Skip to main content
Log in

On the utility of MIMO multi-relay networks for modulation identification over spatially-correlated channels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The necessity to perfectly monitor the intercepted signals for spatially-correlated multiple-input multiple-output (MIMO) systems, involves modulation identification algorithms. In this paper, we present an algorithm dedicated to the modulation identification for correlated MIMO relaying broadcast channels with direct link using multi-relay nodes. By modeling spatially-correlated MIMO channels as Kronecker-structured and the imperfect channel state information of both the source-to-destination and the relay-to-destination errors as independent complex Gaussian random variables, we firstly derive the ergodic capacity of the proposed transmission system. It turns out that the ergodic capacities improve with the number of relay nodes. Based on a pattern recognition approach using the higher order statistics features and the Bagging classifier, we show that the probability to distinguish among M-ary shift keying linear modulation types without any priori modulation information is enhanced compared to the decision tree (J48), the tree augmented naive Bayes, the naive Bayes using discretization and the multilayer perceptron classifiers. We also study the effect of increasing the number of relay nodes. Numerical simulations show that the proposed algorithm using the cooperation of multi-relay nodes with the source node can avoid the performance deterioration in modulation identification caused by both spatial correlation and imperfect CSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bahloul, M. R., Yusoff, M. Z., Abdel-Aty, A. H., Saad, M. N. M., & Al-Jemeli, M. (2016). Modulation classification for MIMO systems: State of the art and research directions. Chaos, Solitons & Fractals, 89, 497–505. doi:10.1016/j.chaos.2016.02.029.

  2. Bahloul, M. R., Yusoff, M. Z., & Saad, M. N. M. (2015). Robust and reliable modulation classification for MIMO systems. Applied Mathematics & Information Sciences, 9(5), 2513.

    Google Scholar 

  3. Ben Chikha, H., Chaoui, S., Dayoub, I., Rouvaen, J. M., & Attia, R. (2012). A parallel concatenated convolutional-based distributed coded cooperation scheme for relay channels. Wireless Personal Communications, 67(4), 951–969.

    Article  Google Scholar 

  4. Ben Chikha, H., Dayoub, I., & Berbineau, M. (2013). Distributed turbo coded cooperative networks under imperfect channel state information in Rayleigh fading channels. IET Communications, 7(10), 973–979.

    Article  Google Scholar 

  5. Ben Chikha, W., & Attia, R. (2015). On the performance evaluation of Bayesian network classifiers in modulation identification for cooperative MIMO systems. In International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 138–142).

  6. Ben Chikha, W., Dayoub, I., Hamouda, W., & Attia, R. (2014). Modulation recognition for MIMO relaying broadcast channels with direct link. IEEE Wireless Communications Letters, 3(1), 50–53.

    Article  Google Scholar 

  7. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

    Article  Google Scholar 

  8. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Google Scholar 

  9. Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26, 801–849.

    Article  Google Scholar 

  10. Dabbagh, A. D., & Love, D. J. (2008). Multiple antenna MMSE based downlink precoding with quantized feedback or channel mismatch. IEEE Transactions on Communications, 56(11), 1859–1868.

    Article  Google Scholar 

  11. Dobre, O. (2015). Signal identification for emerging intelligent radios: Classical problems and new challenges. IEEE Instrumentation & Measurement Magazine, 18(2), 11–18.

    Article  Google Scholar 

  12. Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.

    Article  Google Scholar 

  13. Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  14. Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.

    Article  Google Scholar 

  15. Hassan, K., Dayoub, I., Hamouda, W., Nzéza, C. N., & Berbineau, M. (2012). Blind digital modulation identification for spatially correlated MIMO systems. IEEE Transactions on Wireless Communications, 11(2), 683–693.

    Article  Google Scholar 

  16. Kang, M., & Alouini, M. S. (2006). Capacity of correlated MIMO Rayleigh channels. IEEE Transactions on Wireless Communications, 5(1), 143–155.

    Article  Google Scholar 

  17. Kohavi, R., & Quinlan, J. R. (2002). Handbook of data mining and knowledge discovery. chap. Data mining tasks and methods: Classification: Decision-tree discovery (pp. 267–276). New York: Oxford University Press, Inc.

    Google Scholar 

  18. Kwak, N. (2008). Principal component analysis based on l1-norm maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(9), 1672–1680.

