thus, ifP∗ ≍ 1

(Aγ)d
asγ 7→ ∞, the

coding gain is given byA and the diversity order isd, where
≍ denotes asymptotic equality. The diversity order affects the
slope of theP∗ curve when plotted versus the average SNR
(in dB), while the coding gain shifts theP∗ curve along the
SNR curve. In spectrum sensing using energy detection, the
coding gain is indeed sensitive to the average energy involved
in detection. Hence, the average energy can be used to quantify
the shift of theP∗ curve. Without loss of generality, we are
interested in evaluating the asymptotic missed detection and
error probabilities at high SNR only in order to obtain the
diversity order and coding gain using the previous definitions.
It is important to note, however, that both gains characterize
the performance for all ranges of SNR.

Now, it is required to compare the detection performance
of non-cooperative sensing, cooperative sensing, and recon-
figurable antenna based schemes. Hereunder, we present the
system model for the three schemes under study.
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1) Non-cooperative scheme: A conventional non-
cooperative spectrum sensing scheme involves one SU
that observesM samples for spectrum sensing. According
to the sampling theorem, for a sensing period ofT and a
signal with bandwidthW , the number of samples isM = 2
TW [26]. It is assumed that the instantaneous SNR isγ and
the primary signalith sample isSi ∼ CN (0, 1) [7], where
CN (µ, σ2) denotes the complex Gaussian distribution with
meanµ and varianceσ2. The additive white noise isni ∼
CN (0, 1). Thus, theith sample received at the SU receiver is
a binary hypothesis given by [7]

ri =

{
ni ∼ CN (0, 1), Ho√
γ Si + ni ∼ CN (0, 1 + γ), H1

(1)

whereHo denotes the absence of the PU, whileH1 denotes the
presence of the PU. After applying such signal to an energy
detector, the resulting test statistic isY =

∑M
i=1 |ri|2, which

follows a central chi-squared distribution for bothHo andH1.
The false alarm and detection probabilities are given by [7]

PF (M,λ) = P (Y > λ|Ho) =
Γ(M, λ2 )

Γ(M)
,

and

PD(M,λ, γ) = P (Y ≤ λ|H1, γ) =
Γ
(

M, λ
2(1+γ)

)

Γ(M)
, (2)

where λ is the detection threshold,Γ(., .) is the upper in-
complete gamma function, andΓ(.) is the gamma function.
We assume Rayleigh fading with an average SNR ofγ and
that the instantaneous SNR is constant over theM observed
samples (slow fading). Different observations perceive differ-
ent SNR values. The SNR varies according to the exponential
probability density function (pdf)

fγ(γ) =
1

γ
e−

γ
γ , γ ≥ 0. (3)

Because the detection probability is a function of the
slow fading channel gain, we obtain the average detection
probability as

PD =

∫ ∞

0

Γ
(

M, λ
2(1+γ)

)

Γ (M)

1

γ
e−

γ
γ dγ. (4)

In order to evaluate the average detection probability, we can
rewrite the integrands in (4) in terms of the Meijer-G function
Gm,n

p,q

( a1,...,ap

b1,...,bq

∣
∣z
)

[27, Sec. 7.8] as

Γ

(

M,
λ

2(1 + γ)

)

= G2,0
1,2

(

1
M, 0

∣
∣
∣
∣

λ

2(1 + γ)

)

,

and

e−
γ
γ = G1,0

0,1

(

−
0

∣
∣
∣
∣

γ

γ

)

.

The Meijer-G representation allows us to write the integralin
(4) as

PD =

∫ ∞

0

G1,0
0,1

(

−
0

∣
∣
∣
∣

γ

γ

)

G2,0
1,2

(

1
M, 0

∣
∣
∣
∣

λ

2(1 + γ)

)

dγ. (5)

With the aid of [27, Eq. 7.811.1], the integral is approximated
at high SNR as

PD ≈ λe
1
γ

2γ Γ(M)
G3,0

1,3

(

0
M−1,−1, 0

∣
∣
∣
∣

λ

2γ

)

, (6)

which can be further reduced into the form of [27, Sec. 7.8]

PD =
2 e

1
γ

Γ(M)

(
λ

2γ

)M
2

KM

(√

2λ

γ

)

, (7)

whereKM (.) is theM th order modified bessel function of
the second kind.

2) Cooperative Scheme:A cooperative CR network con-
sists ofN SUs, each senses the PU signal and reports its
decision to an FC. The FC employs ann-out-of-N fusion
rule to take a final global decision. We letl be the test
statistic denoting the number of votes for the presence of a
PU. Hence, the conditional pdfs follow abinomial distribution
[5] whereP (l|Ho) =

(
N
l

)
P l
F (1− PF )

N−l, andP (l|H1) =
(
N
l

)
P

l

D (1 − PD)N−l, where PF is the local false alarm
probability, andPD is the local detection probability averaged
over the pdf of the SNR. Based on the fusion rule mentioned
above, the global false alarm and detection probabilitiesPFG

andPDG
are

PF,G =

N∑

l=n

(
N

l

)

P l
F (1− PF )

N−l
,

PD,G =

N∑

l=n

(
N

l

)

P
l

D

(
1− PD

)N−l
. (8)

3) Single user spectrum sensing using a reconfigurable
antenna: In the proposed scheme, we assume a single SU
that employs a reconfigurable antenna to sense the PU signal.
Establishing the exact mathematical models for the relation
between an antenna mode and the corresponding channel
realization can be a daunting task. We postulate that re-
configurable antennas have an arbitrary number of possible
configurations/modes (i.e., radiation patterns), and thatthe
corresponding induced wireless channels are independent from
one another (all possible radiation patterns are spatiallyuncor-
related). For a reconfigurable antenna withQ radiation modes,
we assume thatEi(Ω) andEj(Ω) are the 3D radiation patterns
corresponding to modesi andj respectively, andΩ is the solid
angle describing the azimuth and elevation planes. Note that
the solid angle ranges from 0 to4π steradian. The spatial
correlation coefficient between the two radiation patternsis
given by [21]

ρi,j =

∫

4π
Ei(Ω)E

∗
j (Ω)dΩ

√∫

4π |Ei(Ω)|2dΩ
∫

4π |Ej(Ω)|2dΩ
.

A reconfigurable antenna is designed such that all radiation
patterns are orthogonal, i.e.ρi,j ≈ 0, ∀i, j ∈ {1, 2, 3, . . . , Q}.
For a rich scattering environment, the equivalent channel
realizations encountered by different antenna states are i.i.d
(independent and identically distributed) and follow a Rayleigh
distribution. Various designs for antennas with pattern diversity
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already exist [17]–[20]. The application of reconfigurablean-
tennas with orthogonal patterns for MIMO systems was inves-
tigated in [22]. Moreover, in [16] and [28], blind interference
alignment was proposed based on reconfigurable antennas
with independent channels for each state. In [29], independent
channel realizations were also exploited while studying the
benefits of applying reconfigurable antennas in the MIMO
Z interference channel. The impact of independent channel
realizations perceived for different states result in a diversity
gain that is similar to the spatial diversity gain attained in
multiple antenna systems [30]. A conceptual model for the
reconfigurable antenna that resembles an antenna selection
scheme is adopted in this paper. The analyses we present
herein are abstract in the sense that they do not consider
a specific antenna design. Fig. 1 depicts the SU receiver
employing a reconfigurable antenna withQ available antenna
modes.

In a slow fading channel, reconfigurable antennas withQ
modes can offerQ different channel realizations. Thus, the
ith sample received at the SU receiver is a binary hypothesis
given by

ri =

{
ni ∼ CN (0, 1), Ho√
γj Si + ni ∼ CN (0, 1 + γj), H1

(9)

whereγj ∈ {γ1, γ2, · · · , γQ} is the channel realization ob-
served by theith sample. The set ofQ channel gains are
independent identically distributed (i.i.d.) Rayleigh random
variables. It is assumed that the antenna states are switched Q
times within the sensing period such that channel realization
j is observed bylj samples where

∑Q
j=1 lj = M . We

designate this scheme asstate switching spectrum sensing.
As an alternative, if the CSI is available at the receiver,
the SU could possibly select the strongest channel for the
entire sensing interval, and we call this schemestate selection
spectrum sensing. Generally, the test statistic resulting at the
output of the energy detector when the PU is active can be
written as

Y =

L∑

j=1

(1 + γj)xj ,

whereL is the number of antenna states involved in sensing
(L ≤ Q), γj is one ofQ independent channel realizations
{γ1, γ2, . . . , γQ} assigned to thelj samples, andxj is a chi-
square distributed random variable with2lj degrees of freedom
(the sum oflj normally distributed random variables). For state
selection,L = 1 andl1 =M as only the highest channel gain
is selected. For state switching,L ≤ Q and

∑L
j=1 lj = M .

