Skip to main content
Log in

Low-complexity tensor-based blind receivers for MIMO systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In the tensor-based MIMO receivers, the multidimensional MIMO signals first are expressed as a third-order tensor model, wherein the factor matrices of tensor model are corresponding time/frequency, symbols, code/diversity of signals. A algorithm then is used for fitting this tensor mode, in which the symbols are estimated as a independent factor matrix. Although the performance of tensor-based receivers strongly depends on the initializations of the factor matrices. However, due to the absence of a priori on channels, these initializations are done randomly in alternating least squares (ALS), a basic algorithm for fitting the tensor models. In order to avoid these random initializations, this paper proposes two algorithms for fitting the tensor models. The first one, called delta bilinear ALS (DBALS) algorithm, where we exploit the increment values between two iterations of the factor matrices, refine these predictions by using the enhanced line search and use these refined values to initialize for two factor matrices. The second one, called orthogonal DBALS algorithm that takes into account the potential orthogonal in factor matrix for the DBALS algorithm, to provide the initialization for this factor matrix. By this way, we avoid random initializations for three factor matrices of tensor model. The performance of proposed receivers is illustrated by means of simulation results and a comparison is made with traditional ALS algorithm and other receivers. Beside a performance improving, our receivers give a lower complexity due to avoid random initializations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun, Y., Xiong, Z. X., & Wang, X. D. (2005). EM-based iterative receiver design with carrier-frequency offset estimation for MIMO OFDM systems. IEEE Transactions on Wireless Communications, 53(4), 581–586.

    Article  Google Scholar 

  2. Sarperi, L., Zhu, X., & Nandi, A. K. (2007). Blind OFDM receiver based on independent component analysis for multiple-input multiple-output systems. IEEE Transactions on Wireless Communications, 6(11), 4079–4089.

    Article  Google Scholar 

  3. Sen, P., & Yılmaz, A. Ö. (2017). A low-complexity graph-based LMMSE receiver for MIMO ISI channels with M-QAM modulation. IEEE Transactions on Wireless Communications, 16(2), 1185–1195.

    Article  Google Scholar 

  4. Sim, D., & Lee, C. (2017). A MIMO receiver with two-dimensional ordering for maximum likelihood detection in FBMC-QAM. IEEE Communications Letters, 21(7), 1465–1468.

  5. Favier, G., & de Almeida, A. L. F. (2014). Tensor space-time-frequency coding with semi-blind receivers for MIMO wireless communication systems. IEEE Transactions on Signal Processing, 62(22), 5987–6002.

    Article  Google Scholar 

  6. Du, J. H., Yuan, C. W., Hu, Z. W., et al. (2015). A novel tensor-based receiver for joint symbol and channel estimation in two-hop cooperative MIMO relay systems. IEEE Communications Letters, 19(11), 1961–1964.

    Article  Google Scholar 

  7. Zhou, Z., Fang, J., & Yang, L. X. (2016). Channel estimation for millimeter-Wave multiuser MIMO systems via PARAFAC decomposition. IEEE Transactions on Wireless Communications, 15(11), 7501–7516.

    Article  Google Scholar 

  8. Zhou, Z., Fang, J., Yang, L.X. (2017). Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems. IEEE Journal on Selected Areas Communications, 35(7), 1524–1538.

  9. Bro, R., & Sidiropoulos, N. D. (1998). Least squares algorithms under unimodality and non-negativity constraints. Journal of Chemometrics, 12, 223–247.

    Article  Google Scholar 

  10. Sorensen, M., Lathauwer, L.D., & Deneire, L. (2010). PARAFAC with orthogonality in one mode and applications in DS-CDMA systems. In Proceedings of IEEE international conference on acoustics, speech and signal processing, Dallas, TX, USA, (pp. 4142–4145).

  11. De Lathauwer, L. (2010). Algebraic methods after prewhitening. In Handbook of blind source separation, independent component analysis and applications, New York, NY, USA: Academic, (pp. 155–177).

