Skip to main content

Advertisement

Log in

A cross-layer QoS management framework for ZigBee cluster-tree networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless sensor networks show great potential to successfully address the timeliness and energy-efficiency requirements of different cyber-physical system applications. Generally, these requirements span several layers of the stack and demand an on-line mechanism capable of efficiently tuning several parameters, in order to better support highly dynamic traffic characteristics. This work presents a cross-layer QoS management framework for ZigBee cluster-tree networks. The proposed framework carries out an on-line control of a set of parameters ranging from the MAC sub-layer to the network layer, improving the successful transmission probability and minimizing the memory requirements and queuing delays through an efficient bandwidth allocation at the network clusters. Through extensive simulations in a real datacenter monitoring application scenario, we show that the proposed framework improves the successful transmission probability by 10 %, and reduces the end-to-end delay by 94 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdelzaher, T., Prabh, S., & Kiran, R. (2004). On real-time capacity limits of multihop wireless sensor networks. In Proceedings of 25th IEEE international on real-time systems symposium, 2004 (pp. 359–370).

  2. Boughanmi, N., Song, Y. Q., & Rondeau, E. (2009). Online adaptation of the ieee 802.15.4 parameters for wireless networked control systems. In 8th IFAC international conference on fieldbuses and networks in industrial and embedded systems (FET 2009).

  3. Burda, R., & Wietfeld, C. (2007). A distributed and autonomous beacon scheduling algorithm for ieee 802.15.4/zigbee networks. In IEEE internatonal conference on mobile adhoc and sensor systems, 2007. MASS 2007 (pp 1–6).

  4. Cunha, A., Koubaa, A., Severino, R., & Alves, M. (2007). Open-zb: An open-source implementation of the ieee 802.15.4/zigbee protocol stack on tinyos. In IEEE internatonal conference on mobile adhoc and sensor systems, 2007. MASS 2007 (pp. 1–12).

  5. Cunha, A., Severino, R., Pereira, N., Koubaa, A., & Alves, M. (2008). Zigbee over tinyos: Implementation and experimental challenges. 8th Portuguese conference on automatic control (CONTROLO2008) (pp. 21–23). Portugal: Vila Real.

  6. Demir, A., Demiray, H., & Baydere, S. (2014). Qosmos: Cross-layer QoS architecture for wireless multimedia sensor networks. Wireless Networks, 20(4), 655–670. doi:10.1007/s11276-013-0628-3.

    Article  Google Scholar 

  7. Di Francesco, M., Pinotti, C. M., & Das, S. K. (2012). Interference-free scheduling with bounded delay in cluster-tree wireless sensor networks. In Proceedings of the 15th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, ACM, New York, NY, USA, MSWiM ’12 (pp. 99–106).

  8. Evidence. (2014). Erika real-time operating system, online. http://erika.sssup.it/.

  9. Gibson, J., Xie, G., & Xiao, Y. (2007). Performance limits of fair-access in sensor networks with linear and selected grid topologies. In Global telecommunications conference, 2007. GLOBECOM ’07. IEEE (pp. 688–693).

  10. Hanzalek, Z., & Jurcik, P. (2010). Energy efficient scheduling for cluster-tree wireless sensor networks with time-bounded data flows: Application to IEEE 802.15.4/ZigBee. IEEE Transactions on Industrial Informatics, 6(3), 438–450.

    Article  Google Scholar 

  11. Huang, Y. K., Pang, A. C., Hsiu, P. C., Zhuang, W., & Liu, P. (2012). Distributed throughput optimization for zigbee cluster-tree networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 513–520.

    Article  Google Scholar 

  12. Hyun, T., Lee, D., Ahn, J. H., & Choi, S. (2005). Priority toning strategy for fast emergency notification in IEEE 802.15.4 LR-WPAN. In Proceedings of the 15th joint conference on communications & information (JCCI).

  13. IEEE-TG154. (2006). IEEE Standard for Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs).

  14. Jeon, J., Lee, J. W., Kim, H. S., & Kwon, W. H. (2007). Pecap: Priority-based delay alleviation algorithm for ieee 802.15.4 beacon-enabled networks. Wirel Pers Commun, 43(4), 1625–1631. doi:10.1007/s11277-007-9331-y.

    Article  Google Scholar 

  15. Jurcik, P., Koubâa, A., Severino, R., Alves, M., & Tovar, E. (2010). Dimensioning and worst-case analysis of cluster-tree sensor networks. ACM Transactions on Sensor Networks, 7(2), 14:1–14:47.

    Article  Google Scholar 

  16. Kim, E. J., Kim, M., Youm, S. K., Choi, S., & Kang, C. H. (2007). Priority-based service differentiation scheme for IEEE 802.15.4 sensor networks. International Journal of Electronics and Communications, 61(2), 69–81. doi:10.1016/j.aeue.2006.02.004.

    Article  Google Scholar 

  17. Kim, Y. D., Cho, K. R., Cho, H. S., & Kim, D. (2014). A cross-layer channel access and routing protocol for medical-grade QoS support in wireless sensor networks. Wireless Personal Communications, 77(1), 309–328. doi:10.1007/s11277-013-1507-z.

    Article  Google Scholar 

  18. Kipnis, D., Willig, A., Hauer, J. H., & Karowski, N. (2008). The angel IEEE 802.15.4 enhancement layer: Coupling priority queueing and service differentiation. In Proceedings of 14th European wireless conference, Prague (pp. 1–7).

  19. Koomey, J. (2011). Growth in data center electricity use 2005 to 2010. Technical Report, Analytics Press, Oakland, CA. www.analyticspress.com/datacenters.html.