Thus, the probability of missed detection is given by

Pmd(γ1, . . . , γQ) = P





L∑

j=1

(1 + γj)xj ≤ λ|H1, γ1, . . . , γQ



 ,

(10)
where the thresholdλ is adjusted such that the false alarm
probability PF = α in the NP test, or adjusted to minimize
the error probability in the Bayesian test. It is obvious that
the probability of missed detection is the cumulative distribu-
tion function (CDF) of the linear combination of chi-square
random variables. An extremely accurate approximation for

the CDF of the sum of weighted chi-square random variables
was proposed in [31]. Based on Eqs. (20)–(23) in [31], the
probability of missed detection will be given by the minimum
of two functionsH(w) andG(w) of an auxiliary parameter
w as follows

Pmd = min{H(w), G(w)},
where

w =
λ

M +
∑Q

j=1 ljγj
,

G(w) =

2M∑

j=1

w
1 + γj
λ

×
Υ
(

λ
2w(1+γj)

, λ
1+γj

)

Γ( λ
2w(1+γj)

)
,

and

H(w) =

Υ

(

M, λ
M
√

∏Q
i=1(1+γj)

lj

)

Γ(M)
.

Thus, the missed detection probability in terms of the chan-
nel realizations is given by (11) whereΥ(·, ·) is the lower
incomplete gamma function. Eq. (11) is general for any
antenna state switching pattern. For state selection, the same
result still applies withlk = M , wherek = maxj γj and
lk′ = 0, k′ 6= k, k′ ∈ {1, 2, · · · , Q}.

B. Equivalence of NP and Bayesian Optimization to Diversity
Order Maximization

The only design parameters in the spectrum sensing
problem are the detection thresholds. Usually, the thresholds
are selected such that the detection performance is optimized
in terms of either the NP or Bayesian criteria. Obtaining the
optimal detection threshold is essential for calculating the
diversity order achieved by the SU receiver. However, the
problem of obtaining the detection thresholds that maximize
the detection or minimize the error probabilities is not
always mathematically tractable, especially in the cooperative
scheme [7]. In this subsection, we formulate an equivalent
problem for obtaining these optimal thresholds and we
show that maximizing (minimizing) a performance metric
P∗ is equivalent to maximizing the diversity orderd∗ at
assymptotically high SNR. Thus, as an alternative approach,
one can obtain closed-form expressions for the diversity order
d∗ in terms of the detection thresholds and get the thresholds
that maximized∗ instead of maximizing (minimizing)P∗,
which is usually a mathematically tractable problem. This is
formulated in the following two lemmas.

Lemma 1: Based on the NP criterion, maximizing the
high SNR asymptotic probability of detection under a false
alarm probability constraint is equivalent to maximizing the
diversity order of the detection probability.

proof See Appendix A.
Lemma 2: Based on the Bayes detection criterion, minimiz-

ing the high SNR asymptotic probability of error is equivalent
to maximizing the diversity order of the error probability.
Proof See Appendix B.
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Pmd(γ1, . . . , γQ) = min







Υ

(

M, λ
M
√

∏Q
i=1(1+γi)li

)

Γ(M)
,

2M∑

i=1

w
1 + γi
λ

×
Υ
(

λ
2w(1+γi)

, λ
1+γi

)

Γ
(

λ
2w(1+γi)

)







. (11)

In the next section, we utilize these equivalent problems
to compare the performance of the cooperative and non-
cooperative schemes.

III. T O COOPERATE ORNOT TO COOPERATE

Although cooperation is widely adopted as a means of
improving the performance of spectrum sensing via diversity
gain, it can actually be shown that cooperative spectrum
sensing does not outperform the non-cooperative scheme for
the whole SNR range. Deciding whether to cooperate or not
to cooperate should then depend on the operating average
SNR. Specifically, for a fixed total energy constraint, the non-
cooperative scheme offers a better detection performance at
low SNR. This is because, at low SNR, the impact of SNR loss
in the cooperative scheme due to hard decisions taken locally
at each SU is higher than the gain offered by cooperation1. On
the other hand, a large diversity gain is observed at high SNR
making cooperation favorable. Therefore, cooperation would
not be beneficial at low SNR ranges where it is required to
improve the detection performance. In addition to that, the
knowledge of the number of cooperating users at each SU is
essential to achieve full diversity order. Thus, even at high
SNR, cooperative schemes may fail to capture full diversity
gain if global network information are not provided to local
SUs. In the following two subsections, we compare the two
schemes and evaluate their performance in terms of diversity
and coding gains, both for NP and Bayes tests.

A. Non-cooperative scheme analysis

Considering the NP test, the asymptotic expansion of
KM (x), which appears in thePd expression in (7), asx 7→ 0
is given by [14]

KM (x) ≍ x−M
(

2M−1Γ(M)− 2M−3Γ(M)x2

M − 1

+
2M−6Γ(M)x4

(M − 1)(M − 2)
+ . . .

)

.

Note that
√

2λ
γ 7→ 0 ande

1
γ 7→ 1 asγ 7→ ∞. The asymptotic

expansion of the detection probability is consequently given
by

PD ≍ 1− λ

2γ (M − 1)
+

λ2

8γ2 (M − 1)(M − 2)
+ . . . .

Thus, at large average SNR, the first two terms dominate and
PD = 1 − λ

2 γ (M−1) + O(γ−2). Hence, the average missed

detection probability isPmd = 1 − PD ≈ λ
2 γ (M−1) . As

1No SNR degradation would be encountered if SUs send soft decisions to
the FC. However, this is not practically feasible as the reporting channel is
usually limited [5].

defined in Section II, the diversity orderd and coding gain
A are, respectively, given by

dmd = − lim
γ→∞

log
(

λ
2 γ (M−1)

)

log γ
= 1,

and
A =

M − 1

λ
. (12)

Eq. (12) shows the diversity order and coding gain in terms
of the thresholdλ. It is clear that for the non-cooperative
NP test, any choice of the local threshold does not affect the
diversity order and the optimal threshold is selected such that
it satisfies the constraint onPF . The coding gain, on the other
hand, depends on the number of samples involved in energy
detection as well as the local thresholdλ. The more samples
involved in detection, the higher coding gain is achieved. On
the other hand, large thresholds corresponding to strict false
alarm constraints result in small coding gains. Note that for
anα-level NP test, the local threshold is decided by the value
of α when settingPF = α.

Now considering the Bayes optimization problem, the op-
timal threshold is given by the following lemma.Lemma 3:
The optimal threshold that minimizes the average probability
of error in non-cooperative spectrum sensing is given by

λopt = µ
1

M−1 exp

(

−W−1

(

−µ 1
M−1

2(M − 1)

))

,

at high SNR, whereµ = P (H1)
P (Ho)

× 2M−2Γ(M−1)
γ andW−1(.)

is theLambert Wfunction [33].
Proof See Appendix C.

In order to investigate the impact of the threshold on the
diversity order, we calculate the diversity order achievedwith
a non-optimal threshold in the following Lemma:Lemma 4:
For conventional spectrum sensing with a detection threshold
of λ = θλopt where θ ∈ R and λopt is the optimal Bayes
threshold given by Lemma 3, the achieved diversity order
for the Bayes optimization problem isde = min{θ, 1}. The
corresponding false alarm and missed detection probabilities
are given by Eq. (13).
Proof See Appendix D.

