Skip to main content

Advertisement

Log in

Bidirectional relaying with energy harvesting capable relay: outage analysis for Nakagami-m fading

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper analyzes outage probability of bidirectional relaying (BDR) where two power-unconstrained single-antenna sources communicate with each other under assistance of a self-powered half-duplex single-antenna relay capable of energy harvesting and amplify-and-forward implementation. The relay harvests radio energy from both sources to power its relaying operation with the power splitting method. For outage analysis of the BDR for Nakagami-m fading, an exact formula is first proposed in closed-form. Through this formula, influences of important specifications (time switching ratio, power splitting ratio, energy conversion efficiency, fading severity, target transmission rate, transmit power of each source, distances from sources to relay) on the outage probability are then evaluated. Finally, Monte-Carlo simulations are generated to corroborate the proposed formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This paper focuses on the bidirectional relaying with energy harvesting capable relay. Therefore, references whose both keywords (“bidirectional relaying" and “energy harvesting") are not mentioned should not be further surveyed (e.g. [10, 11]).

  2. It is noted that the definitions of the outage probability in [37, 39, 44,45,46,47] differ that in [35, 41, 52]. The definition of the outage probability in [35, 41, 52] is general and widely accepted. The simple definitions of the outage probability in [44,45,46,47] make the exact closed-form analysis tractable while the general one in [35, 41, 52] does not. This paper accepts the definition of the outage probability in [35, 41, 52] and hence, the analysis is complicated.

  3. This assumption can be valid for time division duplex wireless communications systems where forward and reverse channels are almost same.

  4. This assumption implies slow fading channels.

  5. The result for \(\alpha =1\) corresponds to the exact outage probability which was missing in [35] and [41].

References

  1. Zlatanov, N., Schober, R., & Hadzi-Velkov, Z. (2017). Asymptotically optimal power allocation for energy harvesting communication networks. IEEE Transactions on Vehicular Technology, 66(8), 7286–7301.

    Article  Google Scholar 

  2. Hamani, A., Allard, B., Vuong, T. P., Yagoub, M. C. E., & Touhami, R. (2018). Design of rectenna series-association circuits for radio frequency energy harvesting in CMOS FD-SOI 28nm. IET Circuits, Devices and Systems, 12(1), 40–49.

    Article  Google Scholar 

  3. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE JSAC, 33(3), 360–381.

    Google Scholar 

  4. Zhou, F., Li, Z., Cheng, J., Li, Q., & Si, J. (2017). Robust AN-Aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT. IEEE Transactions on Wireless Communications, 16(4), 2450–2464.

    Article  Google Scholar 

  5. Pan, G., Lei, H., Yuan, Y., & Ding, Z. (2017). Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Transactions on Communications, 65(5), 2291–2302.

    Article  Google Scholar 

  6. Liu, T., Wang, X., & Zheng, L. (2017). A cooperative SWIPT scheme for wirelessly powered sensor networks. IEEE Transactions on Communications, 65(6), 2740–2752.

    Article  Google Scholar 

  7. Ding, H., da Costa, D. B., Suraweera, H. A., & Ge, J. (2016). Role selection cooperative systems with energy harvesting relays. IEEE Transactions on Wireless Communications, 15(6), 4218–4233.

    Article  Google Scholar 

  8. Gu, Y., & Aissa, S. (2015). RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and outage capacities. IEEE Transactions on Wireless Communications, 14(11), 6425–6434.

    Article  Google Scholar 

  9. Rajaram, A., Jayakody, D. N. K., Srinivasan, K., Chen, B., & Sharma, V. (2017). Opportunistic-harvesting: RF wireless power transfer scheme for multiple access relays system. IEEE Access, 5, 16084–16099.

    Article  Google Scholar 

  10. Nguyen, B. V., Jung, H., Har, D., & Kim, K. (2018). Performance analysis of a cognitive radio network with an energy harvesting secondary transmitter under Nakagami-\(m\) Fading. IEEE Access, 6, 4135–4144.

    Article  Google Scholar 

  11. Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2794507.

    Article  Google Scholar 

  12. Chen, Z., Lim, T. J., & Motani, M. (2013). Digital network coding aided two-way relaying: Energy minimization and queue analysis. IEEE Transactions on Wireless Communications, 12(4), 1947–1957.

    Article  Google Scholar 

  13. Tutuncuoglu, K., Varan, B., & Yener, A. (2015). Throughput maximization for two-way relay channels with energy harvesting nodes: The impact of relaying strategies. IEEE Transactions on Communications, 63(6), 2081–2093.