  20. Koubaa, A., Alves, M., Nefzi, B., & Song, Y. Q. (2006). Improving the IEEE 802.15.4 slotted CSMA/CA MAC for time-critical events in wireless sensor networks. In Proceedings of the workshop of real-time networks (RTN 2006), satellite workshop to (ECRTS 2006).

  21. Kouba, A., Cunha, A., Alves, M., & Tovar, E. (2008). TDBS: A time division beacon scheduling mechanism for zigbee cluster-tree wireless sensor networks. Real-Time Systems Journal, 40, 321–354.

    Article  Google Scholar 

  22. MEMSIC. (2014). Telosb datasheet. www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf.

  23. Mendes, L. D. P., & Rodrigues, J. P. C. (2011). Review: A survey on cross-layer solutions for wireless sensor networks. Journal of Network and Computer Applications, 34(2), 523–534. doi:10.1016/j.jnca.2010.11.009.

    Article  Google Scholar 

  24. Muthukumaran, P., de Paz, R., Spinar, R., & Pesch, D. (2010). Meshmac: Enabling mesh networking over IEEE 802.15. 4 through distributed beacon scheduling.

  25. Nandi, S., & Yadav, A. (2011). Cross layer adaptation for QoS in WSN. International Journal of Computer Networks & Communications, 3(5), 287.

    Article  Google Scholar 

  26. Ndih, E. D. N., Khaled, N., & De Micheli, G. (2009). An analytical model for the contention access period of the slotted IEEE 802.15.4 with service differentiation. In ICC 2009, international conference on communication, Dresden.

  27. Open-ZB. (2014). Online. http://www.open-zb.net.

  28. OPNET Technologies Incorporation. (2014). Modeler wireless suite, online. http://www.opnet.com.

  29. Pan, M. S., & Tseng, Y. C. (2008). Quick convergecast in zigbee beacon-enabled tree-based wireless sensor networks. Computer Communications, 31(5), 999–1011.

    Article  Google Scholar 

  30. Pereira, N., Tennina, S., Loureiro, J., Severino, R., Saraiva, B., Santos, M., Pacheco, F., & Tovar, E. (2014). A microscope for the data center. In International journal of sensor networks (IJSNet) inderscience.

  31. Prabh, K. S., & Abdelzaher, T. F. (2007). On scheduling and real-time capacity of hexagonal wireless sensor networks. In Proceedings of the 19th Euromicro conference on real-time systems, IEEE Computer Society, Washington, DC, USA, ECRTS ’07 (pp. 136–145).

  32. Raman, B., & Chebrolu, K. (2008). Censor networks: A critique of “sensor networks” from a systems perspective. SIGCOMM Computer Communication Review, 38(3), 75–78.

    Article  Google Scholar 

  33. Semprebom, T., Montez, C., Moraes, R., Vasques, F., & Custodio, R. (2009). Distributed DBP: A (m, k)-firm based distributed approach for QoS provision in IEEE 802.15.4 networks. In 14th IEEE international conference on emerging technologies and factory automation (ETFA 09).

  34. SENODS. (2014). Sustainable energy-optimized datacenters. http://www.cister.isep.ipp.pt/projects/senods/.

  35. Severino, R., Batsa, M., Alves, M., & Koubaa, A. (2010). A traffic differentiation add-on to the IEEE 802.15.4 protocol: Implementation and experimental validation over a real-time operating system. In 2010 13th Euromicro conference on digital system design: Architectures, methods and tools (DSD) (pp. 501–508). doi:10.1109/DSD.2010.95.

  36. Severino, R., Pereira, N., & Tovar, E. (2014). Dynamic cluster scheduling for cluster-tree WSNS. SpringerPlus Communication Networks, 3(493).

  37. Shah, G., Liang, W., & Akan, O. (2012). Cross-layer framework for QoS support in wireless multimedia sensor networks. IEEE Transactions on Multimedia, 14(5), 1442–1455. doi:10.1109/TMM.2012.2196510.

    Article  Google Scholar 

  38. Stankovic, J. A., Lee, I., Mok, A., & Rajkumar, R. (2005). Opportunities and obligations for physical computing systems. Computer, 38(11), 23–31.

    Article  Google Scholar 

  39. Tennina, S., Koubaa, A., Daidone, R., Alves, M., Jurcik, P., Severino, R., Tiloca, M., Pereira N., Hauer, J.-H., Dini, G., Bouroche, M., & Tovar, E. (2013). IEEE 802.15.4 and ZigBee as enabling technologies for low-power wireless systems with quality-of-service constraints, lecture notes in electrical engineering. Berlin: Springer.

  40. TinyOS. (2014a). Online. http://www.tinyos.net/.

  41. TinyOS. (2014b). Zigbee working group. http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_ZigBee_Working_Group.

  42. Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). Qos-aware mac protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004. doi:10.1016/j.comnet.2011.02.007.

    Article  Google Scholar 

  43. ZigBee-Alliance. (2005). Zigbee specification. Technical Report.

Download references

Acknowledgments

This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER Research Centre); by FCT/MEC and the EU ARTEMIS JU within projects ARTEMIS/0001/2012-JU Grant Nr. 332987 (ARROWHEAD), ARTEMIS/0004/2013-JU Grant Nr. 621353 (DEWI, http://www.dewi-project.eu); also by FCT/MEC and the European Social Fund (ESF) through POPH (Portuguese Human Potential Operational Program), under PhD Grant SFRH/BD/71573/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Severino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severino, R., Ullah, S. & Tovar, E. A cross-layer QoS management framework for ZigBee cluster-tree networks. Telecommun Syst 63, 381–397 (2016). https://doi.org/10.1007/s11235-015-0128-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0128-0

Keywords

Navigation