  12. Shashua, A., & Levin, A. (2001). Linear image coding for regression and classification using the tensor-rank principle. In Proceedings of IEEE computer society conference on computer vision and pattern recognition, Kauai, HI, USA.

  13. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  Google Scholar 

  14. Rong, Y., Khandaker, M., & Xiang, Y. (2012). Channel estimation of dual-hop MIMO relay system via parallel factor analysis. IEEE Transactions on Wireless Communications, 11(6), 2224–2233.

    Article  Google Scholar 

  15. Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279–311.

    Article  Google Scholar 

  16. Sidiropoulos, N. D., Bro, R., & Gianakis, G. B. (2000). Parallel factor analysis in sensor array processing. IEEE Transaction on Signal Processing, 48(8), 2377–2388.

  17. Sidiropoulos, N. D., Gianakis, G. B., & Bro, R. (2000). Blind PARAFAC receivers for DS-CDMA systems. IEEE Transaction on Signal Processing, 48(3), 810–823.

    Article  Google Scholar 

  18. Sidiropoulos, N. D., & Lathauwer, L. D. (2008). An enhanced line search scheme for complex-valued tensor decompositions application in DS-CDMA. Signal Processing, 88, 749–755.

    Article  Google Scholar 

  19. Liu, X. Q., & Sidiropoulos, N. D. (2000). Cramer-Rao lower bounds for low-rank decompositions of multidimensional arrays. IEEE Transactions on Signal Processing, 48(3), 810–823.

    Article  Google Scholar 

  20. Sidiropoulos, N. D., & Bro, R. (2000). On the uniqueness of multilinear decomposition of N-way arrays. Journal of Chemometrics, 14, 229–239.

    Article  Google Scholar 

  21. Kruskal, J. B. (1997). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18(2), 95–138.

    Article  Google Scholar 

  22. Ximenes, L. R., Favier, G., & de Almeida, A. L. F. (2014). PARAFAC-PARATUCK semi-blind receivers for two-hop cooperative MIMO relay systems. IEEE Transactions on Signal Processing, 62(14), 3604–3615.

    Article  Google Scholar 

  23. Lee, K. J., & Lee, I. (2010). MMSE based transceiver designs in closed-loop non-regenerative MIMO relaying systems. IEEE Transactions on Wireless Communications, 9(7), 2310–2319.

    Article  Google Scholar 

  24. Rajih, M., Comon, P., & Harshman, R. A. (2008). Enhanced line search: A novel method to accelerate PARAFAC. SIAM Journal on Matrix Analysis and Applications, 30(3), 1128–1147.

    Article  Google Scholar 

  25. Sorber, L., Barel, M.V., Lathauwer, L.D. (2014). Tensorlab v2. 0. Available online, Jan 2014.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Project 61571211. The authors would like to thank Doc. Sorber, Prof. Barel and Pro. Lathauwer for sharing software Tensorlab [25].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Buiquang.

Appendices

Appendix A: Derivation of \(\left( {\rho _\mathbf{A} ,\rho _\mathbf{B} } \right) \)

Let us define \(\mathbf{T}_3 =\left( {{\varvec{\Pi }} _\mathbf{A} \odot {\varvec{\Pi }} _\mathbf{B} } \right) \mathbf{C}^{\mathrm{T}}\), \(\mathbf{T}_2 =\left( {\mathbf{A}\odot {\varvec{\Pi }} _\mathbf{B} } \right) \mathbf{C}^{\mathrm{T}} \mathbf{T}_2 =\left( {\mathbf{A}\odot {\varvec{\Pi }} _\mathbf{B} } \right) \mathbf{C}^{\mathrm{T}} \quad \mathbf{T}_1 =\left( {{\varvec{\Pi }} _\mathbf{A} \odot \mathbf{B}} \right) \mathbf{C}^{\mathrm{T}}\), \(\mathbf{T}_0 =\left( {\mathbf{A}\odot \mathbf{B}} \right) \mathbf{C}^{\mathrm{T}}-\mathbf{X}\in {\mathbb {C}}^{IJ\times K}\). (12) then can be rewritten as

