Skip to main content

Advertisement

Log in

Cooperation and coalitional stability in decentralized wireless networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper we consider a wireless contextualization of the local routing protocol on scale-free networks embedded in a plane and analyze on the one hand how cooperation affects network efficiency, and on the other hand the stability of cooperation structures. Cooperation is interpreted on k-cliques as local exchange of topological information between cooperating agents. Cooperative activity of nodes in the proposed model changes the routing strategy at the level of the coalition group and consequently influences the entire routing process on the network. We show that the proposed cooperation model enhances the network performance in the sense of reduced passage time and jamming. Payoff of a certain node is defined based on its energy consumption during the routing process. We show that if the payoff of the nodes is the energy saving compared to the all-singleton case, basically coalitions are not stable, since increased activity within coalition increases costs. We introduce coalitional load balancing and net reward to enhance coalitional stability and thus the more efficient operation of the network. As in the proposed model cooperation strongly affects routing dynamics of the network, externalities will arise and the game is defined in a partition function form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile ad hoc networks. Ad hoc Networks, 2(1), 1–22.

    Article  Google Scholar 

  2. Akkarajitsakul, K., Hossain, E., Niyato, D., & Kim, D. I. (2011). Game theoretic approaches for multiple access in wireless networks: A survey. IEEE Communications Surveys & Tutorials, 13(3), 372–395.

    Article  Google Scholar 

  3. Al-Kanj, L., Saad, W., Dawy, Z. (2011). A game theoretic approach for content distribution over wireless networks with mobile-to-mobile cooperation. In 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (pp. 1567–1572). Piscataway: IEEE.

  4. Albert, R., Jeong, H., & Barabási, A. L. (1999). Internet: Diameter of the world-wide web. Nature, 401(6749), 130–131.

    Article  Google Scholar 

  5. Altman, E., & Wynter, L. (2004). Equilibrium, games, and pricing in transportation and telecommunication networks. Networks and Spatial Economics, 4(1), 7–21.

    Article  Google Scholar 

  6. Altman, E., Boulognea, T., El-Azouzi, R., Jimenez, T., & Wynter, L. (2006). A survey on networking games in telecommunications. Computers & Operations Research, 33, 286–311.

    Article  Google Scholar 

  7. Arenas, A., Díaz-Guilera, A., & Guimera, R. (2001). Communication in networks with hierarchical branching. Physical Review Letters, 86(14), 3196.

    Article  Google Scholar 

  8. Aumann, R. J., & Peleg, B. (1960). Von Neumann-Morgenstern solutions to cooperative games without side payments. Bulletin of the American Mathematical Society, 66, 173–179.

    Article  Google Scholar 

  9. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  Google Scholar 

  10. Barabási, A. L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, 272(1), 173–187.

    Article  Google Scholar 

  11. Chander, P., & Tulkens, H. (1997). The core of and economy with multilateral environmental externalities. International Journal of Game Theory, 26(3), 379–401.

    Article  Google Scholar 

  12. Cohen, K., Leshem, A., & Zehavi, E. (2013). Game theoretic aspects of the multi-channel aloha protocol in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2276–2288.

    Article  Google Scholar 

  13. Cominetti, R., Correa, J. R., & Stier-Moses, N. E. (2006). Network games with atomic players. Automata, languages and programming (pp. 525–536). Berlin: Springer.

  14. Csercsik, D., Imre, S. (2013). Comparison of router intelligent and cooperative host intelligent algorithms in a continous model of fixed telecommunication networks. In International Conference on Telecommunications and Network Engineering, WASET (pp. 719–727).

  15. Csercsik, D., Sziklai, B. (2012). Traffic routing oligopoly. Central European Journal of Operations Research, 1–20.

  16. D’Hulst, R., & Rodgers, G. (2000). Exact solution of a model for crowding and information transmission in financial markets. International Journal of Theoretical and Applied Finance, 3(04), 609–616.