As stated in Lemma 4, for any threshold withθ > 1
(or equivalentlyλ > λopt), the maximum diversity order is
achieved. However, given the expression ofPmd in Eq. (13),

the coding gain isAmd = 1
θ if θ ≥ 1, andAF =

(
1
θ

) 1
θ if

θ ≤ 1. Thus, it is clear that thecoding gaindecreases with
the increase ofθ. Thus, the optimum Bayesian threshold corre-
sponds to theminimumλ that achieves the maximum diversity
order demax

= dmd. BecausedF is an increasing function of
θ, we can obtain the optimum threshold by equatingdF to
dmd instead of minimizingPe, which is not mathematically
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PF ≍ 1

Γ(M)

(

θ(M − 1) log

(

M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

))M−1(

Γ(M − 1)
1

M−1

(M − 1)γ
1

M−1

)θ(M−1)

,

and

Pmd ≍ θ

γ
log

(
M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

)

. (13)
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Fig. 1. Diversity orders (dF , dmd andde) versus the drift factorθ for the
conventional spectrum sensing scheme.

tractable. The behavior of the achieved diversity order versus
the factorθ, that we denote as thedrift factor, is depicted in
Fig. 2. It is shown that the optimal threshold correspondingto
θ = 1 represents the intersection ofdF anddmd. This implies
the following proposition.

Proposition 1. The optimal Bayesian threshold can be
obtained by solving the transcendental equation

dF (λ) = dmd(λ).

B. Cooperative scheme analysis: the good, the bad, and the
ugly

In cooperative sensing, local thresholds are employed by
individual SU receivers to take local hard decisions, whilea
global threshold (an integer number) is used by the fusion
center to take the final decision. In this subsection, we relate
the local and global thresholds,λ andn, to the coding gain
and diversity order. Next, we select the thresholds so that
the global false alarm probabilityPF,G = α and the diversity
order is maximized, which corresponds to the NP test. Then,
we select the thresholds that maximize the error probability
diversity order, which corresponds to the Bayesian test. We
characterize the performance of energy constrained CSS as
being multifaceted with three basic aspects: a “good” aspect,
which is achieving diversity order ofN at assymptotically
high SNR; a “bad” aspect, which is the poor coding gain
causing performance degradation at low SNR; and an “ugly”
aspect, which is the inability to achieve the full diversityorder

when the SUs do not know the number of cooperating SUs
N . In this case, cooperation does not reach the maximum
possible diversity gain in addition to having a poor coding
gain, questioning its usefulness. Hereunder, we present a
comprehensive study for the performance of the cooperative
scheme.

Based on (8), the global missed detection probability is
given by

Pmd,G(n, λ) =
n−1∑

l=0

(
N

l

)

P
N−l

md (λ) (1− Pmd(λ))
l. (14)

It is obvious thatPmd 7→ 0 asγ 7→ ∞. The last term in the
series in (14) dominates and the asymptotic value ofPmd,G

becomes

Pmd,G(n, λ) ≍
(

N

n− 1

) (
λ

2γ (M − 1)

)N−n+1

. (15)

Thus, by rearranging (15) in the form of(Aγ)−d, the diversity
order dmd and coding gainAmd in terms of the local and
global thresholds are given by

dmd,G = N − n+ 1,

Amd,G ∝
(

N

n− 1

) −1
N−n+1 M − 1

λ
.

Clearly, the global threshold that maximizes the diversityorder
is n = 1, which is known as the OR rule [5]. Hence, if only
one SU votes for the presence of a primary user, the fusion
center adopts its decision. The local thresholdλ is chosen such
thatPF,G = α.

Based on the above analysis, it can be concluded that
cooperative spectrum sensing withN SU receivers can offer a
diversity order ofN . The largerN is, the higher the diversity
order is, but the more information is lost due to hard decisions
taken locally at each SU. This is demonstrated by the fact that
the coding gainAmd,G ∝M at n = 1, which is as low as1N
of the total number of samples (NM ) involved in detection,
but the diversity gain will be maximized anddmd,G = N .
In the low SNR region, information loss due to poor coding
gain is more critical and we do not benefit from multiuser
diversity. Thus, for a fixed total energy constraint, it is better
not to cooperate when the SNR is low as assigning the total
energy to a single SU leads to a better detection performance.

To demonstrate the tradeoff between coding and diversity
gains, we compare a cooperative network withN SU terminals
andM samples per terminal with a non-cooperative network
with a single SU andNM samples. Note that the total sensed
energy is constant in both cases to ensure a fair comparison.
Let the local thresholds in the multiple and single-user cases
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Fig. 2. To cooperate or not to cooperate tradeoff.

beλN,M andλ1,NM , respectively. Based on the above results,
the coding gain would beM−1

λN,M
in the cooperative scheme and

NM−1
λ1,NM

in the non-cooperative scheme. Thus, the coding gain
of the non-cooperative scheme is boosted by a factor ofN .
This factor is reduced asλN,M andλ1,NM are not generally
equal.

Fig. 3 depicts the tradeoff under study. Simulations were
carried out for cooperative and non-cooperative schemes and
the missed detection probability is plotted versus the average
SNR. TheNM product is fixed for both schemes and is set
to 4, 25 and 100. This product represents the total energy
constraint involved in detection. For each value ofNM , the
cooperative scheme employs

√
NM SU terminals and

√
NM

samples per terminal2. On the other hand, the non-cooperative
scheme employs 1 SU usingNM samples. By applying the
NP test and settingα = 0.01, it is found that atNM = 100, the
non-cooperative scheme outperforms the cooperative scheme
by 3 dB at low SNR. Thus, it is better not to cooperate if the
operating SNR is less than−5 dB, which is the SNR value
corresponding to the intersection of thePmd curves for both
schemes. The SNR gain is reduced in theNM = 25 scenario
and nearly vanishes whenNM = 4. On the other hand, the
cooperative scheme offers large gains in the high SNR region.
For instance, atPmd = 0.03 andNM = 100, cooperation
outperforms non-cooperative sensing by an SNR gain of 7 dB
due to the multiuser diversity. The largerN is, the more gain
one gets at high SNR, but at the expense of the coding gain
for a fixed energy constraint.

For the Bayesian optimization problem, we obtain the global
false alarm probability by taking the dominant term of the
binomial expansion in (8)

PF,G(n, λ) ≍
(
N

n

) (

Γ(M, λ2 )

Γ(M)

)n

,

2Any combination of the number of SU terminals and the number of
samples that keeps theNM product constant can be used in the analysis.

Based on the series expansionΓ(M,λ2 )

Γ(M) =
∑M−1

i=0
λi

2iΓ(i+1)e
−λ
2

[6], we can approximate the false alarm probability as

PF,G(n, λ) ≈
(
N

n

) (
λM−1

2M−1Γ(M)

)n

e
−λ
2 n. (16)

We substituteλ in (14) and (16) with the locally optimal
threshold multiplied by the factorθ. Our objective is to obtain
the value of θ that maximizes the diversity order of the
global error probability. The global false alarm and detection
probabilities in terms ofθ are given in (17).

From (17), it is obvious thatdmd,G = N − n + 1, while
dF,G = nθ. Thus, the diversity order of the error probability
is

de,G = min{N − n+ 1, nθ}.
We investigate the achievable diversity order in two different
scenarios as follows:

• The number of cooperating usersN is unknown at
SU receivers:In this case, we aim at selecting the global
thresholdn and the local thresholdθλopt, such thatθ is
not a function ofN . The optimal thresholds are obtained
based on the following optimization problem

max
n,θ

min{nθ,N − n+ 1}

s.t. nθ = N − n+ 1.

Because the number of SUs is unknown at each SU,
we select a locally optimal threshold for each SU by
setting θ = 1. Combining this fact withProposition 1,
we obtain the optimal global threshold by solving the
equationn = N −n+1, which yields a global threshold
of n = ⌊N+1

2 ⌋ 3. Thus, the corresponding diversity order
is

de = min

{

⌊N + 1

2
⌋, ⌈N + 1

2
⌉
}

= ⌊N + 1

2
⌋.

Thus, the “ugly” face of CSS appears when global
information are not provided to local SUs. Note that for
N = 2, cooperation without global knowledge ofN yields
no diversity gain at all.

• The number of cooperating usersN is known at
SU receivers:It is obvious thatdmd,G is maximized by
settingn = 1. Applying Proposition 1, the optimal value
of θ is N . The corresponding diversity orderde,G = N ,
thus the full diversity order is achieved in this case.

It is worth mentioning that global knowledge ofN is also
needed in the NP test. However, the lack of knowledge ofN in
the NP problem has no effect on the diversity order. Instead,it
turns the problem into adiscrete hypothesis detection problem
[32], where only discrete values ofPF,G = α are realizable.
As mentioned earlier, tolerating a largerα comes at the
expense of the coding gain and not the diversity order.

