Skip to main content
Log in

Pre-reservation based spectrum allocation for cognitive radio network

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Studies on the current usage of the radio spectrum by several agencies have already revealed that a large fraction of the radio spectrum is inadequately utilized. This basic finding has led to numerous research initiatives. Cognitive radio technology is one of the key candidate technologies to solve the problems of spectrum scarcity and low spectrum utilization. However, random behavior of the primary user (PU) appears to be an enormous challenge. In this paper, a Pre-reservation based spectrum allocation method for cognitive radio network is proposed to apply a PU behavior aware joint spectrum band (SB) selection and allocation scheme. In the first step, the SB is observed in terms of PU usage statistics whereas in the second phase, a network operator (NO) using a spectrum allocation scheme is employed to allocate SBs among secondary users (SUs). We also introduce the concept of reservation and exchange functionality under the priority serving strategy in a time-varying framing process. Simulation results show that the proposed scheme outperforms existing schemes in terms of the spectrum utilization and network revenue. In addition, it helps NO to manage the spectrum on a planned basis with a systematical spectrum reservation management where the NO has the status of time slots. Moreover, SUs have an opportunity to reserve or instantly request a SB that maximizes the SUs satisfaction in terms of quality of experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Akyildiz, F., Lee, W., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  2. Alqerm, I., & Shihada, B. (2014). Adaptive decision-making scheme for cognitive radio networks. In IEEE 28th advanced information networking and applications conference (AINA), Victoria, Canada (pp. 321–328).

  3. Pérez-Romero, J., Raschellà, A., Sallent, O., & Umbert, A. (2016). A belief-based decision-making framework for spectrum selection in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(10), 8283–8296.

    Article  Google Scholar 

  4. Martin, T., & Chang, K. C. (2016). Assessing user decision behaviors for dynamic spectrum sharing and pricing models. In 19th International conference on information fusion (FUSION 2016), Heidelberg, Germany (pp. 1011–1018).

  5. Manisha, & Singh, N. P. (2015). Optimal network selection using MADM algorithms. In 2nd International conference on recent advances in engineering & computational sciences (RAECS 2015), Chandigarh, India (pp. 1–6).

  6. Lahby, M., Baghla, S., & Sekkaki, A. (2015). Survey and comparison of MADM methods for network selection access in heterogeneous networks. In 7th International conference on new technologies, mobility and security (NTMS 2015), Paris, France (pp. 1–6).

  7. Çavdar, T., Güler, E., & Sadreddini, Z. (2015). Instant overbooking framework for cognitive radio networks. Computer Networks, 76, 227–241.

    Article  Google Scholar 

  8. Mir, U., & Nuaymi, L. (2013). LTE pricing strategies. In IEEE 77th vehicular technology conference (VTC), Dresden, Germany (pp. 1–6).

  9. Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communication Surveys & Tutorials, 17(1), 795–823.

    Article  Google Scholar 

  10. Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H., & Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communication Surveys & Tutorials, 18(1), 824–847.

    Article  Google Scholar 

  11. Niyato, D., & Hossain, E. (2008). Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion. IEEE Journal on Selected Areas in Communications, 26(1), 192–202.

    Article  Google Scholar 

  12. Wang, X., Ma, K., Han, Q., Liu, Z., & Guan, X. (2012). Pricing-based spectrum leasing in cognitive radio networks. IET Networks, 1(3), 116–125.

    Article  Google Scholar 

  13. Yang, L., Kim, H., Zhang, J., Chiang, M., & Tan, C. W. (2013). Pricing-based decentralized spectrum access control in cognitive radio networks. IEEE/ACM Transactions on Networking, 21(2), 522–535.

    Article  Google Scholar 

  14. Xie, X., Yang, H., Vasilakos, A. V., & He, L. (2014). Fair power control using game theory with pricing scheme in cognitive radio networks. Communication Networks, 16(2), 183–192.

    Article  Google Scholar 

  15. D’Oro, S., Mertikopoulos, P., Moustakas, A. L., & Palazzo, S. (2015). Interference-based pricing for opportunistic multicarrier cognitive radio systems. IEEE Transactions on Wireless Communications, 14(12), 6536–6549.

    Article  Google Scholar 

  16. Amir, F. G., Masoud, R., & Ata, A. T. (2017). Cooperative advertising to induce strategic customers for purchase at the full price. International Transactions in Operational Research. https://doi.org/10.1111/itor.12427.

