Skip to main content
Log in

Survivability and scalability of space networks: a survey

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Survivability and scalability are key terms for any network. The challenge is greater in space networks than in terrestrial networks. Satellites have various uses, some notable uses are communication, observation, meteorology, navigation etc. In future satellites will aid terrestrial users by providing Internet connectivity. With proliferation of Internet users, demand for satellite services will increase and soon we will suffer from bandwidth limitation. Hence, the scalability and survivability of space networks are very important issues to ensure smooth connectivity to all the users both mobile and immobile. Since, most of the existing works on network survivability and scalability are focused on terrestrial networks. We have categorized the existing works on survivability and scalability of terrestrial networks. In addition, we have performed a comprehensive survey on the popular products available in the market for network survivability and scalability. Finally, we have listed the major issues and challenges of space networks that needs to be considered before applying network scalability and survivability solutions on them. This work can help network engineers to select suitable solutions for space networks considering the available choices and challenges listed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert, P. (2005). Network mobility (NEMO) basic support protocol. In IETF RFC 3963. IETF. https://www.rfc-editor.org/info/rfc3963.

  2. Vázquez, M. Á., Perez-Neira, A., Christopoulos, D., & Chatzinotas, E. A. (2016). Precoding in multibeam satellite communications: Present and future challenges. IEEE Wireless Communications, 23(6), 88–95.

    Article  Google Scholar 

  3. Davey, S., Gordon, N., Holland, I., Rutten, M., & Williams, J. (2016). Measurement model, satellite communications. In Bayesian methods in the search for MH370. Springer briefs in electrical and computer engineering. Singapore: Springer.

  4. Benson, C. (2017). Design options for small satellite communications. In IEEE aerospace conference.

  5. Miao, Y., Cheng, Z., & Li, W. (2016). Software defined integrated satellite-terrestrial network: A survey. In International conference on space information network (pp. 16–25). Springer.

  6. Meloni, A., & Atzori, L. (2017). The role of satellite communications in the smart grid. IEEE Wireless Communications, 24(2), 50–56.

    Article  Google Scholar 

  7. Qi, X., Ma, J., Wu, D., Liu, L., & Hu, S. (2016). A survey of routing techniques for satellite networks. Journal of Communications and Information Networks, 1(4), 66–85.

    Article  Google Scholar 

  8. Son, I. K., & Mao, S. (2017). A survey of free space optical networks. Digital Communications and Networks, 3(2), 67–77.

    Article  Google Scholar 

  9. Wu, W. W., Miller, E. F., Pritchard, W. L., & Pickholtz, R. L. (1994). Mobile satellite communications. Proceedings of the IEEE, 82(9), 1431–1448.

    Article  Google Scholar 

  10. Perkins, C. Ed., Johnson, D., & Arkko, J.(2011). Mobility support in IPv6. IETF RFC. https://www.rfc-editor.org/rfc/pdfrfc/rfc6275.txt.pdf.

  11. Soliman, H., Castelluccia, C., Malki, K. E., & Bellier, L. (2008). Hierarchical mobile IPv6 mobility management (HMIPv6). RFC. Editor. https://www.rfc-editor.org/rfc/pdfrfc/rfc4140.txt.pdf.

  12. Phoomikiattisak, D., & Bhatti, S. N. (2016). Control plane handoff analysis for ip mobility. In IEEE wireless and mobile networking conference (WMNC) (pp. 65–72). Colmar, France, July 11–13.

  13. Khan, R. A., & Mir, A. (2014). A simulation based study of ip mobility over ipv6 networks. In International conference on innovative applications of computational intelligence on power, energy and controls with their impact on humanity (pp. 196–201). Pradesh: IEEE.

  14. Atiquzzaman, M., & Ivancic, W. (2007). SIGMA for space sensor web networks. In ESTO AIST sensor web technology meeting (pp. 2–3). San Diego, CA, February 13–14.

  15. Bhasin, K., & Hayden, J. L. (2001). Space Internet architectures and technologies for NASA enterprises. In IEEE aerospace conference (Vol. 2, pp. 2–931), Big Sky, MT, March 10–17 .

  16. Ivancic, W., Stewart, D., Shell, D., Wood, L., Paulsen, P., Jackson, C., Hodgson, D., Notham, J., Bean, N., & Miller, E. (2005). Secure, network-centric operations of a space-based asset: Cisco router in Low Earth Orbit (CLEO) and Virtual Mission Operations Center (VMOC). NASA. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050180616.pdf.