To sum up, whether to cooperate or not to cooperate depends
on several factors. If the operating SNR is low, it is better
not to cooperate as the coding gain is severely degraded in
the cooperative systems impacting performance at low SNR.

3Throughout this paper, the operator⌊.⌋ is the flooring operator, while⌈.⌉
is the ceiling operator.
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PF,G ≍
(
N

n

)








(

2(M − 1)θ log

(

M−1

Γ(M−1)
1

M−1
γ

1
M−1

))M−1

2M−1Γ(M)








n

(

Γ(M − 1)
1

M−1

M − 1

)θn(M−1)
1

γθn
,

Pmd,G ≍
(

N

n− 1

)







θ log

(

M−1

Γ(M−1)
1

M−1
γ

1
M−1

)

γ







N−n+1

. (17)

Moreover, if the number of SUs is not known, we can not
achieve the full diversity order in the Bayesian test. For
small number of cooperating users (e.g.,N = 2), the system
will not offer significant diversity gain and cooperation may
not be worth it. Stemming from this analysis, we study the
performance of the proposed single reconfigurable antenna
schemes in the next section. Such schemes are capable of
overcoming all the drawbacks of cooperation and achieving
the full diversity and coding gains thus offering a superior
performance compared to the conventional schemes for the
entire SNR range.

IV. SPECTRUM SENSING V IA RECONFIGURABLE

ANTENNAS

As stated earlier, reconfigurable antennas can artificially
induce fluctuations in the slow fading channel. This would
create temporal diversity for a single SU network, which
can offer a gain similar to the spatial diversity gain in the
cooperative scheme. We investigate two basic schemes for
spectrum sensing using a reconfigurable antenna: astate
switching scheme (when the CSI is unknown) and astate
selectionscheme (when the CSI is available). Based on the
signal model presented in Section II, we derive the optimal
test statistic for spectrum sensing with an arbitrary selection
of antenna modes over time, where each modej is selected
for lj sensing samples.

Lemma 5: For spectrum sensing using reconfigurable an-
tennas with arbitrary antenna state selection over time, let
Zj =

∑lj−1+lj
i=lj−1+1 |ri|2, j ∈ {1, 2, · · · , Q}, lo = 0, L is the

number of antenna states invoked within the sensing period
(L ≤ Q), and η is an arbitrary detection threshold. The
Likelihood Ratio Test (LRT) reduces to

L∑

j=1

γj
1 + γj

Zj

H1

R
H0

η

proof See Appendix E.
Note that the LRT described in Lemma 5 requires the

knowledge of the channel realizations corresponding to dif-
ferent antenna states, and involves a test statistic that is
calculated viaweighted energy detectionrather than simple
energy detection. If the CSI is not available at the SU (i.e.,the
set of channel realizations{γ1, γ2, · · · , γQ} is unknown), the
test in Lemma 5 denotes ahypothesis detection problem with
unknown parameters[32]. Because the test statistic depends on

the unknown parameters, no Uniformly Most Powerful (UMP)
test exists, and we adopt a suboptimal test that involves simple
energy detection without assigning weights to energy samples.
In the state switching scheme, we blindly select an arbitrary
number of channels over the sensing period such thatL ≤ Q
and

∑L
j=1 lj =M . On the other hand, if the CSI is available at

the SU, we adopt the state selection scheme instead, where the
strongest channel realization is selected for the entire sensing
period (i.e.L = 1, lk =M, andk = maxj γj).

A. Optimal sensing based on NP Criterion

1) Spectrum Sensing via State Switching:The missed de-
tection probability for an arbitrary antenna mode switching
pattern is given by (11). Given thatΥ(M,x) ≍ xM

M as γ
→ ∞ [27], the asymptotic values ofH(w) and G(w) are

λM

Γ(M+1)
∏Q

j=1(1+γj)
lj

and
∑2M

j=1 w
1+γj

λ , respectively, which

implies thatmin{G(w), H(w)} = H(w) at high SNR. Thus,
one can calculate the diversity order based onPmd = H(w).
The asymptotic missed detection probability will then be given
by

Pmd(γ1, . . . , γQ) ≍
λM

Γ(M + 1)
∏Q

j=1(1 + γj)lj
. (18)

By averaging the missed detection probability in (18) over the
pdf of Q independent Rayleigh channel realizations we get

Pmd =
λM

Γ(M + 1)

∫ ∞

γ1=0

∫ ∞

γ2=0

. . .

∫ ∞

γQ=0

1
∏Q

j=1(1 + γj)lj
×

1

γQ
e

−
∑Q

j=1
γj

γ dγ1dγ2 . . . dγQ,

which can be reduced to

Pmd =
λM

Γ(M + 1)

Q
∏

j=1

∫ ∞

γj=0

1

(1 + γj)lj
1

γ
e

−γj
γ dγj . (19)

It can be easily shown that the integral in (19) is given by

Pmd =
λM

Γ(M + 1)

Q
∏

j=1

γ−lje
1
γ Γ

(

1− lj ,
1

γ

)

.

At large SNR,e
1
γ → 1 andΓ(1− lj ,

1
γ ) ≍

γlj−1

lj−1 yielding

Pmd ≍ λM

Γ(M + 1)
× 1

γQ
∏Q

j=1(lj − 1)
. (20)
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Optimizing the coding gain depends on the choice of the
number of samplesli associated to an antenna realizationγi.
It is obvious from (20) that minimizing the missed detection
probability is achieved by maximizing the quantity

∏Q
i=1(li−

1). We can obtain the optimum values of theli’s via a simple
Lagrange optimization problemas

max

Q
∏

i=1

(li − 1)

s.t.
Q
∑

i=1

li =M.

By constructing the auxiliary functionΘ(l1, l2, . . . , lQ,Λ) =
∏Q

i=1(li − 1) + Λ (
∑Q

i=1 li −M) (whereΛ is the lagrange
multiplier) and solving for▽(l1,l2,...,lQ)Θ(l1, l2, . . . , lQ,Λ) =
0 (where▽ is the gradient operator), we obtain the optimum
solution as

l1 = l2 = . . . = lQ = ⌊M
Q

⌋.

Thus, the optimum antenna switching pattern is to change the
antenna radiation mode every⌊M

Q ⌋ samples. Note that this
result is intuitive as all channel realizations are independent
and identically distributed, which means that the optimal
antenna mode switching pattern is obtained when employing
every mode for an equal time interval during the sensing
period.

From (20), the achieved diversity order is

dmd = − lim
γ→∞

logPmd

log γ
= Q.

Note that if the number of samples is less than the number of
antenna states, onlyM channel realizations can be employed
during the sensing period. Thus, the diversity order is generally
given by

dmd = min{M,Q}.

The thresholdλ is selected such thatPF = α, where
it has no impact on the diversity order. The average PU
signal energy input to the energy detection is given by
V ar

{
∑L

j=1

∑lj−1+lj
i=lj−1+1

√
γjSi

}

=
∑L

j=1

∑lj−1+lj
i=lj−1+1 γ =

Mγ. Thus, the coding gain is proportional to the total number
of samples involved in detection, and the full coding gain is
achieved.

2) Spectrum Sensing via State Selection:In the non-
cooperative scheme, knowledge of the CSI at the SU can
provide neither coding nor diversity gain to the detection
performance. In the proposed scheme, the CSI is utilized to
selectthe “best” antenna mode (the mode with largest channel
gain) rather thanswitch the antenna modes over time. This
resemblesselection combiningin multiple antenna systems.
Thus, an SNR gain is obtained that is termed as aselection
gain. The pdf of the maximum ofQ Rayleigh distributed
channel gains is given by [34]

fγmax
(γmax) =

Q

γ
e

−γmax
γ (1− e

−γmax
γ )Q−1.

In order to simplify the analysis, we focus on the dominant
fading density at assymptotically largeγ, which can be written
as [16]

fγmax
(γmax) ≈

Q

γQ
e

−γmax
γ γQ−1

max ,

and the probability of missed detection as a function of the
instantaneous channel gain is obtained from (11) by setting
lk = M , wherek = maxj γj , and γk is the corresponding
channel realization

Pmd =
Υ
(

M, λ
2(1+γk)

)

Γ(M)
.

