Skip to main content
Log in

Multi-user access mechanism with intra-access categories differentiation for IEEE 802.11ac wireless local area networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

To cope with the increasing demand of multimedia applications, new IEEE 802.11 wireless local area networks devices have been defined such as IEEE 802.11aa and IEEE 802.11ac. The former proposes new intra-access categories (AC) differentiation based on stream classification service (SCS) scheme. The latter standard allows simultaneous downlink transmissions thanks to downlink multi-user MIMO technology and sharing transmission opportunity (TXOP) period scheme. In this paper, we focus on the basis of this technique and the behavior of the access point (AP) to manage the multi-user access. Then, we propose a hybrid access mechanism entitled multi-user multi-cast access mechanism (MUMAM) that supports downlink multi-user transmissions while considering intra-AC differentiation. MUMAN considers SCS scheme to prioritize between multicast and unicast flows of an AC and follows transmissions based on IEEE 802.11ac TXOP sharing technique. Extensive simulation and analysis show that MUMAM has a significant positive impact on delay and throughput performance of different AC(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AAC:

Alternate access category

AC:

Access category

ACK:

Acknowledgment

AP:

Access point

BA:

Block acknowledgment

BAR:

Block acknowledgment request

BE:

Best effort

C-AC:

Complementary AC

DL MU-MIMO:

Downlink multi-user MIMO

EDCA:

Enhanced distributed channel access

HCF:

Hybrid coordination function

MAC:

Medium access control

MIMO:

Multiple input multiple output

MUMAM:

Multi-user multicast access mechanism

MU-TXOP:

Multi-user TXOP

P-AC:

Primary AC

PHY:

Physical layer

PPDU:

PHY layer protocol data unit

QoS:

Quality of service

SIFS:

Short inter-frame spacing

S-AC:

Secondary AC

SCS:

Stream classification service

STA:

Station

TXOP:

Transmission opportunity

\(TXOP_{EL}\) :

TXOP elementary period

UP:

User priority

VI:

Video

VO:

Voice

VHT:

Very high throughput

WLAN:

Wireless local area network

References

  1. Ben Makhlouf, A. (2013). Hamdi, M., Enhancement of multi-user access in IEEE 802.11 WLAN channels. In IWCMC Conference, (pp. 24–29). Sardinia.

  2. Charfi, E., Chaari, L., & Kamoun, L. (2013). PHY/MAC enhancements and QoS mechanisms for very high throughput WLANs: A survey. IEEE Communications Surveys and Tutorials, 15(4), 1714–1735.

    Article  Google Scholar 

  3. Chulho, C., & Yunho, J. (2015). saturation throughput analysis of ieee 802.11ac txop sharing mode. Electronics Letters, 51(25), 2164–2166.

    Article  Google Scholar 

  4. Chunhui, Z., Youngs, K., Osama, A., Chiu, N. (2011). Multi-user support in next generation wireless LAN. In IEEE CCNC, (pp. 1120–1121). Las Vegas.

  5. Farhan, S. (2015). Gigabit wireless networking with IEEE 802.11ac: Technical overview and challenges. Journal of Networks, 10(3), 164–171.

    Google Scholar 

  6. Hongqiang, Z., Xiang, C., & Yuguang, F. (2006). A call admission and rate control scheme for multimedia support over IEEE 802.11 wireless LANs. Wireless Networks, 12(4), 451–463.

    Article  Google Scholar 

  7. IEEE. (1999). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-1999.

  8. IEEE. (2005). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 8: Medium access control MAC) quality of service enhancements.

  9. IEEE 802.11ac(D7.0). (2013). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Enhancements for very high throughput for operation in bands below 6 GHz.

  10. IEEE Standard for Information technology. (2009). Local and metropolitan area networks, specific requirements, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Enhancements for higher throughput, (pp. 1–565).

  11. IEEE Standard. (2012). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 2: MAC enhancements for robust audio video streaming, (pp. 1–162).

  12. Jeng, F., Wanjiun, L., & Meng, C. (2007). A Differentiated service model for enhanced distributed channel access (EDCA) of IEEE 802.11e WLANs. Mobile Networks and Applications, 12(1), 69–77.