    Article  Google Scholar 

  17. Douligeris, C., & Mazumdar, R. (1992). A game theoretic perspective to flow control in telecommunication networks. Journal of the Franklin Institute, 329(2), 383–402.

    Article  Google Scholar 

  18. Eguiluz, V. M., & Zimmermann, M. G. (2000). Transmission of information and herd behavior: An application to financial markets. Physical Review Letters, 85(26), 5659.

    Article  Google Scholar 

  19. Feldmann, R., Gairing, M., Lucking, T., Monien, B., & Rode, M. (2003). Selfish routing in non-cooperative networks: A survey. In B. Rovan & P. Vojtás (Eds.), Mathematical foundations of computer science 2003 (Vol. 2747, pp. 21–45). Lecture Notes in Computer Science Berlin / Heidelberg: Springer.

  20. Garg, N., Aswal, K., & Dobhal, D. C. (2012). A review of routing protocols in mobile ad hoc networks. International Journal of Information Technology, 5(1), 177–180.

    Google Scholar 

  21. Han, Z., Niyato, D., Saad, W., Basar, T., & Hjorungnes, A. (2012). Game theory in wireless and communication networks. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Hong, X., Xu, K., & Gerla, M. (2002). Scalable routing protocols for mobile ad hoc networks. IEEE Network, 16(4), 11–21.

    Article  Google Scholar 

  23. Ibrahim, A., Han, Z., & Liu, K. R. (2008). Distributed energy-efficient cooperative routing in wireless networks. IEEE Transactions on Wireless Communications, 7(10), 3930–3941.

    Article  Google Scholar 

  24. Jackson, M. O. (2008). Social and Economic Networks. Princeton: Princeton University Press.

    Google Scholar 

  25. Johari, R., Mannor, S., & Tsitsiklis, J. (2006). A contract-based model for directed network formation. Games and Economic Behavior, 56(2), 201–224. doi:10.1016/j.geb.2005.08.010.

    Article  Google Scholar 

  26. Karamchandani, N., Minero, P., Franceschetti, M. (2011). Cooperation in multi-access networks via coalitional game theory. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 329–336). Piscataway: IEEE.

  27. Khandani, A., Modiano, E., Abounadi, J., & Zheng, L. (2005). Cooperative routing in wireless networks. In B. Szymanski & Y. Bulent (Eds.), Advances in pervasive computing and networking (pp. 97–117). New York: Springer.

    Chapter  Google Scholar 

  28. Khandani, A., Abounadi, J., Modiano, E., & Zheng, L. (2007). Cooperative routing in static wireless networks. IEEE Transactions on Communications, 55, 2185–2192.

    Article  Google Scholar 

  29. Kóczy, L. Á. (2007a). A recursive core for partition function form games. Theory and Decision, 63(1), 41–51.

    Article  Google Scholar 

  30. Kóczy, L. Á. (2007b). A recursive core for partition function form games. Theory and Decision, 63(1), 41–51. doi:10.1007/s11238-007-9030-x.

    Article  Google Scholar 

  31. Kontogiannis, S., Spirakis, P. (2005). Atomic selfish routing in networks: A survey. In Internet and network economics (pp. 989–1002). Springer.

  32. Manna, S. S., & Sen, P. (2002). Modulated scale-free network in euclidean space. Physical Review E, 66(6), 066,114.

    Article  Google Scholar 

  33. Mauve, M., Widmer, A., & Hartenstein, H. (2001). A survey on position-based routing in mobile ad hoc networks. IEEE Network, 15(6), 30–39.

    Article  Google Scholar 

  34. Orda, A., Rom, R., & Shimkin, N. (1993). Competitive routing in multiuser communication networks. IEEE/ACM Transactions on Networking (ToN), 1(5), 510–521.

    Article  Google Scholar 

  35. Pantisano, F., Bennis, M., Saad, W., Debbah, M. (2011a). Cooperative interference alignment in femtocell networks. In: 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (pp. 1–6). Piscataway: IEEE.