The average missed detection probability is thus given by

Pmd =
Q

γQ

∫ ∞

γk=0

Υ
(

M, λ
2(1+γk)

)

Γ(M)
e

−γk
γ γQ−1

k dγk. (21)

For simplicity, assume that1 + γk ≈ γk. The integrands in
(21) can be represented in terms of the Meijer-G function as

Pmd =
Q

Γ(M)γQ

∫ ∞

0

γQ−1
k e−

γk
γ G1,1

1,2

(

1
M, 0

∣
∣
∣
∣

λ

2γk

)

dγk.

Using the property Gm,n
p,q

( a1,...,ap

b1,...,bq

∣
∣z
)

=

Gn,m
q,p

(
1−b1,...,1−bq
1−a1,...,1−ap

∣
∣
∣z−1

)

, the average missed detection
probability will be given by the following integral

Pmd =
Q

Γ(M)γQ

∫ ∞

0

γQ−1
k e−

γk
γ G1,1

2,1

(

1−M, 1
0

∣
∣
∣
∣

2γk
λ

)

dγk.

Using [27, Eq. (7.813)], the average missed detection proba-
bility is

Pmd =
Q

Γ(M)
G1,2

3,1

(

1−Q,1−M, 1
0

∣
∣
∣
∣

2γ

λ

)

,

which can be represented as

Pmd =
K1

γQ
1F2(Q;Q+ 1,−M +Q+ 1;

λ

2γ
)

+
K2

γM
1F2(M ;M + 1,−M +Q+ 1;

λ

2γ
), (22)

whereK1 and K2 are constants,pFq(a1, ..., ap; b1, ..., bq; z)
is the generalized hypergeometric function, and
pFq(a1, ..., ap; b1, ..., bq; z) → 1 as z → 0. Thus, it can
be easily concluded that the diversity order of the state
selection scheme will be given by

d = min{M,Q}.
Note that this is the same diversity order of the state switching
scheme. Thus, availability of the CSI at the SU in state
selection sensing offers no diversity gain compared to state
switching. Selecting the best channel state every sensing
period, on the other hand, offers an SNR gain (coding gain)
that we define as theselection gain. The ratio between the
average SNR in the state selection scheme relative to the state
switching scheme is given by

Selection gain=
E{γk}
E{γ} = HQ, (23)
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whereHQ is the Qth harmonic number defined asHQ =
1+ 1

2 +
1
3 + ...+ 1

Q [34]. For large number of antenna states,
the selection gain tends to

Selection gain≈ log(Q)− ψ(1),

where ψ(.) is the digamma functionand −ψ(1) is the
Euler-Mascheroniconstant. Thus, the coding gain obtained
from state selection grows logarithmically with the number
of antenna states.

B. Optimal sensing based on Bayes Criterion

1) Spectrum Sensing via State Switching:The achieved
diversity order in this case will be obtained according to the
following lemma:
Lemma 6: The achieved diversity order for the pro-
posed scheme using a threshold ofθλopt is de =
min {θmin{M,Q},min{M,Q}}, whereθ ∈ R.
Proof See Appendix F.

As stated in Lemma 6, spectrum sensing using a reconfig-
urable antenna withQ modes can achieve a diversity order of
Q. This is equivalent to the diversity order of a cooperative
scheme withQ SUs. Even if the SU is using a suboptimal
threshold ofθλopt, the achieved diversity order isθQ which
is Q times larger than the diversity order achieved by the
conventional scheme that employs a threshold ofθλopt.

2) Spectrum Sensing via State Selection:By observing
Eq. (17), the missed detection diversity order is given by
min{Q,M}. The same diversity analysis applied for the state
switching scheme in Lemma 6 can be carried out for the
state selection scheme. In fact, both schemes have the same
diversity order and the same optimal threshold at high SNR.
Similar to the NP problem, the state selection scheme offers
an extra coding gain as the average SNR is boosted by a factor
of HQ.

C. Impact of Switching Delay

In this subsection, we quantify the impact of switching
delay on the detection performance of state switching and state
selection schemes. LetD be the equivalent number of samples
that a particular switching device needs to change from one
antenna state to the other. We assume that throughout those
D samples, the old channel realization is perceived by the SU
receiver. A new channel realization appears afterD samples,
which means that the maximum achievable switching rate is
1

DTs
, whereTs is the system sampling period.4

1) Impact on state switching scheme:In the state switching
scheme withD delay samples, the achieved diversity order is

d = min{Q, M
D

}.

The SU tries to rapidly switch the antenna modes such that
maximum number of channel realizations is utilized in sensing.
The limited switching speed affects the achieved diversity

4Various switching devices experience different ranges of time delay. For
instance, a MEMS switch may have a switching time of10−20 µs [18]. Other
electronic switching devices, such as PIN diodes or field-effect transistors
(FETs), can offer a much faster switching speed [21].

order negatively. The number of sampleslj assigned to a
channel realizationj must be greater thanD. The maximum
number of channel realizations that can appear withinM
sensing samples is thusMD . If Q > M

D , we can not achieve
the maximum diversity order. In fact, if the sensing period
is limited compared to the switching delay, the diversity gain
offered by reconfigurable antennas becomes less significant.
If M = D, the system behaves like the conventional non-
cooperative scheme.

2) Impact on state selection scheme:If the SU requires
D samples to select the maximum channel realization, the
achieved SNR gain is perceived forM −D samples only. In
this case, the selection gain tends to

Selection gain=
D

M
+
M −D

M
HQ.

Moreover, the diversity order is also impacted as the effective
sensing period that is subject to the selected channel isM−D
samples only. Hence, the diversity order becomes

d = max{1,min{M −D,Q}}.
Again, atM = D, the system acts in an identical way to the
legacy single antenna non-cooperative scheme as all samples
experience an arbitrary channel without selection. Thus the
dominating diversity order is either 1, whenM = D, or
min{M − D,Q} otherwise. The switching delay degrades
the diversity order of the state switching scheme, and both
the diversity order and selection gain of the state switching
scheme. The design of the reconfigurable antenna should
take into account the possible values of the sensing period.
It is essential to employ high speed switching devices with
switching times that are significantly smaller than the sensing
period. If the switching speed is inevitably low, one has to
extend the sensing period such that diversity and coding gain
benefits of the reconfigurable antenna are attained. However,
this will be at the expense of the system throughput.

D. Performance Evaluation

In this subsection, we evaluate the performance of the
proposed schemes and compare them with the conventional
cooperative and non-cooperative schemes. It is important to
note that all the parameter settings used in the simulations
discussed in this section are selected arbitrarily for numerical
and simulation convenience. However, the analyses and expla-
nations presented in the paper are generic and suit any practical
values for the system parameters. For all curves, Monte Carlo
simulations are carried out with 1,000,000 runs. In Fig. 4, we
plot the error probability curves for the non-cooperative,the
cooperative (withN being known and unknown), the state
switching as well as the state selection (withQ = 15 antenna
states) schemes. An overall energy constraint is imposed by
fixing the total number of samples to 30. It is shown that the
cooperative scheme with 15 cooperating SUs outperforms the
non-cooperative scheme at high SNR as it achieves a diversity
order of 15. However, cooperation performs worse at SNR
values below−5 dB due to the poor coding gain. When the
number of SUs is unknown, a diversity order of⌊ 15+1

2 ⌋ = 8
is only achieved. Thus the offered diversity gain at high SNR
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is generally less than that offered whenN is known. State
switching and selection are shown to outperform cooperative
and non-cooperative schemes at any SNR. For state switching,
a diversity order ofmin{15, 30} = 15 is achieved, which is the
same diversity order of the cooperative scheme, leading both
curves to have the same slope. However, the state switching
scheme uses 30 samples for sensing, which maintains the
same coding gain of the non-cooperative scheme. It is shown
that state switching acts like a non-cooperative scheme at low
SNR, and provides a diversity gain at high SNR. As for the
state selection scheme, it attains the same diversity orderof
min{15, 30} = 15, and in addition, offers a coding gain of
H15 = 1 + 1

2 + . . . + 1
15 ≈ 5 dB. Thus, an SNR gain

of about 5 dB compared to state switching is obtained via
antenna state selection. Similar simulations are carried out for
the NP test with 100 samples, false alarm probability of 0.05,
and 10 antenna states. Fig. 5 shows that state switching and
selection act in a similar manner to that depicted by Fig. 4.
Again, state selection scheme outperforms all other schemes,
while state switching still offers a better performance than
cooperative and non-cooperative schemes. Although achieving
the selection gain requires channel estimation and appropriate
reconfigurable antenna design (with large number of inde-
pendent states), it is still less complex than the cooperation
scenario.

