Skip to main content
Log in

Solving the MCQP, MLT, and MMLT problems and computing weakly and strongly stable quickest paths

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The quickest path problem consists of finding a path in a directed network to transmit a given amount \(\sigma \) of items from a source node to a sink node with minimal transmission time, where the transmission time depends on the traversal times \(\tau \) and the capacities u of the arcs. We suppose that there exist more than one quickest path and finds a quickest path with a special property. In this paper, first, some algorithms to find a quickest path with minimum capacity, minimum lead time, and min-max arc lead time are presented, which runs in \(O(r(m+n \log n))\) and \( O((r(m+n \log n))\log r') \) time, where r and \( r' \) are the number of distinct capacity and lead time values and m and n are the number of arcs and nodes in the given network. Then, we suppose that values \(\sigma , \tau \) and u change to \(\sigma ', \tau '\), and \(u'\). The purpose is to find a quickest path such that it has the minimum transmission time value among all quickest paths, by changing \(\sigma \) to \(\sigma '\), \(\tau \) to \(\tau '\), or u to \(u'\). We show that some of these problems are solved in strongly polynomial time and the others remain as open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flow: Theory algorithms and applications. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  2. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via quality of routing games. IEEE Transactions on Computers, 61, 1270–1283.

    Article  Google Scholar 

  3. Calvete, H. I. (2004). The quickest path problem with interval lead times. Computers and Operations Research, 31(3), 383–395.

    Article  Google Scholar 

  4. Calvete, H. I., & del-Pozo, L. (2003). The quickest path problem with batch constraints. Operations Research Letters, 31(4), 277–284.

    Article  Google Scholar 

  5. Calvete, H. I., del-Pozo, L., & Iranzo, J. A. (2012). Algorithms for the quickest path problem and the realible quickest path problem. Computational Management Science, 9, 255–272.

    Article  Google Scholar 

  6. Chen, Y. L. (1994). Finding the k quickest simple paths in a network. Information Processing Letters, 50(2), 89–92.

    Article  Google Scholar 

  7. Chen, Y. L., & Chin, Y. H. (1990). The quickest path problem. Computers and Operations Research, 17(2), 153–161.

    Article  Google Scholar 

  8. Chen, G. H., & Hung, Y. C. (1994). Algorithms for the constrained quickest path problem and the enumeration of quickest paths. Computers and Operations Research, 21, 113–118.

    Article  Google Scholar 

  9. Cheng, H., Xiongb, N., Vasilakos, A. V., Yangd, L. T., Chena, G., & Zhuanga, X. (2012). Nodes organization for channel assignment withtopology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  10. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 134165. doi:10.1155/2009/134165.

  11. Climaco, J. C. N., Pascoal, M. M. B., Craveirinha, J. M. F., & Captivo, M. E. V. (2007). Internet packet routing: Application of K-quickest path algorithm. European Journal of Operational Research, 181(3), 1045–1054.

    Article  Google Scholar 

  12. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(4), 269–271.

    Article  Google Scholar 

  13. Hamacher, H. W., & Tjandra, S. A. (2002). Mathematical modelling of evacuation problems: A state of the art. In M. Schreckenberg & S. D. Sharma (Eds.), Pedestrian and evacuation dynamics (pp. 227–266). Berlin, Heidelberg: Springer.

  14. Lin, Y. K. (2003). Extend the quickest path problem to the system reliability evaluation for a stochastic flow network. Computers and Operations Research, 30(4), 567–575.

    Article  Google Scholar 

  15. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  16. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM (pp. 100–108).

  17. Martins, E. Q. V. (1984). On a special class of bicriterion path problems. European Journal of Operational Research, 17, 85–94.

    Article  Google Scholar 

  18. Martins, E. Q. V., & Santos, J. L. E. (1997). An algorithm for the quickest path problem. Operations Research Letters, 20(4), 195–198.

    Article  Google Scholar 

  19. Moore, M. H. (1976). On the fastest route for convoy-type traffic in flow rate constrained networks. Transportation Science, 10(2), 113–124.

    Article  Google Scholar 

  20. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65, 244–255.

    Article  Google Scholar 

  21. Pascoal, M. M. B., Captivo, M. E. V., & Clmaco, J. C. N. (2006). A comprehensive survey on the quickest path problem. Annals of Operations Research, 147(1), 5–21.

    Article  Google Scholar 

  22. Park, C. K., Lee, S., & Park, S. (2004). A label-setting algorithm for finding a quickest path. Computers and Operations Research, 31(14), 2405–2418.

    Article  Google Scholar 

  23. Quan, W., Xu, C., Vasilakos, A. V., Guan, J., Zhang, H., & Grieco, L. A. (2014). Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. In IFIP networking.

  24. Rosen, J. B., Sun, S. Z., & Xue, G. L. (1991). Algorithms for the quickest path problem and the enumeration of quickest paths. Computers and Operations Research, 18(6), 579–584.

    Article  Google Scholar 

  25. Ruzika, S., & Thiemann, M. (2012). Min–max quickest path problems. Networks, 60, 253–258.

    Article  Google Scholar 

  26. Sedeo-Noda, A., & Gonzlez-Barrera, J. D. (2014). Fast and fine quickest path algorithm. European Journal of Operational Research, 238, 596–606.

  27. Shawi, R. E., Gudmundsson, J., & Levcopoulos, C. (2014). Quickest path queries on transportation network. Computational Geometry, 47, 695–709.

    Article  Google Scholar 

  28. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  29. Vasilakos, A. V., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing qos routing in hierarchical ATM networks using computational intelligence techniques. IEEE Transactions on Systems, Man, and Cybernetics, 33(3), 297–312.

    Article  Google Scholar 

  30. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  31. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  32. Xiang, L., Luo, J., & Vasilakos, A. V. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In IEEE SECON.

  33. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS (pp. 182–190).

  34. Yeh, W. C. (2015). A fast algorithm for quickest path reliability evaluations in multi-state flow networks. IEEE Transactions on Reliability, 64, 1175–1184.

    Article  Google Scholar 

  35. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. V. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53, 2238–2250.

    Article  Google Scholar 

  36. Youssef, M., Ibrahim, M., Abdelatif, M., Che, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  37. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  38. Zhang, B., Wang, Y., Vasilakos, A. V., & Ma, J. (2013). Mobile social networking: Reconnect virtual community with physical space. Telecommunication Systems, 54(1), 91–110.

    Article  Google Scholar 

  39. Zhou, L., Chao, H. C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghiyasvand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiyasvand, M., Ramezanipour, A. Solving the MCQP, MLT, and MMLT problems and computing weakly and strongly stable quickest paths. Telecommun Syst 68, 217–230 (2018). https://doi.org/10.1007/s11235-017-0388-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0388-y

Keywords

Navigation