  36. Pantisano, F., Bennis, M., Saad, W., Verdone, R., Latva-aho, M. (2011b). Coalition formation games for femtocell interference management: A recursive core approach. In 2011 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1161–1166). Piscataway: IEEE.

  37. Pantisano, F., Bennis, M., Saad, W., Debbah, M., & Latva-aho, M. (2012). Interference alignment for cooperative femtocell networks: A game-theoretic approach. IEEE Transactions on Mobile Computing.

  38. Reh, F. J. (2005). Pareto’s principle-the 80–20 rule. Business Credit-New York Then Columbia MD, 107(7), 76.

    Google Scholar 

  39. Roughgarden, T. (2005). Selfish routing and the price of anarchy. Cambridge: MIT Press.

    Google Scholar 

  40. Saad, W. (2010). Coalitional game theory for distributed cooperation in next generation wireless networks. PhD thesis, University of Oslo.

  41. Saad, W., Han, Z., Debbah, M., & Hjorungnes, A. (2008). A distributed merge and split algorithm for fair cooperation in wireless networks. In IEEE International Conference on Communications Workshops, 2008. ICC Workshops ’08 (pp. 311–315). DOI:10.1109/ICCW.2008.65.

  42. Saad, W., Han, Z., Basar, T., Debbah, M., & Hjorungnes, A. (2009a). A selfish approach to coalition formation among unmanned air vehicles in wireless networks. In: International Conference on Game Theory for Networks, 2009. GameNets ’09 (pp. 259–267). DOI:10.1109/GAMENETS.2009.5137409.

  43. Saad, W., Han, Z., Debbah, M., Hjorungnes, A., & Basar, T. (2009). Coalitional game theory for communication networks. IEEE Signal Processing Magazine, 26(5), 77–97. doi:10.1109/MSP.2009.000000.

    Article  Google Scholar 

  44. Saad, W., Han, Z., Debbah, M., Hjorungnes, A., & Basar, T. (2009c). Coalitional games for distributed collaborative spectrum sensing in cognitive radio networks. In INFOCOM 2009, IEEE (pp. 2114–2122). DOI:10.1109/INFCOM.2009.5062135.

  45. Shenoy, P. P. (1979). On coalition formation: A game-theoretical approach. International Journal of Game Theory, 8(3), 133–164.

    Article  Google Scholar 

  46. Tadić, B., & Rodgers, G. (2002). Packet transport on scale-free networks. Advances in Complex Systems, 5(04), 445–456.

    Article  Google Scholar 

  47. Tadić, B., & Rodgers, G. (2010). Modelling conflicts with cluster dynamics in networks. Physica A: Statistical Mechanics and Its Applications, 389(23), 5495–5502.

  48. Tadić, B., & Thurner, S. (2004). Information super-diffusion on structured networks. Physica A: Statistical Mechanics and its Applications, 332, 566–584.

  49. Tadić, B., Thurner, S., & Rodgers, G. (2004). Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations. Physical Review E, 69(3), 036,102.

    Article  Google Scholar 

  50. Tadić, B., Rodgers, G., & Thurner, S. (2007). Transport on complex networks: Flow, jamming and optimization. International Journal of Bifurcation and Chaos, 17(07), 2363–2385.

    Article  Google Scholar 

  51. Thrall, R., & Lucas, W. (1963). \(n\)-person games in partition function form. Naval Research Logistics Quarterly, 10(4), 281–298.

    Article  Google Scholar 

  52. Wang, W. X., Wang, B. H., Yin, C. Y., Xie, Y. B., & Zhou, T. (2006). Traffic dynamics based on local routing protocol on a scale-free network. Physical Review E, 73(2), 026,111.

    Article  Google Scholar 

  53. Wang, W. X., Yin, C. Y., Yan, G., & Wang, B. H. (2006). Integrating local static and dynamic information for routing traffic. Physical Review E, 74(1), 016,101.