Fig. 6 demonstrates the impact of switching delay on
the sensing performance based on the NP test forQ = 10
states. For the state switching scheme, switching delay has
no impact on the coding gain. However, the diversity order
is reduced when the delay is introduced. For a total number
of sensing samplesM = 100, we study the effect of the
switching delay with valuesD = {30, 50, 95, 100} samples.
For those delay values, the delay-free diversity order of 10is
reduced to bedmd = min{10, 10030 } ≈ 3, min{10, 10050 } = 2,
min{10, 10095 } ≈ 1, andmin{10, 100100} = 1, respectively. This
is demonstrated by the degradation of the slope of the solid
curves in Fig. 6 as delay increases. When the delay samples
are equal to the sensing samples, state switching performs
like the non-cooperative scheme with legacy antenna. When
a very large delay of95 samples is encountered, the SU
does not achieve any diversity gain (it will be shown later
that state selection is less sensitive to large delay scenar-
ios). At low SNR, all curves coincide as switching delay
has no impact on the coding gain. Contrarily, the diversity
order of the state switching scheme is less sensitive to delay
and its coding gain degrades with increasing delay. For a
delay of 30 samples, the full diversity order is achieved as
max{1,min{100 − 30, 10}} = 10. However, the selection
gain drops fromH10 = 4.667 dB to 7

10H10 + 3
10 = 3.711

dB. Similarly, a delay of 50 samples degrades the coding gain
but preserves the diversity order. This is depicted in Fig. 6
by the three dashed curves corresponding to delays ofD =
0, 30, and 50 samples. The three curves have the same slope
(same diversity order) but different coding gains. When the
delay becomes as large as 95 samples, the diversity order
drops tomax{1,min{100− 95, 10}} = 5, which is reflected
in Fig. 6 by a significant change in the slope ofPmd. It is
worth mentioning that for 95 delay samples, state switching
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.

does not achieve any diversity gain, which is not the case in
state selection. Thus, state selection loses its diversitygain
advantages only for significantly large switching delays, but
at the expense of the CSI estimation complexity. Fig. 7 shows
the impact of delay on the error probability in the Bayesian
test, and it is easy to interpret the results in a similar manner.

V. SENSING-THROUGHPUT TRADE-OFF: THROUGHPUT

GAIN IN RECONFIGURABLE ANTENNA SCHEMES

In this section, we revisit the fundamental tradeoff between
sensing capability and achievable throughput of the secondary
networks. We will show that there exists an optimal sensing
time for which the highest throughput for the secondary
network is achieved with sufficient protection for the PU. Next,
we will show that by adopting state selection spectrum sensing,
this optimal sensing time is reduced, thus allowing for an even
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higher throughput given the same PU protection constraints.
Furthermore, we show that the SU transmitter and receiver
can utilize reconfigurable antennas to maximize the secondary
channel capacity by selecting the “best” antenna states at both
secondary parties. Thus, not only do reconfigurable antennas
improve the performance in the detection phase, but they
can also be utilized to enhance the channel capacity in the
transmission phase as well. Finally, we investigate the effect
of switching delay on the achievable capacity and quantify the
possible degradation caused by such delay.

The sensing-throughput tradeoff was studied thoroughly
in [23]–[25]. We are concerned here with the impact of
reconfigurable antenna spectrum sensing on throughput given a
constraint on the detection probability. In the next subsections,
we compare the reconfigurable antenna state selection scheme
with the conventional one. We omit CSS from our discussion

Fig. 7. Sensing and transmission stages in a CR system.

for fair comparison, as the throughput achieved by CSS is
divided among the cooperating users. Besides, we only con-
sider state selection and not state switching, as the constraints
on detection probability are usually given at low SNR [23],
which takes away any advantage of state switching. In addition
to that, it is obvious that state switching can not improve the
ergodic capacity as it has no CSI.

A. Problem Formulation

As depicted by fig. 8, we assume a frame structured
secondary network consisting of an SU transmitter and an SU
receiver. The frame is divided into a sensing period of length τ
and a transmission period ofT −τ . The SU transmitter senses
the PU signal for a period ofτ and if the PU is absent, the
SU transmitter sends data to the SU receiver in a period of
T − τ . For a sampling period ofTs, we haveτ = MTs and
T = KTs, whereM is the number of samples used in sensing
andK is the total number of samples in the frame. We assume
that the SU transmitter employs a reconfigurable antenna with
QT states, while the SU receiver has a reconfigurable antenna
with QR states. The SU transmitter is engaged in two phases:

• Sensing phase:where the SU transmitter senses the
PU signal after applying state selection and selects the
strongest channel out of theQT channel realizations
{γP1 , γP2 , . . . , γPQT

} between the SU transmitter and the
PU.

• Transmission phase:where the SU transmitter and re-
ceiver apply state selection jointly and select the strongest
channel out ofQTQR possible channel realizations
{γS1 , γS2 , . . . , γSQTQR

}.

Thus, the SU transmitter selects the best antenna state for
sensing and then switches to the best state for transmission.
We assume the availability of full CSI at the SU parties. If
switching delay is considered, thenD samples are wasted to
switch between the different modes.
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B. Normalized throughput maximization

The average throughput for the secondary network as a
function of the sensing period is given by [23]

R(τ) =
(

1− τ

T

){

CoP (Ho)(1−PF (τ))+C1P (H1)Pmd(τ)
}

.

(24)
If γp is the channel between SU receiver and the PU, andγs
is the secondary transmission channel, thenCo = log(1+ γs)
andC1 = log(1+ γs

1+γp
). BecauseP (H1) is usually less than

P (Ho) andC1 < Co, a reasonable approximation forR(τ) is
adopted in [23]–[24] as

R(τ) ≈ CoP (Ho)
(

1− τ

T

)

(1− PF (τ)). (25)

From (25), we note that two factors affect the average sec-
ondary throughput. First, as the sensing time increases, the
throughput decreases as less time is dedicated to transmission
within a frame. Second, a high value for the false alarm
probability degrades the throughput as it implies that we waste
opportunities to access the channel. The average normalized
throughput is defined as̃R(τ) = R(τ)

CoP (Ho)
, which can be

expressed as

R̃(τ) =
T − τ

T
(1 − PF (τ)).

The optimal sensing time is obtained by maximizing̃R(τ)
while keepingPD(τ) above a certain threshold

max R̃(τ)

s.t. PD(τ) ≥ pd. (26)

It is easy to prove that̃R(τ) has a unique maximum by proving
its unimodality. The derivative of̃R(τ) with respect toτ is
given by

∂R̃(τ)

∂τ
=

−1

T
(1− PF (τ))

︸ ︷︷ ︸

A1

+(1− τ

T
)

(

−dPF (τ)

dτ

)

︸ ︷︷ ︸

A2

. (27)

Notice that the termA1 is always negative asPF (τ) is always
less than 1. Also, asPF (τ) decreases with increasingτ , then
A1 is a monotonically decreasing function ofτ . As for the term
A2, it is always positive becausePF (τ) is a monotonically
decreasing function inτ , which means that− dPF (τ)

dτ is always
positive. Moreover, asτ < T , then (1 − τ

T ) is also positive
and A2 is positive for all τ . Finally, it can be shown that
− dPF (τ)

dτ is a monotonically decreasing function ofτ , thusA2

is also monotonically decreasing inτ . Now, the sum of the
two monotonic functionsA1 andA2 is positive if |A2| > |A1|
and negative otherwise. ThereforẽR(τ) is unimodal and has
an extremum point at|A2| = |A1|.

It is shown in [23] that the optimal solution to (26) is
achieved with equality constraint. Assume that for the conven-
tional spectrum sensing scheme, the optimal number of sensing
samples isMopt. For this number of samples, the detection
probability satisfies the equality constraintPD(τ) = pd. For
state selection spectrum sensing withQT antenna states, we
have shown that a coding gain of10 log(HQT

) dB is obtained.
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Fig. 8. Optimal sensing time in conventional and state selection schemes
(SNR = 0 dB andPD = 0.9).