    Article  Google Scholar 

  14. Chen, Z., Dong, Y., Fan, P., & Letaief, K. B. (2016). Optimal throughput for two-way relaying: Energy harvesting and energy co-operation. IEEE JSAC, 34(5), 1448–1462.

    Google Scholar 

  15. Farazi, S., Brown, D. R., & Klein, A. G. (2015). Power allocation for three-phase two-way relay networks with simultaneous wireless information and power transfer. In Proceedings of the IEEE ACSSC, Asilomar, USA, November 8–11, 2015 (pp. 812–816).

  16. Wen, Z., Wang, S., Fan, C., & Xiang, W. (2014). Joint transceiver and power splitter design over two-way relaying channel with lattice codes and energy harvesting. IEEE Communications Letters, 18(11), 2039–2042.

    Article  Google Scholar 

  17. Alsharoa, A., Ghazzai, H., Kamal, A. E., & Kadri, A. (2016). Wireless RF-based energy harvesting for two-way relaying systems. In Proceedings of the IEEE WCNC, Doha, Quatar, April 3-6, 2016 (pp. 1–6).

  18. Shah, S. T., Choi, K. W., Hasan, S. F., & Chung, M. Y. (2016). Energy harvesting and information processing in two-way multiplicative relay networks. Electronics Letters, 52(9), 751–753.

    Article  Google Scholar 

  19. Rostampoor, J., Razavizadeh, S. M., & Lee, I. (2017). Energy efficient precoding design for SWIPT in MIMO two-way relay networks. IEEE Transactions on Vehicular Technology, 66(9), 7888–7896.

    Article  Google Scholar 

  20. Peng, C., Li, F., & Liu, H. (2017). Optimal power splitting in two-way decode-and-forward relay networks. IEEE Communications Letters, 21(9), 2009–2012.

    Article  Google Scholar 

  21. Wen, Z., Liu, X., Zheng, S., & Guo, W. (2018). Joint source and relay design for MIMO two-way relay networks with SWIPT. IEEE Transactions on Vehicular Technology, 67(1), 822–826.

    Article  Google Scholar 

  22. Varan, B., & Yener, A. (2013). The energy harvesting two-way decode-and-forward relay channel with stochastic data arrivals. In Proceedings of IEEE GlobalSIP, TX, USA, December 3–5, 2013 (pp. 371–374).

  23. Li, W., Ku, M. L., Chen, Y., & Liu, K. J. R. (2014). On the achievable sum rate for two-way relay networks with stochastic energy harvesting. In Proceedings of the IEEE GlobalSIP, GA, USA, December 3–5, 2014 (pp. 133–137).

  24. Li, W., Ku, M. L., Chen, Y., & Liu, K. R. (2016). On outage probability for two-way relay networks with stochastic energy harvesting. IEEE Transactions on Communications, 64(5), 1901–1915.

    Article  Google Scholar 

  25. Jiang, D., Zheng, H., Tang, D., & Tang, Y. (2015). Relay selection and power allocation for cognitive energy harvesting two-way relaying networks. In Proceedings of the IEEE ICEIEC, May 2015 (pp. 163–166).

  26. Vahidnia, R., Anpalagan, A., & Mirzaei, J. (2015). Relay selection in energy harvesting two-way communication networks. In Proceedigs of IEEE PIMRC, Augest 2015 (pp. 966–970).

  27. Vahidnia, R., Anpalagan, A., & Mirzaei, J. (2016). Achievable rate region for energy harvesting asynchronous two-way relay networks. IEEE Access, 4, 951–958.

    Article  Google Scholar 

  28. Men, J., Ge, J., Zhang, C., & Li, J. (2015). Joint optimal power allocation and relay selection scheme in energy harvesting asymmetric two-way relaying system. IET Communications, 9(11), 1421–1426.

    Article  Google Scholar 

  29. Ghazzai, H., Alsharoa, A., Kamal, A. E., & Kadri, A. (2016). A multi-relay selection scheme for time switching energy harvesting two-way relaying systems. In Proceedings of IEEE ICC, May 2016 (pp. 1–6).

  30. Alsharoa, A., Ghazzai, H., Kamal, A. E., & Kadri, A. (2017). Optimization of a power splitting protocol for two-way multiple energy harvesting relay system. IEEE Transactions on Green Communications and Networking, 1(4), 444–457.

    Article  Google Scholar 

  31. Wang, D., Zhang, R., Cheng, X., Yang, L., & Chen, C. (2017). Relay selection in full-duplex energy-harvesting two-way relay networks. IEEE Transactions on Green Communications and Networking, 1(2), 182–191.