  17. Noles, J., Scott, K., Zukoski, M., & Weiss, H. (2002). Next generation space internet: Prototype implementation. In NASA earth science technology conference (pp. 11–13). Pasadena, CA, June 11–13.

  18. Ivancic, W. D., Stewart, D. H., Paulsen, P., Bell, T., Martin, L., & Shell, D. (2004). Mobile-ip priority home agents for aerospace and military applications. In IEEE aerospace conference (Vol. 2, pp. 1117–1123). Big Sky, MT, March 6–13.

  19. NASA Goddard Space Flight Center (2008). OMNI: Operating missions as nodes on the internet project. https://www.nasa.gov/centers/goddard/news/topstory/2008/omni_project.html.

  20. Minden, G., Evans, J., Baliga, S., Rallapalli, S., & Searl, L. (2002). Routing in space based Internets. In NASA earth science technology conference (pp. 11–13). Pasadena, CA, June 11–13.

  21. Reinert, J.M., & Barnes, P.(2013).Challenges of integrating NASAs space communication networks. In International on systems conference (SysCon), April 15–18.

  22. Riva, C., Capsoni, C., Luini, L., Luccini, M., Nebuloni, R., & Martellucci, A. (2014). The challenge of using the W band in satellite communication. International Journal of Satellite Communications and Networking, 32(3), 187–200.

    Article  Google Scholar 

  23. Israel, D. J., Heckler, G. W., & Menrad, R. J. (2016). Space mobile network: a near earth communications and navigation architecture. In IEEE aerospace conference (pp. 1–7). Montana, USA, March 05–12.

  24. Azni, A., Ahmad, R., & Noh, Z. A. M. (2013). Survivability modeling and analysis of mobile ad hoc network with correlated node behavior. Procedia Engineering, 53, 435–440.

    Article  Google Scholar 

  25. Xu, Y., & Wang, W. (2010). Characterizing the spread of correlated failures in large wireless networks. In IEEE INFOCOM (pp. 1–9). San Diego, CA, March 14–19.

  26. Rajalakshmi, K., & Gopal, K. (2014). A survey on cost effective survivable network design in wireless access network. International Journal of Computer Science and Engineering Survey, 5(1), 11.

    Article  Google Scholar 

  27. Xie, L., Heegaard, P., & Jiang, Y. (2003). Survivability quantification of wireless networks [Online]. Available http://www.item.ntnu.no/~langxie/tmp/1569511685.pdf.

  28. Chen, D., Garg, S., & Trivedi, K. S. (2002). Network survivability performance evaluation: a quantitative approach with applications in wireless ad-hoc networks. In 5th International workshop on modeling analysis and simulation of wireless and mobile systems, September 28, 2002 (pp. 61–68). Atlanta, GA: ACM.

  29. Zolfaghari, A., & Kaudel, F. J. (1994). Framework for network survivability performance. IEEE Journal on Selected Areas in Communications, 12(1), 46–51.

    Article  Google Scholar 

  30. Rak, J. (2015). Measures of region failure survivability for wireless mesh networks. Wireless Networks, 21(2), 673–684.

    Article  Google Scholar 

  31. Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 53(8), 1215–1234.

    Article  Google Scholar 

  32. Kuipers, F. A. (2012). An overview of algorithms for network survivability. ISRN Communications and Networking, 2012(24), 932456. doi:10.5402/2012/932456.

  33. James, P. G. S., Rajesh, K., Regina, R. H., Alden, W. J., David, L., Ram, R., & John, Z. (2002). Survivable mobile wireless networks: Issues, challenges, and research directions. In ACM workshop on wireless security (pp. 31–40). Atlanta, Georgia, USA, September 28.

  34. Xie, L., Heegaard, P.E., & Jiang, Y. (2012). Modeling and analysis of the survivability of an infrastructure-based wireless network. In Meeting of the European network of universities and companies in information and communication engineering (pp. 227–238). Budapest, Hungary: Springer. August 29–31

  35. Bhandari, V., & Vaidya, N. H. (2007). Reliable broadcast in wireless networks with probabilistic failures. In IEEE INFOCOM (pp. 715–723), Anchorage, AK, USA, May 6–12.

  36. Peng, Y., Gong, X., Guo, L., & Kong, D. (2016). A survivability routing mechanism in sdn enabled wireless mesh networks: Design and evaluation. China Communications, 13, 32–38.