Thus, to satisfy the constraint ofPD(τ) = pd with state
selection at low SNR, we only needMHQT

samples for sensing.
If the optimal sensing time for the conventional scheme is
Mopt and the corresponding false alarm probability isPF,c,
and if the false alarm probability of the state selection scheme
with Mopt

HQT
sensing samples isPF,s, then the normalized

throughput gain is

Normalized througput gain=
1− Mopt

KHQT

1− Mopt

K

× 1− PF,s

1− PF,c
.

Note thatPF,s is always less thanPF,c for a constant detection
probability. The reason for this is that, for a fixed threshold λ,

we haveΓ(Mopt,
λ
2 )

Γ(Mopt)
>

Γ(
Mopt
HQT

,λ2 )

Γ

(

Mopt
HQT

) as the false alarm probability

is a monotoically decreasing function of the number of sensing
samples. In addition to that, the state selection scheme offers a
diversity gain, which means that even when the sensing sam-
ples are onlyMopt

HQT
, the state selection scheme still outperforms

the conventional scheme withMopt samples at any SNR.
Thus, for a fixed detection probability, the optimal threshold
in the state selection scheme is greater than that used in the
conventional scheme. Therefore, the false alarm probability is
reduced by state selection even if the detection probability
is kept constant. This means that by using reconfigurable
antennas, a multifaceted throughput gain is achieved. For a
fixed detection probability, the optimal sensing time is reduced
allowing for longer transmission period, and the false alarm
probability is reduced, which in turn, means a better utilization
of the channel when the PU is absent.

Fig. 9 depicts the normalized throughput gain obtained
by deploying state selection withQ = 2. Assuming that the
detection probability is set to 0.9 at an average SNR of 0 dB,
the normalized throughput curves for conventional and state
selection schemes are plotted versus the number of samples
M . It is shown that the optimal sensing time for the conven-
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tional scheme isM= 6, which is reduced to 4 in the state
selection scheme as the required number of samples to attain
the same detection probability becomes6H2

= 4. Besides,
the false alarm improvement in the state selection scheme
contributes to the total throughput gain. It can be deduced from
the peak values that the maximum normalized throughput is
boosted from 0.2 to 0.325 when state selection is applied. This
gain degrades when switching delay is considered, which is
depicted in Fig. 9 forD = 2 and 4. ForD = 2, the maximum
normalized throughput drops from 0.325 to 0.3, while a delay
of D = 4 results in a maximum normalized throughput of 0.25
only.

C. Transmission Channel Capacity

In the previous subsection, we demonstrated the normalized
throughput gain achieved by using a reconfigurable antenna
in the sensing phase. It is worth mentioning that the SU
transmitter can select different antenna states for sensing
and transmission to achieve diversity in PU signal detection
and SU-to-SU signal transmission. The maximum achievable
average throughput is approximated as

R = sup
1≤i≤QT ,1≤j≤QR

(

1− M

K

)

PFP (Ho)E
{
log(1+ γSi,j)

}
,

where γSi,j is the SU transmitter and receiver channel that
corresponds to transmitter and receiver antenna statesi
and j, where 1 ≤ i ≤ QT and 1 ≤ j ≤ QR. We drop
the term (1 − M

K )PFP (Ho) as it depends on the selected
antenna state in the sensing phase. We assume that all
possibleQTQR channel realizations are independent and
identically distributed (which matches with the conceptual
model in Section II), and that the average SNR of the
SU link is γS . The average (ergodic) transmission
channel capacityE

{
log(1 + γSi,j)

}
depends on the pdf

of the selected antenna state. By selecting the maximum
channel out ofQTQR channel realizations, the pdf ofγ =
max1≤i≤QT ,1≤j≤QR

{γS1,1, γS1,2, . . . , γS1,QR
, γS2,1, . . . , γ

S
QT ,QR

}
is given by [34]

fγ(γ) =
QTQR

γS
e

−γ
γS (1− e

−γ
γS )QT QR−1,

which can be rewritten using the binomial theorem as

fγ(γ) = QTQR

QTQR−1
∑

i=0

(
QTQR

i

)
(−1)i

γS
e
− γ(i+1)

γS . (28)

Thus, the ergodic capacityCs of the state selection transmis-
sion is given by averaging shannon capacity over the pdf in
(28)

Cs=QTQR

QTQR−1
∑

i=0

(
QTQR

i

)
(−1)i

i+ 1

∫ ∞

γ=0

log(1 + γ)
e
− γ(i+1)

γS

γS/(i+ 1)
dγ.

(29)

The ergodic capacity of the conventional single antenna

scheme is given byC = e
1

γS Ei

(

1
γS

)

[35], whereEi(x) =
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Fig. 9. Capacity gains for various numbers of antenna states.

−
∫∞

−x
e−t

t dt is the exponential integral function. Thus, the
ergodic capacity of the state selection scheme is given by

Cs = QTQR

QTQR−1
∑

i=0

(
QTQR

i

)
(−1)i

i+ 1
e

i+1
γS Ei

(
i+ 1

γS

)

.

(30)
Assuming that the SU transmitter applies equal power allo-

cation for simplicity, Fig. 10 shows the ergodic capacity gain
achieved by state selection for various number of combinations
of antenna states. The capacity gain becomes more significant
at high SNR. For instance, at an SNR of 10 dB, the capacity
of state selection with 4 antenna states is 1.75 times the
conventional scheme capacity. This gain can be transformed
into an SNR gain of 7.5 dB. In other words, the transmission
rate of the conventional scheme at an SNR of 10 dB can be
achieved by state selection at an SNR of only 2.5 dB.

For a switching delay ofD, the SU transmits on two parallel
channels: the channel utilized for sensing is still effective
for the first D samples of the transmission period, and the
best transmission channel becomes effective for the remaining
K −M − D samples. The effective average capacity in this
case is given by (30) on top of the next page. Note that
when the SU transmits on the previously selected sensing
channel for the firstD samples, it attains the same capacity
of the conventional scheme. Fig. 11 demonstrates the impact
of switching delay on the average capacity of state selection
with 4 antenna states. When the proportion of switching delay
to the total transmission time is 0.2, the capacity gain at
SNR = 10 dB reduces from 1.75 to 1.625. Moreover, if
the switching delay reaches half of the transmission time,
the capacity gain reduces to 1.375. We infer from Fig. 11
that as long as the proportion of the switching delay to the
total transmission time is less than 0.2, the SNR loss is less
than 1 dB. The effect of switching delay on the achieved
capacity depends on the transmission period and the switching
technology. An electronic switching device should be adopted
if the transmission period is comparable to the switching delay
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of MEMS switches.

VI. CONCLUSIONS

In this paper, we discussed a tradeoff between the diver-
sity and coding gains achieved in various spectrum sensing
schemes. By obtaining the diversity and coding gains in
terms of the detection thresholds, we proved that cooperative
schemes are not always beneficial as hard decisions taken at
local SUs cause loss of coding gain, which can be significant
at low SNR. Based on this analysis, we proposed a novel spec-
trum sensing scheme that utilizes a reconfigurable antenna at
the SU to exploit the diversity of its radiation states, achieving
full diversity and coding gains without SU cooperation. The
proposed scheme can outperform cooperative sensing, which
involves significant overhead, at all SNR ranges. Two schemes
based on reconfigurable antennas were presented: state switch-
ing and state selection. Based on a conceptual model for the
reconfigurable antenna, we obtained the fundamental limitson
the achievable diversity order, throughput, and transmission
capacity for the proposed schemes. Furthermore, the impact
of the state switching delay on the detection performance
and the achievable capacity was quantified. It was shown that
even with significant switching delay, detection and throughput
gains are still attainable.

APPENDIX A
PROOF OFLEMMA 1

The NP optimization problem is formulated as

max
λ

P d(λ) ≡ min
λ

Pmd(λ)

s.t.PF ≤ α,

wherePmd(λ) is the missed detection probability as a func-
tion of the detection threshold. It follows from the def-
inition of the diversity order in Section II thatdmd =

− limγ→∞
log(Pmd(λ))

log γ . Note that there is a one-to-one map-
ping betweenf(x) and log(f(x)), and that thelog(·) func-
tion preserves monotonicity. Thus, maximizingPmd(λ) is
equivalent to maximizinglog(Pmd(λ)). Dividing the objective
function by the constantlog γ yields the equivalent problem

max
λ

− log(Pmd(λ))

log γ

s.t.PF ≤ α. (A.31)

It is clear that asγ → ∞, the optimization problem tends to
maximizing the diversity order. This concludes the proof of
the lemma.