    Article  Google Scholar 

  32. Salem, A., & Hamdi, K. A. (2016). Wireless power transfer in multi-pair two-way AF relaying networks. IEEE Transactions on Communications, 64(11), 4578–4591.

    Article  Google Scholar 

  33. Li, W., Ku, M. L., Chen, Y., Liu, K. J. R., & Zhu, S. (2017). Performance analysis for two-way network-coded dual-relay networks with stochastic energy harvesting. IEEE Transactions on Wireless Communications, 16(9), 5747–5761.

    Article  Google Scholar 

  34. Mekikis, P. V., Lalos, A. S., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2014). Wireless energy harvesting in two-way network coded cooperative communications: A stochastic approach for large scale networks. IEEE Communications Letters, 18(6), 1011–1014.

    Article  Google Scholar 

  35. Chen, Z., Xia, B., & Liu, H. (2014). Wireless information and power transfer in two-way amplify-and-forward relaying channels. In Proceedings of IEEE GlobalSIP, GA, USA, December 3–5, 2014 (pp. 168–172).

  36. Liu, Y., Wang, L., Elkashlan, M., Duong, T. Q., Nallanathan, A. (2014). Two-way relaying networks with wireless power transfer: Policies design and throughput analysis. In Proceedings of IEEE Globecom, TX, USA, December 8–12, 2014 (pp. 4030–4035).

  37. Cao, H., Fu, L., Dai, H. (2017) Throughput analysis of the two-way relay system with network coding and energy harvesting. In Proceedings of IEEE ICC, Paris, France, May 21–25, 2017 (pp. 1–6).

  38. Van, N. T. P., Hasan, S. F., Gui, X., Mukhopadhyay, S., & Tran, H. (2017). Three-step two-way decode and forward relay with energy harvesting. IEEE Communications Letters, 21(4), 857–860.

    Article  Google Scholar 

  39. Shah, S. T., Munir, D., Chung, M. Y., Choi, K. W. (2016). Information processing and wireless energy harvesting in two-way amplify-and-forward relay networks. In Proceedings of IEEE VTC Spring, Nanjing, China, May 15–18, 2016 (pp. 1–5).

  40. Modem, S., & Prakriya, S. (2017). Performance of analog network coding based two-way EH relay with beamforming. IEEE Transactions Communications, 65(4), 1518–1535.

    Article  Google Scholar 

  41. Liu, Y., Wang, L., Elkashlan, M., Duong, T. Q., & Nallanathan, A. (2016). Two-way relay networks with wireless power transfer: Design and performance analysis. IET Communications, 10(14), 1810–1819.

    Article  Google Scholar 

  42. Huang, C., Sadeghi, P., Nasir, A. A. (2016) BER performance analysis and optimization for energy harvesting two-way relay networks. In Proceedings IEEE AusCTW, Victoria, Australia, Janury 20–22, 2016 (pp. 65–70).

  43. Chen, T., Ding, Z., & Tian, G. (2014). Wireless information and power transfer using energy harvesting relay with outdated CSI. In Proceediings of IEEE HMWC, Beijing, China, November 1–3, 2014 (pp. 1–6).

  44. Jiang, R., Xiong, K., Fan, P., & Zhong, Z. (2015). Outage performance of SWIPT-enabled two-way relay networks. In Proceedings IEEE HMWC, Xian, China, October 21–23, 2015 (pp. 106–110).

  45. Nguyen, D. K., Matthaiou, M., Duong, T. Q., & Ochi, H. (2015). RF energy harvesting two-way cognitive DF relaying with transceiver impairments. In Proceedings of IEEE ICCW, London, UK, June 8–12, 2015 (pp. 1970–1975).

  46. Nguyen, D. K., Jayakody, D. N., Chatzinotas, S., Thompson, J., & Li, J. (2017). Wireless energy harvesting assisted two-way cognitive relay networks: Protocol design and performance analysis. IEEE Access, 5, 21447–21460.

    Article  Google Scholar 

  47. Singh, S., Modem, S., & Prakriya, S. (2017). Optimization of cognitive two-way networks with energy harvesting relays. IEEE Communications Letters, 21(6), 1381–1384.

    Article  Google Scholar 

  48. Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.

    Google Scholar 

  49. Park, J. J., Moon, J. H., & Kim, D. I. (2016). Time-switching based in-band full duplex wireless powered two-way relay. In Proceedings IEEE URSI AP-RASC, Seoul, Korea, Augest 21–25, 2016 (pp. 438–441).