    Article  Google Scholar 

  37. Xu, L., Zhang, J., Tsai, P. W., Wu, W., & Wang, D.-J. (2017). Uncertain random spectra: A new metric for assessing the survivability of mobile wireless sensor networks. Soft Computing, 21(10), 2619–2629.

    Article  Google Scholar 

  38. Yallouz, J., & Orda, A. (2017). Tunable QoS-Aware network survivability. IEEE/ACM Transactions on Networking, 25(1), 139–149.

  39. Fong, B., Ansari, N., Fong, A., & Hong, G. (2004). On the scalability of fixed broadband wireless access network deployment. IEEE Communications Magazine, 42(9), 512–518.

    Article  Google Scholar 

  40. Ge, Y., Lamont, L., & Villasenor, L. (2004). Improving scalability of heterogeneous wireless networks with hierarchical OLSR. In IEEE international conference on wireless and mobile computing, networking and communications (WiMob).

  41. Ho, W.H., & Liew, S.C.(2005).Achieving scalable capacity in wireless networks with adaptive power control. In IEEE conference on local computer networks (pp. 9–pp). Sydney, Australia, November 15–17, 2005.

  42. Lessmann, J., Oliva, A. De La., Sengul, C., García, A., Kretschmer, M., Murphy, S., & Patras, P. (2011). On the scalability of carrier-grade mesh network architectures. In Future network and mobile summit (FutureNetw) (pp. 1–8). Warsaw: IEEE. June 15–17 2011.

  43. Li, J., Blake, C., De Couto, D.S., Lee, H.I., & Morris, R.(2001).Capacity of ad hoc wireless networks. In 7th International conference on mobile computing and networking (pp. 61–69). Rome, Italy: ACM. July 16–21, .

  44. Abadal, S., Mestres, A., & Nemirovsky, M. e a. (2016). Scalability of broadcast performance in wireless network-on-chip. IEEE Transactions on Parallel and Distributed Systems, 27(12), 3631–3645.

    Article  Google Scholar 

  45. Ben-Asher, Y., Feldman, S., Feldman, M., & Gurfil, P. (2010). Scalability issues in ad-hoc networks: Metrical routing versus table-driven routing. Wireless Personal Communications, 52(3), 423–447.

    Article  Google Scholar 

  46. Kwak, B.-J., Song, N.-O., & Miller, L. E. (2004). On the scalability of ad hoc networks: a traffic analysis at the center of a network. In IEEE wireless communications and networking conference (Vol. 2, pp. 1030–1033). Atlanta, GA, March 21–25.

  47. Srivathsan, S., Balakrishnan, N., & Iyengar, S. (2009). Scalability in wireless mesh networks. Berlin: Springer.

    Book  Google Scholar 

  48. Bianco, A., Giaccone, P., Mashayekhi, R., Ullio, M., & Vercellone, V. (2017). Scalability of ONOS reactive forwarding applications in ISP networks. Computer Communications, 102, 130–138.

  49. Abeele, F.V.d., Haxhibeqiri, J., Moerman, I., & Hoebeke, J. (2017). Scalability analysis of large-scale lorawan networks in ns-3, Cornell University Library.

  50. Azni, A. H., Ahmad, R., & Noh, Z. A. M. (2013). Survivability modeling and analysis of mobile Ad hoc network with correlated node behavior. Procedia Engineering, 53, 435–440.

  51. Rager, S. T., Ciftcioglu, E. N., Ramanathan, R., La Porta, T. F., & Govindan, R. (2016). Scalability and satisfiability of quality-of-information in wireless networks. In IEEE wireless communications and networking conference (WCNC), Doha, Qatar, April 3–6.

  52. Ramanathan, R., Ciftcioglu, E., Samanta, A., Urgaonkar, R., & Porta, T. La. (2017). Symptotics: a framework for estimating the scalability of real-world wireless networks. Wireless Networks, 23(4), 1063–1083.

    Article  Google Scholar 

  53. Sampaio, S., Souto, P., & Vasques, F. (2016). A review of scalability and topological stability issues in ieee 802.11 s wireless mesh networks deployments. International Journal of Communication Systems, 29(4), 671–693.

    Article  Google Scholar 

  54. Zhang, J., Fu, L., Wang, Q., Liu, L., Wang, X., & Wang, X. (2017). Connectivity analysis in wireless networks with correlated mobility and cluster scalability. IEEE/ACM Transactions on Networking (online), April 28.