$$\begin{aligned} \varepsilon _{{\mathrm{new}}}^{\left( \mathrm{int} \right) }= & {} \left\| {\rho _\mathbf{A} \rho _\mathbf{B} \mathbf{T}_3 +\rho _\mathbf{B} \mathbf{T}_2 +\rho _\mathbf{A} \mathbf{T}_1 +\mathbf{T}_0 } \right\| _\mathbf{F}^2 =\left\| {\mathbf{T}{\varvec{\Delta }} } \right\| _\mathbf{F}^2\nonumber \\ \quad= & {} {\varvec{\Delta }} ^{{*}}{} \mathbf{T}^{{*}}\mathbf{T}{\varvec{\Delta }} \end{aligned}$$
(27)

where \(\mathbf{T}=\left[ {vec\left( {\mathbf{T}_3 } \right) ,vec\left( {\mathbf{T}_2 } \right) ,vec\left( {\mathbf{T}_1 } \right) ,vec\left( {\mathbf{T}_0 } \right) } \right] \in {\mathbb {C}}^{IJK\times 4}\) and \({\varvec{\Delta }} =\left[ {\rho _\mathbf{A} \rho _\mathbf{B} ,\rho _\mathbf{B} ,\rho _\mathbf{A} ,1} \right] ^{\mathrm{T}}\). We used \(\mathbf{T}_{ij} =\left[ {vec\left( {\mathbf{T}_3 } \right) } \right] _{i+\left( {j-1} \right) I} ,\forall \mathbf{T}\in {\mathbb {C}}^{I\times J}\). The estimated of \(\varepsilon _{\mathrm{new}}^{\left( \mathrm{int} \right) } \) in (27) is given as

$$\begin{aligned} \varepsilon _{{\mathrm{new}}}^{\left( \mathrm{int} \right) }= & {} a_{11} \rho _\mathbf{A}^2 \rho _\mathbf{B}^2 +2\rho _\mathbf{A} \rho _\mathbf{B} \left( {a_{13} \rho _\mathbf{A} +a_{12} \rho _\mathbf{B} +a_{23} +a_{14} } \right) \nonumber \\&+\,a_{33} \rho _\mathbf{H}^2 +a_{22} \rho _\mathbf{B}^2 +2\left( {a_{34} \rho _\mathbf{A} +a_{24} \rho _\mathbf{B} } \right) +a_{44}.\nonumber \\ \end{aligned}$$
(28)

Les us define a complex matrix \(\mathbf{P}=\mathbf{T}^{{*}}{} \mathbf{T}\in {\mathbb {C}}^{4\times 4}\), where, \(\mathbf{P}_{m\mathrm{n}} =\hbox {Re}\left( {\mathbf{P}_{mn} } \right) +j\hbox {Im}\left( {\mathbf{P}_{mn} } \right) \), \(m=1,2,\ldots ,4\) and \(n=1,2,\ldots ,4\). Set \(\hbox {Re}\left( {\mathbf{P}_{mn} } \right) =u_{mn} \), \(\hbox {Im}\left( {\mathbf{P}_{mn} } \right) =v_{mn} \). As \(\mathbf{P}\) is a Hermite matrix, we have \(u_{mn} =u_{nm} \), \(v_{mn} =-v_{nm} \), \(v_{mm} =0\). By setting derivations of \(\rho _\mathbf{A} \) and \(\rho _\mathbf{B} \) in (28) be equal zero, \(\left( {\rho _\mathbf{A} ,\rho _\mathbf{B} } \right) \) is satisfied

$$\begin{aligned} \frac{\partial \varepsilon _{{\mathrm{new}}}^{\left( \mathrm{int} \right) } }{\partial \rho _\mathbf{B} }=e_1 \rho _\mathbf{B} +e_0 =0, \end{aligned}$$
(29)

and

$$\begin{aligned} \frac{\partial \varepsilon _{{\mathrm{new}}}^{\left( \mathrm{int} \right) } }{\partial \rho _\mathbf{A} }=g_1 \rho _\mathbf{A} +g_0 =0, \end{aligned}$$
(30)

