Skip to main content
Log in

A new DNA cryptosystem based on AG codes evaluated in gaussian channels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new cryptosystem system that combines DNA cryptography and algebraic curves defined over different Galois fields. The security of the proposed cryptosystem is based on the combination of DNA encoding, a compression process using a hyperelliptic curve over a Galois field \(GF\left( 2^{p}\right) \), and coding via an algebraic geometric code built using a Hermitian curve on a Galois field \(GF\left( 2^{2q}\right) \), where \(p> 2q\). The proposed cryptosystem resists the newest attacks found in the literature because there is no linear relationship between the original data and the information encoded with the Hermitian code. Further, the work factor for such attacks increases proportionally to the number of possible choices for the generator matrix of the Hermitian code. Simulations in terms of BER and signal-to-noise ratio (SNR) are included, which evaluate the gain of the transmitted data in an AWGN channel. The performance of the DNA/AG cryptosystem scheme is compared with un-coded QPSK, and the McEliece code in terms of BER. Further, the proposed DNA/AG system outperforms the security level of the McEliece algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Science-AAAS, 266(5187), 1021–1023.

    Article  Google Scholar 

  2. Aich, A., & Sen, A., et al. (2015). Deoxyribonucleic Acid (DNA) for a Shared Secret Key Cryptosystem with Diffie Hellman Key sharing technique. In: Third International Conference on Computer, Communication, Control and Information Technology (C3IT), 2015, pp. 1 – 6.

  3. Baldi, M. (2014). QC-LDPC code-based cryptography. New York: SpringerBriefs in Electrical and Computer Engineering. ISBN 978-3-319-02556-8.

  4. Berlekamp, E. R. R., McEliece, J., & van Tilborg, H. C. (1978). On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory, IT–24, 384–386.

    Article  Google Scholar 

  5. Carrasco, R., & Johnston, M. (2008). Non-binary error control coding for wireless communication and data storage. New York: Wiley.

  6. Chang, W. L. (2012). Fast Parallel DNA-Based Algorithms for Molecular Computation: Quadratic Congruence and Factoring Integers. IEEE Transactions on Nano Bioscience, 11(1), 62–69.

    Article  Google Scholar 

  7. Chang, W. L., Guo, Ho M., & Guo, M. (2005). Fast Parallel Molecular Algorithms for DNA-Based Computation: Factoring Integers. IEEE Transactions on Nano Bioscience, 4(2), 149–163.

    Article  Google Scholar 

  8. Chen, L., Carrasco, R., & Johnston, M. (2008) Reduced complexity interpolation for list decoding hermitian codes. IEEE Transactions on Wireless Communications, 7, (11) , art. no. 4684611 , pp. 4353–4361.

  9. Chen, L., Carrasco, R., & Johnston, M. (2009). Soft-decision list decoding of hermitian codes. IEEE Transactions on Communications, 57(8), 2169–2176.

    Article  Google Scholar 

  10. Cheng, Q., & Wan, D. (2004). On the list and bounded distance decodibility of ReedSolomon codes. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 335-341.

  11. Couvreur, A., Marquez-Corbella, I., & Pellikaan, R. (Jul 2014). ’A polynomial time attack against algebraic geometry code based public key cryptosystems’. IEEE International Symposium on Information Theory (ISIT), Honolulu HI, USA, pp.1446–1450.

  12. Fulton, W. (1969). Algebraic Curves. An introduction to Algebraic Geometry. N.Y.: W.A. Benjamin, Inc.

    Google Scholar 

  13. Garcia, A. (2005). On Curves over Finite Fields. Seminaires & Congres Societe Mathematique de France, 11, 75–110.

    Google Scholar 

  14. Gupta, S., Jain, A. (Mar 2015)’Efficient Image Encryption Algorithm Using DNA Approach’. 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, pp. 726–731.

  15. Ho, M., Shih, Y. (2008). Fast Parallel Bio-Molecular Logic Computing Algorithms of Discrete Logarithm. In 8th IEEE International Conference on BioInformatics and BioEngineering, 2008, pp. 1 - 6.

  16. Hoholdt, T., & Pellikaan, R. (1995). On the decoding of algebraic-geometric codes. IEEE Transactions on Information Theory, IT–41(6), 1589–1614.