  55. Deutsch, M. S., & Willis, R. R. (1988). Software quality engineering: A total technical and management approach. New York: ACM.

    Google Scholar 

  56. Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., & Longstaff, T. (1997) Survivable network systems: An emerging discipline [Online]. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA341963.

  57. Knight, J. C., & Sullivan, K. J. (2000). On the definition of survivability. University of Virginia, Department of Computer Science, technical report CS-TR-33-00.

  58. Arpacioglu, O., Small, T., & Haas, Z. J. (2003). Notes on scalability of wireless ad hoc networks. IRTF ANS WG Meeting, September 18 [Online]. https://people.ece.cornell.edu/haas/wnl/Publications/irtf_9_18_03.pdf.

  59. Fu, S., & Atiquzzaman, M. (2006). SIGMA: A transport layer mobility management scheme for terrestrial and space networks. e-Business and and Telecommunication Networks, pp. 41–52.

  60. S.I.A. (SIA) (2016). State of the satellite industry report [Online]. http://www.sia.org/wp-content/uploads/2016/06/SSIR16-Pdf-Copy-for-Website-Compressed.pdf.

  61. Sanou, B. (2015). ICT facts and figures, the world in 2015, International Telecommunications Union (ITU) [Online]. https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf.

  62. Zhu, Z., Wakikawa, R., & Zhang, L. (2011). Sail: A scalable approach for wide-area ip mobility. In IEEE INFOCOM workshops, Shanghai, China, April 10–15, pp. 367–372.

  63. Ghosh, R., & Varghese, G. (1998). Fault-tolerant mobile IP [Online]. http://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1466&context=cse_research.

  64. You, T., Pack, S., & Choi, Y. (2003). Robust hierarchical mobile IPv6 (RH-MIPv6): An enhancement for survivability and fault-tolerance in mobile IP systems. In IEEE vehicular technology conference (Fall), Orlando, Florida, USA, October (Vol.  3, 6-9, pp. 2014–2018).

  65. Huang, Y.-F., & Chuang, M.-H. (2006). Fault tolerance for home agents in mobile IP. Computer Networks, 50(18), 3686–3700.

    Article  Google Scholar 

  66. Lin, J.-W., & Arul, J. (2003). An efficient fault-tolerant approach for mobile IP in wireless systems. IEEE Transactions on Mobile Computing, 2(3), 207–220.

    Article  Google Scholar 

  67. Jue, J. P., & Ghosal, D. (1998). Design and analysis of a replicated server architecture for supporting IP-host mobility. Cluster Computing, 1(2), 249–260.

    Article  Google Scholar 

  68. Knight, S., Weaver, D., Whipple, D., Hinden, R., Mitzel, D., Hunt, P., Higginson, P., Shand, M., & Lindem, A. (1998). Virtual router redundancy protocol. Technical report [Online]. https://www.rfc-editor.org/rfc/rfc2338.txt.

  69. Vasilache, A., Li, J., & Kameda, H. (2001). Load balancing policies for multiple home agents mobile ip networks. In International conference on web information systems engineering (Vol. 2, pp. 178–185). IEEE: Kyoto, Japan. December 3–6, .

  70. Faizan, J., EL-Rewini, H., & Khalil, M. (2008). Introducing reliability and load balancing in mobile ipv6-based networks. Wireless Communications and Mobile Computing, 8(4), 483–500.

    Article  Google Scholar 

  71. Deng, H., Huang, X., Zhang, K., Niu, Z., & Ojima, M. (2003). A hybrid load balance mechanism for distributed home agents in mobile ipv6. In IEEE Conference on personal, indoor and mobile radio communications (PIMRC), Beijing, China (Vol. 3, pp. 2842–2846) September 7–10.

  72. Wakikawa, R., Devarapalli, V., & Thubert, P. (2004). Inter home agents protocol (HAHA),IETF DRAFT [Online]. https://tools.ietf.org/html/draft-wakikawa-mip6-nemo-haha-01.

  73. Liu, C.-C., Liu, H.-J., & Wang, C.-H. (2015). Performance improvement on duplicate address detection in ip mobility protocols. In 8th International conference on Ubi-media computing (UMEDIA). Colombo, Sri Lanka: IEEE, August 24–26, pp. 29–32.

  74. Zhang, Z., & Guo, Q. (2012). An IP mobility management scheme with dual location areas for IP/LEO satellite network. Journal of Zhejiang University, Science, 13(5), 355–364.