where

$$\begin{aligned} \left\{ {\begin{array}{l} e_1 =2u_{11} \rho _\mathbf{A}^2 +4u_{12} \rho _\mathbf{A} +2u_{22} \\ e_0 =2u_{13} \rho _\mathbf{A}^2 +2u_{14} \rho _\mathbf{A} +2u_{23} \rho _\mathbf{A} +2u_{24} \\ \end{array}} \right. , \end{aligned}$$
(31)

and

$$\begin{aligned} \left\{ {\begin{array}{l} g_1 =2u_{11} \rho _\mathbf{B}^2 +4u_{13} \rho _\mathbf{B} +2u_{23} \\ g_0 =2u_{12} \rho _\mathbf{B}^2 +2u_{14} \rho _\mathbf{B} +2u_{23} \rho _\mathbf{B} +2u_{34} \\ \end{array}} \right. . \end{aligned}$$
(32)

Replace \(\rho _\mathbf{B} \) by \(-{e_0 }/{e_1 }\) in (31), we obtain

$$\begin{aligned} \frac{\partial \varepsilon _{{\mathrm{new}}}^{\left( \mathrm{int} \right) } }{\partial \rho _\mathbf{A} }=\sum _{p=1}^5 {r_p \rho _\mathbf{A}^p } =0, \end{aligned}$$
(33)

where the values of \(r_p \) are given as

$$\begin{aligned} \left\{ {\begin{array}{l} r_5 =2u_{11}^2 u_{33} -2u_{13}^2 u_{11} \\ r_4 =2u_{11}^2 u_{34} -6u_{13}^2 u_{12} -2u_{11} u_{13} u_{14}\\ \quad -2u_{11} u_{13} u_{23} +8u_{11} u_{12} u_{33} \\ r_3 =8u_{12}^2 u_{33} -4u_{13}^2 u_{22} -8u_{12} u_{13} u_{14}\\ \quad -8u_{12} u_{13} u_{23} +8u_{11} u_{12} u_{34} +4a_{11} a_{22} a_{33} \\ r_2 =8u_{12}^2 u_{34} -2u_{23}^2 a_{12} -2u_{14}^2 u_{12} +2u_{11} u_{14} u_{24}\\ \quad -4u_{12} u_{13} u_{24} -4u_{12} u_{14} u_{23} \\ \quad -6u_{13} u_{22} u_{23} +4u_{11} u_{22} u_{34} +8u_{12} u_{22} u_{33} \\ r_1 =-2u_{14}^2 u_{22} -4u_{14} u_{22} u_{33} +2u_{22}^2 u_{33}\\ \quad -2u_{23}^2 u_{22} -4u_{13} u_{22} u_{24} +8u_{12} u_{34} u_{22} \\ \quad +2u_{24}^2 u_{11} \\ \end{array}} \right. . \end{aligned}$$
(34)

By solving (33), we have five values of \(\rho _\mathbf{A} \), then five corresponding values of \(\rho _\mathbf{B} \) are obtained. \(\left( {\rho _\mathbf{A} ,\rho _\mathbf{B} } \right) \) that has been used to update data are obtained after minimization \(\varepsilon _{{\mathrm{new}}}^{\left( \mathrm{int} \right) } \).

Appendix B: Derivation of \(\mathbf{C}\)

We use the Lagrange multiplier method to solve the constrained least squares problem in (16).