    Article  Google Scholar 

  54. Yin, C. Y., Wang, B. H., Wang, W. X., Yan, G., & Yang, H. J. (2006). Traffic dynamics based on an efficient routing strategy on scale free networks. The European Physical Journal B-Condensed Matter and Complex Systems, 49(2), 205–211.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian National Fund (OTKA NF-104706) and by the Funds KAP15-079-1.2 and KAP16-71009-1.2-ITK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Csercsik.

Appendices

Appendix A

A game in partition function form [51] is a pair (NV), where \(V:\mathcal {E}\rightarrow \mathbb {R}\) is the partition function, which assigns a real payoff to each embedded coalition. Each partition is composed of coalitions, e.g. the partition \(\{1,2\}\{3,4,5\}\) of \(\{1,2,3,4,5\}\) is composed of coalitions \(\{1,2\}\) and \(\{3,4,5\}\).

Table 10 Nodal payoffs in various coalitional structures

We define the residual game over the set \(R\subsetneq N\) as follows. \(\varPi (S)\) denotes the set of partitions of S. Assume \(\overline{R}=N\setminus R\) have formed \(\overline{{\mathcal {P}_R}}\in \varPi (\overline{R})\). Then the residual game \((R,V_{{\mathcal {P}_{\overline{R}}}})\) is the partition function form game over the player set R with the partition function given by \(V_{{\mathcal {P}_{\overline{R}}}}(C,{\mathcal {P}_R})=V(C,{\mathcal {P}_R}\cup {\mathcal {P}_{\overline{R}}})\).

Definition 1

((Pessimistic) Recursive Core [30]) For a single-player game the (pessimistic) recursive core is trivially defined. Now assume that the (pessimistic) recursive core C(NV) has been defined for all games with \(\left| N\right| <k\) players. We call a pair \(\omega =(x,\mathcal {P})\) consisting of a payoff vector and a partition \(\mathcal {P}\in \varPi (N)\) an outcome. Let us denote the set of outcomes in (NV) by \(\Omega (N,V)\). Then for an \(\left| N\right| \)-player game an outcome \((x,\mathcal {P})\) is dominated if there exists a coalition Q forming partition \(\mathcal {P}_Q\) and a feasible payoff vector \(y_Q\in \mathbb {R}^Q\), such that for all \((y_Q,y_{\overline{Q}},\mathcal {P}_Q\cup \mathcal {P}_{\overline{Q}})\in \Omega (N,V)\) we have \(y_Q> x_Q\) and if \(C(\overline{Q},V_{\mathcal {P}_Q})\ne \varnothing \) then \((y_{\overline{Q}},\mathcal {P}_{\overline{Q}})\in C(\overline{Q},V_{\mathcal {P}_Q})\). The pessimistic recursive core C(NV) of (NV) is the set of undominated outcomes.

Appendix B

To give some further impression into coalitional stability of the model we analyze some more cases. Let us consider the coalitions \(\{5,7,9\}\), \(\{10,13,14\}\) and \(\{11, 18, 23\}\) and the values summarized in Table 10.

Considering \(\{5,7,9\}\), the stability analysis shows that \(\{5,7\},\{9\}\) is the stable partition with \(x(5)+x(7)=373\), \(x(9)=38\) and \(233<x(5)<235\). Considering \(\{10,13,14\}\) and \(\{11,18,23\}\) the grand coalitions are stable, with payoffs depicted in Fig. 8. Again, it can be seen that stable partitions correspond to the most efficient network operation modes.

Fig. 8
figure 8

Recursive cores of coalitions \(\{10,13,14\}\) and \(\{11,18,23\}\) in the payoff space. Equality \(x(10)+x(13)+x(14)=328\) holds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csercsik, D., Imre, S. Cooperation and coalitional stability in decentralized wireless networks. Telecommun Syst 64, 571–584 (2017). https://doi.org/10.1007/s11235-016-0193-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0193-z

Keywords

Navigation