  17. Hungerford, T. W. (2012) Abstract Algebra, an Introduction. 3 edn. Brooks Cole, 1986, (2012)

  18. Hurt, N. E. (2003). Many rational points. Coding theory and algebraic geometry. Dordrecht: Springer Science+BusinessMedia Dordrecht. ISBN 978-90-481-6496-7.

  19. Jiron, I., Soto, I., Carrasco, R., & Becerra, N. (2006). Hyperelliptic curves encryption combined with block codes for Gaussian channel. Int. J. Commun. Syst, 19, 809–830.

    Article  Google Scholar 

  20. Justesen, J., Arsen, J. L., et al. (1989). Construction and Decoding of a Class of Algebraic Geometry Codes. IEEE Transactions on Information Theory, 35(4), 811–821.

    Article  Google Scholar 

  21. Justesen, J., Larsen, K. J., et al. (1992). Fast Decoding of Codes from Algebraic Plane Curves. IEEE Transactions on Information Theory, 38(1), 111–119.

    Article  Google Scholar 

  22. Kari, L., Seki, S., & Sosk, P. (2012). DNA Computing - Foundations and Implications, Handbook of Natural Computing. Berlin: Springer, Berlin Heidelberg.

    Google Scholar 

  23. Koblitz, N. (1998). Algebraic aspect of cryptography, algorithms and computation in mathematics (Vol. 3). Berlin: Springer. ISBN 3-540-63446-0.

  24. Kumar, M., Iqbal, A., & Kumar, P. (2016). A new RGB image encryption algorithm based on DNA encoding and elliptic curve DiffiHellman cryptography. Signal Processing, 125, 187–202.

    Article  Google Scholar 

  25. Kumar Kaundal, A., & Verma, A. K. (2015). Extending Feistel structure to DNA Cryptography. Journal of Discrete Mathematical Sciences and Cryptography, 18(4), 349–362.

    Article  Google Scholar 

  26. Lin, S., & Costello,D. (2004). Error control coding. Fundamentals and applications (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall. ISBN-10:0130426725.

  27. Ontiveros, B., Soto, I., & Carrasco, R. (2006). Construction of an elliptic curve over finite fields to combine with convolutional code for cryptography. IEE Proceedings: Circuits Devices and Systems, 153(4), 299–306.

    Google Scholar 

  28. Paar, Ch., & Pelzl, J. (2010). Understanding Cryptography. A Textbook for Students and Practioners. Berlin: Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  29. Proakis, J. G., & Masoud, S. (2008). Digital communications (5th ed.). New York: McGraw-Hill. ISBN 9780072957167.

  30. Saranya M. R., Arun, K., Mohan, K., Anusudha, K. (Feb 2015) ’Algorithm for Enhanced Image Security Using DNA and Genetic Algorithm’. IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kerala, India, pp. 1–5.

  31. Schneier, B. (1996). Applied cryptography: Protocols, algorithms, and source codes in C (2nd ed.). New York: Wiley. ISBN-10:0471117099.

  32. Singh, A., Singh, R. (Mar 2015) ’Information Hiding Techniques Based on DNA Inconsistency: An Overview’. 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, pp. 2068–2072.

  33. Soto, I., Jiron, I., Valencia, A., & Carrasco, R. (2015). Secure DNA data compression using algebraic curves. Electronics Letters, 51(18), 1466–1468.

    Article  Google Scholar 

  34. Stichtenoth, H. (1988). A Note on Hermitian Codes Over \(GF(q^2)\). IEEE Transactions on Information Theory, 34(5), 1345–1348.

    Article  Google Scholar 

  35. Valencia, C., Soto, I., & Carrasco, R. (2007). Secure data compression with sphere packing. Electronics Letters, 43(23), 1298–1300.

    Article  Google Scholar 

  36. Vardy, A. (1997). The Intractability of Computing the Minimum Distance of a Code. IEEE Transactions on Information Theory, 43(6), 1757–1766.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the ’Center for multidisciplinary research on signal processing’ (Project Conicyt/ACT1120), Project USACH/Dicyt No 061413SG, and V.R.I.D.T./U.C.N. Antofagasta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Azurdia-Meza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 230 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiron, I., Soto, I., Azurdia-Meza, C.A. et al. A new DNA cryptosystem based on AG codes evaluated in gaussian channels. Telecommun Syst 64, 279–291 (2017). https://doi.org/10.1007/s11235-016-0175-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0175-1

Keywords

Navigation