Let us define \({{\varvec{\lambda }} }\) is a constant symmetric matrix, (16) can be rewritten as

$$\begin{aligned} f\left( {\mathbf{C},{{\varvec{\uptheta }} }} \right)= & {} \left\| {\mathbf{X}-\left( {\mathbf{A}\odot \mathbf{B}} \right) \mathbf{C}^{\mathrm{T}}} \right\| _\mathbf{F}^2 +{{\varvec{\lambda }} }\left( {\mathbf{C}^{\mathrm{T}}{} \mathbf{C}-\mathbf{I}} \right) \nonumber \\ \quad= & {} tr\left[ {\left( {\mathbf{X}-\left( {\mathbf{A}\odot \mathbf{B}} \right) \mathbf{C}^{\mathrm{T}}} \right) ^{\mathrm{H}}\left( {\mathbf{X}-\left( {\mathbf{A}\odot \mathbf{B}} \right) \mathbf{C}^{\mathrm{T}}} \right) } \right] \nonumber \\&\quad +\,{{\varvec{\lambda }} }\left( {\mathbf{C}^{\mathrm{T}}{} \mathbf{C}-\mathbf{I}} \right) , \end{aligned}$$
(35)

By set the derivative of \(\mathbf{C}\) in (35) be equal zero, we have

$$\begin{aligned} \frac{\partial f\left( {\mathbf{C},{{\varvec{\lambda }} }} \right) }{\partial \mathbf{C}}= & {} \mathbf{C}\hbox {Re}\left( {\left( {\mathbf{A}\odot \mathbf{B}} \right) ^{\mathrm{H}}\left( {\mathbf{A}\odot \mathbf{B}} \right) } \right) \nonumber \\&\quad -\,\hbox {Re}\left( {\mathbf{X}^{\mathrm{H}}\left( {\mathbf{A}\odot \mathbf{B}} \right) } \right) +{{\varvec{\lambda }} \mathbf{C}}=0 \end{aligned}$$
(36)
$$\begin{aligned} \mathbf{C}= & {} \hbox {Re}\left( {\mathbf{X}^{\mathrm{H}}\left( {\mathbf{A}\odot \mathbf{B}} \right) } \right) \nonumber \\&\quad \left( {{{\varvec{\lambda }} }+\hbox {Re}\left( {\left( {\mathbf{A}\odot \mathbf{B}} \right) ^{\mathrm{H}}\left( {\mathbf{A}\odot \mathbf{B}} \right) } \right) } \right) ^{-1}. \end{aligned}$$
(37)

Because of \(\mathbf{C}^{\Gamma }{} \mathbf{C}=\mathbf{I}\), we have

$$\begin{aligned} \left( {{{\varvec{\lambda }} }+\hbox {Re}\left( {\left( {\mathbf{A}\odot \mathbf{B}} \right) ^{\mathrm{H}}\left( {\mathbf{A}\odot \mathbf{B}} \right) } \right) } \right) ^{-1}=\left( {\mathbf{U}^{\mathrm{T}}{} \mathbf{U}} \right) ^{-0.5}. \end{aligned}$$
(38)

The estimation of \(\mathbf{C}\) is given as (17).

Appendix C: Derivation of CRB

The log likelihood function of \(\mathbf{X}\) can be expressed as

$$\begin{aligned} f\left( {{\varvec{\uptheta }} } \right)= & {} -\frac{IJK}{\ln \left( {2\pi \sigma ^{2}} \right) }\nonumber \\&-\,\frac{1}{2\sigma ^{2}}\sum _{ijk} {\left( {x_{ijk} -\sum _{f=1}^F {a_{i,f} b_{j,f} c_{k,f} } } \right) ^{2}} \end{aligned}$$
(39)

where the unknown parameters are \(a_{i,f} \), \(b_{j,f} \), \(c_{k,f} \), \(f=1,2,\ldots F\). \({{\varvec{\uptheta }} }\) can be written in vector form as: \({{\varvec{\uptheta }} }=\left[ \mathbf{A}\left( {1,:} \right) ,\ldots ,\mathbf{A}\left( {I,:} \right) ,\mathbf{B}\left( {1,:} \right) ,\ldots ,\mathbf{B}\left( {J,:} \right) ,\mathbf{C}\left( {1,:} \right) ,\ldots ,{} \mathbf{C}\left( {K,:} \right) \right] \), where \(\mathbf{A}\left( {i,f} \right) =a_{i,f} \), \(\mathbf{B}\left( {j,f} \right) =b_{j,f} \), \(\mathbf{C}\left( {k,f} \right) =c_{k,f} \). The FIM of \({{\varvec{\uptheta }} }\) is given as