APPENDIX B
PROOF OFLEMMA 2

The Bayesian optimization problem is equivalent to mini-
mizing the average probability of error, viz.,

min
λ

P e(λ) = P (H1)Pmd + P (Ho)PF .

Recall that the receiver operating characteristics (ROC) (the
plot of PF versusPD) is a strictly concave and monotonically
increasing function [32], which implies the following

dPF (λ)

dPD(λ)
> 0, and

dPF (λ)/dλ

dPD(λ)/dλ
> 0. (B.32)

Because dPF (λ)/dλ

dPD(λ)/dλ
is always positive, we deduce that

dPF (λ)/dλ

dPmd(λ)/dλ
is always negative. Thus, the derivatives

dPF (λ)/dλ and dPmd(λ)/dλ have opposite signs, i.e., op-
posite monotonic behaviors. Therefore, we conclude that the
average error probabilityPe(λ) = P (H1)Pmd+P (Ho)PF is
a unimodal function and the optimal threshold can be obtained
by solving the equation

dPe(λ)

dλ
= 0. (B.33)

Considering the derivative oflog(Pe) instead ofPe yields

d log(Pe(λ))

dλ
=

1

Pe(λ)

dPe(λ)

dλ
= 0,

which is equivalent to (B.33), thus the Bayesian optimization
problem at high SNR reduces to trying to find the threshold
λ∗ such that

λ∗ = max
λ

de, (B.34)

which concludes the proof of the lemma.

APPENDIX C
PROOF OFLEMMA 3

The average probability of error at high SNR is given by

Pe(λ) ≍ P (Ho)
Γ(M, λ2 )

Γ(M)
+ P (H1)

λ

2γ(M − 1)
. (C.35)

Through the second derivative test, it can be easily shown that
Pe(λ) is concave forλ < 2M and convex elsewhere. Thus,
Pe(λ) has one maximum atλmax and one minimum atλmin.
The optimum threshold isλmin and is greater thanλmax. The
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Cs,D =
D

K −M
e

1
γS Ei

(
1

γS

)

+
K −M −D

K −M
QTQR

QT QR−1
∑

i=0

(
QTQR

i

)
(−1)i

i+ 1
e

i+1
γS Ei

(
i+ 1

γS

)

. (30)

maximum and minimum ofPe are obtained by equatingdPe

dλ
to zero

P (Ho)
−e−λ

2 λM−1

2M−1Γ(M)
+ P (H1)

1

2γ(M − 1)
= 0. (C.36)

The solutions of the transcendental Eq. in (C.36) are given by
the principal and lower branches of the Lambert W function
as [33]

λ1 = µ
1

M−1 exp

(

−W−1

(

−µ 1
M−1

2(M − 1)

))

,

λ2 = µ
1

M−1 exp

(

−Wo

(

−µ 1
M−1

2(M − 1)

))

,

where µ = P (H1)
P (Ho)

2M−2Γ(M−1)
γ . Given that −W−1(x) is

always greater than−Wo(x) for x < 0, the optimal threshold
is simply λopt = λ1, which concludes the proof.

APPENDIX D
PROOF OFLEMMA 4

The series expansion of the Lambert W function is given
by [33]

W−1(x) = L1 − L2 +

∞∑

ℓ=0

∞∑

m=1

(−1)ℓ
[
ℓ+m
ℓ+ 1

]

m!
L−ℓ−m
1 Lm

2 ,

whereL1 = log(−x) and L2 = log(− log(−x)). As x →
0−, the first two terms dominate andW−1(x) ≈ log(−x) −
log(− log(−x)). Thus, from Lemma 3, the optimal threshold
can be written as

λopt = µ
1

M−1 exp(−L1 + L2),

which can be expanded as

λopt ≈ µ
1

M−1 exp

(

− log

(

µ
1

M−1

2(M − 1)

)

+

log

(

− log

(

µ
1

M−1

2(M − 1)

)))

= 2(M − 1) log

(

2(M − 1)

µ
1

M−1

)

. (D.37)

Thus, asγ → ∞, and assuming thatP (Ho) = P (H1), the
optimal threshold can be approximated as

λopt ≈ 2(M − 1) log

(
M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

)

.

The false alarm probability in (2) can be expressed in the
series form asPF =

∑M−1
i=0

λi

2iΓ(i+1)e
−λ
2 [6]. At high SNR,

the last term in the series representation dominates andPF ≈

λM−1

2M−1Γ(M)
e

−λ
2 . By settingλ = θλopt, the asymptotic false

alarm probability is given by

PF ≍ 1

Γ(M)

(

θ(M − 1) log

(

M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

))M−1

×
(

Γ(M − 1)
1

M−1

(M − 1)γ
1

M−1

)θ(M−1)

and

Pmd ≍ θ

γ
log

(

M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

)

. (D.38)

Recalling the definitions in Section II, it is straightforward to
see thatdF = θ and dmd = 1. Thus, the achieved diversity
order is given by

de = min{θ, 1}.

APPENDIX E
PROOF OFLEMMA 5

The likelihood function is given by

Λ(r1, r2, . . . , rM ) =
f(r1, r2, . . . , rM |H1)

f(r1, r2, . . . , rM |Ho)
.

Based on the signal model presented in Section II, the joint
pdf of the sensed samples under hypothesesH1 andHo are

f(r1, r2, . . . , rM |H1) =
M∏

i=1

f(ri|H1)

=

M∏

i=1

1
√
2π(1 + γi,j)

e
−

r2i
2(1+γi,j ) , (E.39)

and

f(r1, r2, . . . , rM |Ho) =
M∏

i=1

1√
2π
e−

r2i
2 . (E.40)

By combining (E.39) and (E.40), the Log Likelihood Ratio
(LLR) test reduces to

M∑

i=1

γi,j
1 + γi,j

|ri|2
H1

R
H0

η. (E.41)

Because the factor γi,j

1+γi,j
is constant over everylj samples

andj varies from 1 toQ, we can rewrite the LLR test as

Q
∑

j=1

γj
1 + γj

Zi

H1

R
H0

η, (E.42)

whereZj =
∑lj−1+lj

i=lj−1+1 |ri|2 and lo = 0. This concludes the
proof of the lemma.
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APPENDIX F
PROOF OFLEMMA 6

As stated in Proposition 1, the optimum threshold can be
obtained by solving the equationdF (λ) = dmd(λ) for λ. Un-
like the NP test, we do not know howλopt affects the diversity
order as the functional form ofλopt in terms ofγ is unknown.
Thus, applying the definition of diversity order in Section II to
Eq. (22), we havedmd = −M log(λ)

log(γ) +min{Q,M}, where the
factor min{Q,M} results from the fact that ifQ > M , we
can switch the antenna modesM times only. The diversity
order at large SNR is given by− log(PF )

log(γ) . Hence, the error
probability diversity order is

de = min

{− log(PF )

log(γ)
, −M log(λ)

log(γ)
+ min{Q,M}

}

.

(F.43)
From Proposition 1, we need to findλopt that satisfies
dmd(λ) = dF (λ), which can be reduced to λM−1

2M−1Γ(M)e
−λ

2 =

λMγmin{M,Q}. Thus, similar to the solution of the transcen-
dental equation in Appendix D, the optimum threshold is given
by the Lambert W function as

λopt = 2Wo

(
1

2ζ

)

,

whereζ = γ−min{M,Q}2M−1Γ(M). By replacing the Lam-
bert W function with its asymptotic series expansion and
considering the dominant terms as shown in Appendix E, the
optimum threshold at large SNR is

λopt ≈ 2 log




γmin{M,Q}

2MΓ(M) log
(

γmin{M,Q}

2MΓ(M)

)



 . (F.44)

By substitutingλ with θλopt in the asymptotic expression
of PF , it is easy to show thatdF = θmin{Q,M}. Be-
sides, it is obvious from (F.44) thatlimγ→∞

log(λopt)
log(γ) =

0. Combining this result with (F.43), we havede =
min{θmin{M,Q},min{M,Q}}, which concludes the proof.
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