  17. Cao, X., Chen, Y., & Liu, K. J. R. (2015). Cognitive radio networks with heterogeneous users: How to procure and price the spectrum? IEEE Transactions on Wireless Communications, 14(3), 1676–1688.

    Article  Google Scholar 

  18. Kavurmacioglu, E., Alanyali, M., & Starobinski, D. (2016). Competition in private commons: Price war or market sharing? IEEE/ACM Transactions on Networking, 24(1), 29–42.

    Article  Google Scholar 

  19. Turhan, A., Alanyali, M., Kavurmacioglu, E., & Starobinski, D. (2016). Dynamic Pricing of Preemptive Service for Secondary Demand. IEEE Transactions on Cognitive Communications and Networking, 2(2), 208–222.

    Article  Google Scholar 

  20. Li, J., Yang, Q., Hanzo, L., & Kwak, K. S. (2011). Over-booking approach for dynamic spectrum management. In IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA (pp. 1–5).

  21. Mastroeni, L., & Naldi, M. (2011). Pricing of spectrum reservation under overbooking. Electronic Commerce Research and Applications, 10(5), 565–575.

    Article  Google Scholar 

  22. Yang, Y., Park, L. T., Mandayam, N. B., Seskar, I., Glass, A. L., & Sinha, N. (2015). Prospect pricing in cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 1(1), 56–70.

    Article  Google Scholar 

  23. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.

    Article  Google Scholar 

  24. Zavadskas, E. K., Zakarevicius, A., & Antucheviciene, J. (2006). Evaluation of ranking accuracy in multi-criteria decisions. Informatica, 17(4), 601–618.

    Google Scholar 

  25. Ginevičius, R. (2008). Normalization of quantities of various dimensions. Journal of Business Economics and Management, 9(1), 79–86.

    Article  Google Scholar 

  26. Shih, H., Shyur, H., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7), 801–813.

    Article  Google Scholar 

  27. Stanujkic, D.,Đorđević, B.,&Đorđević, M.,(2013). Comparative analysis of some prominent MCDM methods: a caseof ranking Serbian banks. Serbian Journal of Management, 8(2), 213–241.8(2), 213–241.

  28. Rodriguez-Colina, E., Ramirez, P. C., & Carrillo, A. C. E. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. In 8th Wireless and optical communications networks conference (WOCN), Paris, France (pp. 1–5).

  29. Hernandez, C., Salgado, C., López, H., & Rodriguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–17.

    Article  Google Scholar 

  30. Zheng, J., Yang, P., Luo, J., Liu, Q., & Yu, L. (2016). Per-user throughput analysis for secondary users in multi-hop cognitive radio networks. Computer Networks, 106, 122–133.

    Article  Google Scholar 

  31. Zhang, H., Huang, S., Jiang, C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.

    Article  Google Scholar 

  32. Xu, Q., Li, X., Ji, H., & Du, X. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.

    Article  Google Scholar 

  33. Coussement, K., & Van den Poel, D. (2008). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34(1), 313–327.

    Article  Google Scholar 

  34. Brunelli, M. (2014). Introduction to the analytic hierarchy process. Berlin: Springer.

    Google Scholar 

  35. Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process. Berlin: Springer.

    Book  Google Scholar 

  36. Masek, P., Slabicki, M., Hosek, J., & Grochla, K. (2016). Transmission power optimization in live 3GPP LTE-A indoor deployment. In 8th International congress on ultra-modern telecommunications and control systems and workshops (ICUMT) (pp. 164–170).

  37. Jenab, K., Khoury, S., & Sarfaraz, A. R. (2012). Manufacturing complexity analysis with fuzzy AHP. International Journal of Strategic Decision Sciences, 3(2), 31–46.

    Article  Google Scholar 

  38. Mamat, N. J. Z., & Daniel, J. K. (2007). Statistical analyses on time complexity and rank consistency between singular value decomposition and the duality approach in AHP: A case study of faculty member selection. Mathematical and Computer Modelling, 46(7), 1099–1106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Güler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdar, T., Sadreddini, Z. & Güler, E. Pre-reservation based spectrum allocation for cognitive radio network. Telecommun Syst 68, 723–743 (2018). https://doi.org/10.1007/s11235-018-0424-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0424-6

Keywords

Navigation