$$\begin{aligned} {{\varvec{\Omega }} }\left( {{\varvec{\uptheta }} } \right)= & {} E\left\{ {\left( {\frac{\partial ^{2}f\left( {{\varvec{\uptheta }} } \right) }{\partial ^{2}{{\varvec{\uptheta }} }}} \right) } \right\} =E\left\{ {\left( {\frac{\partial f\left( { {\varvec{\uptheta }} } \right) }{\partial {{\varvec{\uptheta }} }}} \right) ^{\mathrm{T}}\left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial {{\varvec{\uptheta }} }}} \right) } \right\} \nonumber \\= & {} \left[ {{\begin{array}{ccc} {{{\varvec{\uppsi }} }_{aa} }&{} {{{\varvec{\uppsi }} }_{ab} }&{} {{{\varvec{\uppsi }} }_{ac} } \\ {{{\varvec{\uppsi }} }_{ab}^\mathrm{T} }&{} {{{\varvec{\uppsi }} }_{bb} }&{} {{{\varvec{\uppsi }} }_{bc} } \\ {{{\varvec{\uppsi }} }_{ac}^\mathrm{T} }&{} {{{\varvec{\uppsi }} }_{bc}^\mathrm{T} }&{} {{{\varvec{\uppsi }} }_{cc} } \\ \end{array} }} \right] \end{aligned}$$
(40)

Since the noise \({{\underline{\mathbf{E}}}}\) is not correlative, we get

$$\begin{aligned} E\left( {\underline{\mathbf{E}}\left( {i_1 j_1 k_1 } \right) {\underline{\mathbf{E}}}\left( {i_2 j_2 k_2 } \right) } \right) =\left\{ {\begin{array}{l} \sigma ^{2},\quad i_1 =i_2 ,j_1 =j_2 ,k_1 =k_2 \\ 0,\quad { otherwise} \\ \end{array}} \right. . \end{aligned}$$
(41)

The second-order derivative of \(f\left( {{\varvec{\uptheta }} } \right) \) is estimated with logarithms \(a_{i,f} \), \(b_{j,f} \) and \(c_{k,f} \), since \(\mathbf{C}^{\Gamma }{} \mathbf{C}=\mathbf{I}\), \(\sum _k {c_{k,f1} c_{k,f2} } ={{\varvec{\updelta }} }_{f1,f2} \), we have