    Article  Google Scholar 

  13. Katarzyna, K., Marek, N., Lukasz, P. (2014). A Novel IEEE 802.11aa intra-AC prioritization method for video transmissions. In IEEE GLOBECOM, (pp. 1158–1163). Austin.

  14. Katarzyna, K., Marek, N., Lukasz, P. (2014). IEEE 802.11aa intra-AC prioritization a new method of increasing the granularity of traffic prioritization in WLANs. In ISCC conference, (pp. 1–6). Funchal.

  15. Katarzyna, K. (2013). A throughput model of IEEE 802.11aa intra-access category prioritization. Wireless Personal Communications, 71(2), 1075–1083.

    Article  Google Scholar 

  16. Kosek-Szott, K. (2013). A throughput model of IEEE 802.11aa intra-access category prioritization. Wireless Personal Communications, 71(2), 1075–1083.

    Article  Google Scholar 

  17. Li, Q., Jiao, L., Li, F. (2013). Performance evaluation of the GCR block ACK mechanism in IEEE 802.11aa networks. In Wireless conference (EW), (pp. 1–7). Guildford.

  18. Lucas, E. (2011). Performance evaluation of IEEE 802.11aa MAC enhancements for robust audio video streaming. University Carlos III of Madrid, Master of Science Thesis.

  19. Minyoung, P. (2011). IEEE 802.11ac: Dynamic bandwidth channel access. In IEEE ICC, (pp. 1–5). Kyoto.

  20. Mitra, S., & Abu-Rgheff, M. (2009). Quality of service (QoS) issues in multimedia wireless network: A survey. Journal of Mobile Multimedia, 5(3), 181–202.

    Google Scholar 

  21. Ossama A. (2011). Wireless local area networks quality of service: An engineering perspective. Institute of Electrical and Electronics Engineers (IEEE) Standards Division.

  22. Ossema, A., Uikun, K., Youngsoo, K., Chunhui, Z. (2013). Managing downlink multi-user MIMO transmission using group membership. In IEEE CCNC, (pp. 370–375). Las Vegas.

  23. Richard V. (2011). 802.11n: The global wireless LAN standard. Globalization of Mobile and Wireless Communications, Signals and Communication Technology, (pp. 103–118). doi:10.1007/978-9007010768.

  24. Ruizhi, L., Boris, B., Trang, C., Jaume, B., & Miquel, O. (2015). Uni-MUMAC: A unified down/up-link MU-MIMO MAC protocol for IEEE 802.11ac WLANs. Wireless Networks, 21, 1457–1472.

    Article  Google Scholar 

  25. Tinnirello, I., Choi, S. (2005). Temporal fairness provisioning in multi-rate contention-based 802.11e WLANs. In WoWMoM, (pp. 220–230). Italy.

  26. Wen-Ping, L., & En-Cheng, L. (2013). A novel scheduler design for wireless video over 802.11aa networks using priority weighting and dropping. International Journal of Future Generation Communication and Networking, 6(4), 137–146.

    Google Scholar 

  27. Yazid, M., Adlen, K., Louiza, B., Djamil, A. (2015). Enhancement of the TXOP sharing designed for DL-MU-MIMO IEEE 802.11ac WLANs. In IEEE WCNC, (pp. 908–913). New Orleans.

  28. Yazid, M., Adlen, K., Louiza, B., & Djamil, A. (2014). Performance analysis of the TXOP sharing mechanism in the VHT IEEE 802.11ac WLANs. IEEE Communications Letters, 18(9), 1599–1602.

    Article  Google Scholar 

  29. Yijing, Z. (2014). Performance analysis of the 802.11aa intra-access category prioritization under saturated condition. In IEEE GLOBECOM, (pp. 4610–4615). Austin.

  30. Zhiqun, H., Xiangming, W., Zhaoxing, L., & Wenpeng, J. (2015). Modeling the TXOP sharing mechanism of IEEE 802.11ac enhanced distributed channel access in non-saturated conditions. IEEE Communications Letters, 19(9), 1576–1579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Charfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charfi, E., Chaari, L., Ben Hlima, S. et al. Multi-user access mechanism with intra-access categories differentiation for IEEE 802.11ac wireless local area networks. Telecommun Syst 64, 479–494 (2017). https://doi.org/10.1007/s11235-016-0187-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0187-x

Keywords

Navigation