    Article  Google Scholar 

  75. He, Z.-f., & Cheng, R.-j. (2011). The analysis of ip mobility management protocols in wireless networks. In International conference on computer science and service system. Nanjing, China: IEEE, pp. 787–790, June 27–29.

  76. Jan, R., Raleigh, T., Yang, D., Chang, L. F., Graff, C., Bereschinsky, M., & Patel, M. (999). Enhancing survivability of mobile internet access using mobile ip with location registers. In Eighteenth annual joint conference of the IEEE computer and communications societies (Vol. 1, pp. 3–11). New York, USA: IEEE, March 21–25, 1999.

  77. Chen, F., Su, S., & Chen, J. (2004). Multi-layered mobility management integrating SIP with MIP-LR. Journal of Beijing University of Posts and Telecommunications, 27(6), 97–100.

    Google Scholar 

  78. Dutta, A., Jain, R., Wong, K., Burns, J., Young, K., & Schulzrinne, H. (2001). Multilayered mobility management for survivable network. In IEEE MILCOM, October 28–31.

  79. Yap, C., Kraner, M., Fikouras, N., & Cvetkovic, S. (2000). Novel and enhanced mobile Internet protocol for third generation cellular environments compared to MIP and MIP-LR. In First international conference on 3G mobile communication technologies. London, UK: IET, March 27–29 , pp. 143–147.

  80. Dutta, A., Burns, J., Jain, R., Wong, K. D., Young, K., & Schulzrinne, H.(2005). Implementation and performance evaluation of application layer MIP-LR. In International conference on wireless networks, communications and mobile computing (Vol. 2, pp. 999–1004). Maui, Hawaii, USA: IEEE, June 13–16.

  81. Pack, S., Choi, Y., & Nam, M. (2006). Design and analysis of optimal multi-level hierarchical mobile ipv6 networks. Wireless Personal Communications, 36(2), 95–112.

    Article  Google Scholar 

  82. Fang, Y., Chlamtac, I., & Fei, H.-R. (2000). Analytical results for optimal choice of location update interval for mobility database failure restoration in pcs networks. IEEE Transactions on Parallel and Distributed Systems, 11(6), 615–624.

    Article  Google Scholar 

  83. Lin, Y.-B. (2005). Per-user checkpointing for mobility database failure restoration. IEEE Transactions on Mobile Computing, 4(2), 189–194.

    Article  Google Scholar 

  84. Abdelgwad, A., Ahmed, D., & Saleh, A. (2009). A reliable double edged strategy for hlr mobility database failure detection and recovery in pcs networks. In International conference on networking and media convergence (ICNM). Cairo, Egypt: IEEE, March 24–25, pp. 9–15.

  85. Reaz, A. A. S., Atiquzzaman, M., & Fu, S. (2005). Performance of DNS as location manager for wireless systems in IP networks. In IEEE GLOBECOM (Vol. 1, p. 5) St. Louis, Missouri, USA, November 28–December 2.

  86. Mukherjee, J., & Ramamurthy, B. (2013). Communication technologies and architectures for space network and interplanetary internet. Communications Surveys & Tutorials, 15(2), 881–897.

    Article  Google Scholar 

  87. Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In IEEE INFOCOM (Vol. 6, pp. 1–11). Barcelona, Spain, April 23–29 .

  88. Ott, J., & Kutscher, D. (2004). Drive-thru internet: IEEE 802.11 b for” automobile” users. In IEEE INFOCOM, vol. 1, Hong Kong, March 7–11.

  89. Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., et al. (2015). Contact graph routing in dtn space networks: Overview, enhancements and performance. IEEE Communications Magazine, 53(3), 38–46.

  90. He, Y., & Zhao, H. (2007). Survivability performance evaluation for satellite communication network based on walker constellation. In Second international conference on spatial information technology, Vol. 6795, China, November 10.

  91. Peng, S. C., Jia, W. J., & Wang, G. J. (2009). Survivability evaluation in large-scale mobile ad-hoc networks. Journal of Computer Science and Technology, 24(4), 761–774.

    Article  Google Scholar 

  92. Glenn, A. (1985). Methodology for quantitatively evaluating satellite communication network survivability. IEEE Communications Magazine, 23, 28–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shohrab Hossain.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Hassan, S.S., Atiquzzaman, M. et al. Survivability and scalability of space networks: a survey. Telecommun Syst 68, 295–318 (2018). https://doi.org/10.1007/s11235-017-0396-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0396-y

Keywords

Navigation