$$\begin{aligned}&{\varvec{\uppsi }}_{aa} \left( {\left( {i_1 -1} \right) I+f_1 ,\left( {i_2 -1} \right) I+f_2 } \right) \nonumber \\&\quad =E\left\{ {\left( {\frac{\partial f\left( \theta \right) }{\partial a_{i_1 ,f_1 } }} \right) \left( {\frac{\partial f\left( \theta \right) }{\partial a_{i_2 ,f_2 } }} \right) } \right\} \nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _j {\left( {b_{j,f_1 } b_{j,f_2 } } \right) } \sum _k {\left( {c_{k,f_1 } c_{k,f_2 } } \right) } {\varvec{\updelta }}_{i_1 ,i_2 }\nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _j {\left( {b_{j,f_1 } b_{j,f_2 } } \right) } {\varvec{\updelta }}_{i_1 ,i_2 } {\varvec{\updelta }}_{f_1 ,f_2 } \end{aligned}$$
(42)
$$\begin{aligned}&\quad {\varvec{\uppsi }}_{bb} \left( {\left( {j_1 -1} \right) J+f_1 ,\left( {j_2 -1} \right) J+f_2 } \right) \nonumber \\&\quad =E\left\{ {\left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial b_{j_1 ,f_1 } }} \right) \left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial b_{j_2 ,f_2 } }} \right) } \right\} \nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _i {\left( {a_{i,f_1 } a_{i,f_2 } } \right) } \sum _k {\left( {c_{k,f_1 } c_{k,f_2 } } \right) } {\varvec{\updelta }}_{j_1 ,j_2 }\nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _i {\left( {a_{i,f_1 } a_{i,f_2 } } \right) } {\varvec{\updelta }}_{j_1 ,j_2 } {\varvec{\updelta }}_{f_1 ,f_2 } \end{aligned}$$
(43)
$$\begin{aligned}&\quad {\varvec{\uppsi }}_{cc} \left( {\left( {k_1 -1} \right) K+f_1 ,\left( {k_2 -1} \right) K+f_2 } \right) \nonumber \\&\quad =E\left\{ {\left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial c_{k_1 ,f_1 } }} \right) \left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial c_{k_2 ,f_2 } }} \right) } \right\} \nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _i {\left( {a_{i,f_1 } a_{i,f_2 } } \right) } \sum _k {\left( {b_{j,f_1 } b_{j,f_2 } } \right) } {\varvec{\updelta }}_{k_1 ,k_2 } . \end{aligned}$$
(44)
$$\begin{aligned}&\quad {\varvec{\uppsi }}_{ab} \left( {\left( {i-1} \right) I+f_1 ,\left( {j-1} \right) J+f_2 } \right) \nonumber \\&\quad =E\left\{ {\left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial a_{i,f_1 } }} \right) \left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial b_{j,f_2 } }} \right) } \right\} \nonumber \\&\quad =\frac{1}{\sigma ^{2}}a_{i,f_1 } b_{j,f_2 } {\varvec{\updelta }}_{f_1 ,f_2 } . \end{aligned}$$
(45)
$$\begin{aligned}&\quad {\varvec{\uppsi }}_{ac} \left( {\left( {i-1} \right) I+f_1 ,\left( {k-1} \right) K+f_2 } \right) \nonumber \\&\quad =E\left\{ {\left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial a_{i,f_1 } }} \right) \left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial c_{k,f_2 } }} \right) } \right\} \nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _j {\left( {b_{j,f_1 } b_{j,f_2 } } \right) a_{i,f_1 } c_{k,f_2 } } . \end{aligned}$$
(46)
$$\begin{aligned}&\quad {\varvec{\uppsi }}_{bc} \left( {\left( {j-1} \right) J+f_1 ,\left( {k-1} \right) K+f_2 } \right) \nonumber \\&\quad =E\left\{ {\left( {\frac{\partial f\left( {{\varvec{\theta }} } \right) }{\partial b_{j,f_1 } }} \right) \left( {\frac{\partial f\left( {{\varvec{\uptheta }} } \right) }{\partial c_{k,f_2 } }} \right) } \right\} \nonumber \\&\quad =\frac{1}{\sigma ^{2}}\sum _i {\left( {a_{i,f_1 } a_{i,f_2 } } \right) b_{j,f_1 } c_{k,f_2 } }. \end{aligned}$$
(47)

According to (40) and (41)–(47), we get

$$\begin{aligned} f_{{ CRB}} \left( {{\varvec{\uptheta }} } \right) ={{\varvec{\Omega }} }\left( {{\varvec{\uptheta }} } \right) ^{-1}=\left[ {{\begin{array}{ccc} {{{\varvec{\uppsi }} }_{aa} }&{} {{{\varvec{\uppsi }} }_{ab} }&{} {{{\varvec{\uppsi }} }_{ac} } \\ {{{\varvec{\uppsi }} }_{ab}^\mathrm{T} }&{} {{{\varvec{\uppsi }} }_{bb} }&{} {{{\varvec{\uppsi }} }_{bc} } \\ {{{\varvec{\uppsi }} }_{ac}^\mathrm{T} }&{} {{{\varvec{\uppsi }} }_{bc}^\mathrm{T} }&{} {{{\varvec{\uppsi }} }_{cc} } \\ \end{array} }} \right] . \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buiquang, C., Ye, Z. & Dai, J. Low-complexity tensor-based blind receivers for MIMO systems. Telecommun Syst 67, 593–604 (2018). https://doi.org/10.1007/s11235-017-0357-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0357-5

Keywords

Navigation