Skip to main content
Log in

Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper we consider OFDM systems with non-contiguous subcarriers where distributed spectrum fragments are applicable for transmission. A new model is proposed for pilot optimization with respect to location and power. The least-square approach is applied for channel estimation at the receiver and the optimization objective is to minimize the mean square error of the channel estimation. This optimization problem is then formulated as minimizing the spread of the eigenvalues of a positive semidefinite matrix, which is a typical semidefinite programming problem, and hence it can be solved with conventional interior-point method. Simulation results show the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sesia, S., France Issam, T., & Matthew, B. (2009). LTE-the UMTS long term evolution: from theory to practice. New York: Wiley.

    Book  Google Scholar 

  2. Negi, R., & Cioffi, J. (1998). Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Trans. Consum. Electron., 44(3), 1122–1128.

    Article  Google Scholar 

  3. Barhumi, I., Leus, G., & Moonen, M. (2003). Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Trans. Signal Process., 51(6), 1615–1624.

    Article  Google Scholar 

  4. Ohno, S., & Giannakis, G. B. (2004). Capacity maximizing MMSE-optimal pilots for wireless OFDM over frequency-selective block Rayleigh-fading channels. IEEE Trans. Inf. Theory, 50(9), 2138–2145.

    Article  Google Scholar 

  5. Hu, D., Yang, Luxi, Shi, Yuhui, & He, Lianghua. (2006). Optimal pilot sequence design for channel estimation in MIMO OFDM systems. IEEE Commun. Lett., 10(1), 1–4.

    Google Scholar 

  6. Song, S., & Singer, A. (2007). Pilot-aided OFDM channel estimation in the presence of the guard band. IEEE Trans. Commun., 55(8), 1459–1465.

    Article  Google Scholar 

  7. Huang, Q., Ghogho, M., & Freear, S. (2009). Pilot design for MIMO OFDM systems with virtual carriers. IEEE Trans. Signal Process., 57(5), 2024–2029.

    Article  Google Scholar 

  8. Qi, C., Yue, G., Wu, L., & Nallanathan, A. (2014). Pilot design for sparse channel estimation in OFDM-based cognitive radio systems. IEEE Trans. Veh. Technol., 63(2), 982–987.

    Article  Google Scholar 

  9. Baxley, R. J., Kleider, J. E., & Zhou, G. T. (2009). Pilot design for OFDM with null edge subcarriers. IEEE Trans. Wirel. Commun., 8(1), 396–405.

    Article  Google Scholar 

  10. Hu, D., He, L., & Wang, X. (2011). An efficient pilot design method for OFDM-based cognitive radio systems. IEEE Trans. Wirel. Commun., 10(4), 1252–1259.

    Article  Google Scholar 

  11. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  12. Dai, S., Chen, F., Chen, X., & Xiong, S. (2012). Optimal power allocation of pilot symbols for LS channel estimation in OFDMA uplink. In 2012 IEEE international conference on circuits and systems (ICCAS), pp. 112–115.

  13. Toh, K. C., Ttnc, R. H., & Todd, M. J. (2001). A MATLAB software package for semidefinite-quadratic-linear programming. http://www.math.cmu.edu/~reha/sdpt3.html.

  14. Lawler, E. L., & Wood, D. E. (1966). Branch-and-bound methods: a survey. Oper. Res., 14(4), 699–719.

    Article  Google Scholar 

  15. 3GPP TS 36.211 Release 12. (2014, September). Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation. http://www.3gpp.org/DynaReport/36211.htm.

  16. Gong, M., Chen, F., et al. (2013). Normalized adaptive channel equalizer based on minimal symbol-error-rate. IEEE Trans. Commun., 61(4), 1374–1383.

    Article  Google Scholar 

  17. Sarmadi, N., Shahbazpanahi, S., & Gershman, A. B. (2009). Blind channel estimation in orthogonally coded MIMO-OFDM systems: a semidefinite relaxation approach. IEEE Trans. Signal Process., 57(6), 2354–2364.

    Article  Google Scholar 

  18. Vandenberghey, L., & Boyd, S. (1996). Semidefinite programming. SIAM Rev., 38, 49–95.

    Article  Google Scholar 

  19. Shi, Y., Hou, Y. T., Kompella, S., & Sherali, H. D. (2011). Maximizing capacity in multihop cognitive radio networks under the SINR model. IEEE Trans. Mob. Comput., 10(7), 396–405.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National High-tech program (No. SS2015AA011307), the National Natural Science Foundation of China (Nos. 61171083, 61322108, 61431005, 61372083), the Key Grant Project of Chinese Ministry of Education (No. 313021) and the NCET program (No. NCET-12-0196). Ting Chen: All authors claim that he should be considered co-first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Shan, Z., Chen, T. et al. Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming. Telecommun Syst 63, 297–305 (2016). https://doi.org/10.1007/s11235-015-0121-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0121-7

Keywords

Navigation