    Article  Google Scholar 

  19. Laneman, J. N., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: effcient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  Google Scholar 

  20. Loyka, S. L. (2001). Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 5(9), 369–371.

    Article  Google Scholar 

  21. Marey, M., & Dobre, O. A. (2015). Blind modulation classification for Alamouti STBC system with transmission impairments. IEEE Wireless Communications Letters, 4(5), 521–524.

    Article  Google Scholar 

  22. McCullagh, P. (1987). Tensor methods in statistics. London: Chapman Hall.

    Google Scholar 

  23. Mühlhaus, M. S., Öner, M., Dobre, O. A., & Jondral, F. K. (2013). A low complexity modulation classification algorithm for MIMO systems. IEEE Communications Letters, 17(10), 1881–1884.

    Article  Google Scholar 

  24. Peel, C. B., Hochwald, B. M., & Swindlehurst, A. L. (2005). A vector-perturbation technique for near-capacity multiantenna multiuser communication—part I: Channel inversion and regularization. IEEE Transactions on Communications, 53(1), 195–202.

    Article  Google Scholar 

  25. Peng, M., Liu, H., Wang, W., & Chen, H. H. (2010). Cooperative network coding with MIMO transmission in wireless decode-and-forward relay networks. IEEE Transactions on Vehicular Technology, 59(7), 3577–3588.

    Article  Google Scholar 

  26. Shiu, D. S., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.

    Article  Google Scholar 

  27. Spooner, C. M. (2001). On the utility of sixth-order cyclic cumulants for RF signal classification. In Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (vol. 1, pp. 890–897).

  28. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.

    Article  Google Scholar 

  29. Tseng, F. S., & Wu, W. R. (2010). Linear MMSE transceiver design in amplify-and-forward MIMO relay systems. IEEE Transactions on Vehicular Technology, 59(2), 754–765.

    Article  Google Scholar 

  30. Tseng, F. S., & Wu, W. R. (2011). Nonlinear transceiver designs in MIMO amplify-and-forward relay systems. IEEE Transactions on Vehicular Technology, 60(2), 528–538.

    Article  Google Scholar 

  31. Tseng, F. S., Wu, W. R., & Wu, J. Y. (2009). Joint source/relay precoder design in nonregenerative cooperative systems using an MMSE criterion. IEEE Transactions on Wireless Communications, 8(10), 4928–4933.

    Article  Google Scholar 

  32. Turan, M., Öner, M., & Çırpan, H. A. (2016). Joint modulation classification and antenna number detection for MIMO systems. IEEE Communications Letters, 20(1), 193–196.

    Article  Google Scholar 

  33. Wan, H., Chen, W., & Ji, J. (2012). Efficient linear transmission strategy for MIMO relaying broadcast channels with direct links. IEEE Wireless Communications Letters, 1(1), 14–17.

    Article  Google Scholar 

  34. Wang, Z., Chen, W., Gao, F., & Li, J. (2011). Capacity performance of relay beamformings for MIMO multirelay networks with imperfect R- D CSI at relays. IEEE Transactions on Vehicular Technology, 60(6), 2608–2619.

    Article  Google Scholar 

  35. Weka, Machine Learning Group at the University of Waikato. http://www.cs.waikato.ac.nz/ml/weka/. Accessed 3 June 2014.

  36. Wong, M. L. D., & Nandi, A. K. (2004). Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing, 84(2), 351–365.

    Article  Google Scholar 

  37. Wu, H. C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7(8), 3098–3105.

    Article  Google Scholar 

  38. Yang, Y., Hu, H., Xu, J., & Mao, G. (2009). Relay technologies for Wi Max and LTE-advanced mobile systems. IEEE Communications Magazine, 47(10), 100–105.

    Article  Google Scholar 

  39. Zelst, A.V., & Hammerschmidt, J.S. (2002). A single coefficient spatial correlation model for multiple-input multiple-output (mimo) radio channels. In Proceedings of URSI General Assembly (pp. 17–24).

  40. Zhang, B., He, Z., Niu, K., & Zhang, L. (2010). Robust linear beamforming for MIMO relay broadcast channel with limited feedback. IEEE Signal Processing Letters, 17(2), 209–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wassim Ben Chikha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Chikha, W., Attia, R. On the utility of MIMO multi-relay networks for modulation identification over spatially-correlated channels. Telecommun Syst 64, 735–747 (2017). https://doi.org/10.1007/s11235-016-0204-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0204-0

Keywords

Navigation