  50. Zhu, X., Nguyen, N. P., Lam, T. T., Ha, D. B. (2015). Throughput analysis of bidirectional relaying networks with wireless power transfer over nakagami fading. In Proceedings of IEEE ComManTel, Danang, Vietnam, December 28–30, 2015 (pp. 153–156).

  51. Javadi, S., & Soleimani-Nasab, E. (2016). Two-way interference-limited AF relaying with wireless power transfer. In Proceedings of IEEE TELFOR, Belgrade, Serbia, November 22–23, 2016 (pp. 1–4).

  52. Tran, D. D., Tran, H. V., Ha, D. B., Tran, H., & Kaddoum, G. (2016). Performance analysis of two-way relaying system with RF-EH and multiple antennas. In Proceedings of IEEE VTC Fall, Quebec, Canada, September 18–21, 2016 (pp. 1–5).

  53. Javadi, S., & Soleimani-Nasab, E. (2017). Performance analysis of cognitive two-way AF relaying systems with wireless energy harvesting over Nakagami-\(m\) fading channels. In Proceedings of IEEE IWCIT, Tehran, Iran, May 3–4, 2017 (pp. 1–6).

  54. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy trade-off. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  55. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications., 12(7), 3622–3636.

    Article  Google Scholar 

  56. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. New York: Elsevier/Academic Press.

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under Grant Number B2017-20-04

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phong Nguyen-Huu.

Appendices

Appendix A: Proof of Lemma 1

This appendix proves (28). By inserting \({\Phi _1} = \frac{{\texttt {a}_2xy}}{{x + \texttt {b}}}\) in (26) into \({\Upsilon _1}\) in (21), one can rewrite \({\Upsilon _1}\) as

$$\begin{aligned} {\Upsilon _1}= & {} \Pr \left\{ {\frac{{\texttt {a}_2xy}}{{x + \texttt {b}}}< {\tau _1}} \right\} = \Pr \left\{ {y < \frac{{{\tau _1}}}{\texttt {a}_2}\frac{{x + \texttt {b}}}{x}} \right\} \nonumber \\= & {} {\Xi _x}\left\{ {{F_y}\left( {\left. {\frac{{{\tau _1}}}{\texttt {a}_2}\frac{{x + \texttt {b}}}{x}} \right| x} \right) } \right\} . \end{aligned}$$
(42)

Using (3) for \(F_y(y)\), one can further simplify (42) as

$$\begin{aligned} {\Upsilon _1}= & {} {\Xi _x}\left\{ {1 - {e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{{x + \texttt {b}}}{x}}}\sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{{{\left( {\frac{{{\tau _1}}}{\texttt {a}_2}\frac{{x + \texttt {b}}}{x}} \right) }^k}}}{{k!\Omega _2^k}}} } \right\} \nonumber \\= & {} 1 - \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{{e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}}}}}{{k!\Omega _2^k}}} {\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) ^k}{\Xi _x}\left\{ {{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{1}{x}}}{{\left( {\frac{{x + \texttt {b}}}{x}} \right) }^k}} \right\} .\nonumber \\ \end{aligned}$$
(43)

Applying the definition of the expectation to rewrite (43) as

$$\begin{aligned} {\Upsilon _1} = 1 - \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{{e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}}}}}{{k!\Omega _2^k}}} {\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) ^k}\int \limits _0^\infty {{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{1}{x}}}{{\left( {\frac{{x + \texttt {b}}}{x}} \right) }^k}{f_x}\left( x \right) dx}. \end{aligned}$$
(44)

Using (2) for \({f_x}\left( x \right) \) to simplify (44) as

$$\begin{aligned} {\Upsilon _1}= & {} 1 - \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{{e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}}}}}{{k!\Omega _2^k}}} {\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) ^k}\nonumber \\&\times \int \limits _0^\infty {{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{1}{x}}}{{\left( {\frac{{x + \texttt {b}}}{x}} \right) }^k}\frac{{{x^{{\alpha _1} - 1}}}}{{\Gamma \left( {{\alpha _1}} \right) \Omega _1^{{\alpha _1}}}}{e^{ - \frac{x}{{{\Omega _{_1}}}}}}dx} \nonumber \\= & {} 1 - \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{{e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}}}}}{{k!\Omega _2^k\Gamma \left( {{\alpha _1}} \right) \Omega _1^{{\alpha _1}}}}} {\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) ^k}\nonumber \\&\times \int \limits _0^\infty {{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{1}{x} - \frac{x}{{{\Omega _{_1}}}}}}{{\left( {x + \texttt {b}} \right) }^k}{x^{{\alpha _1} - k - 1}}dx}. \end{aligned}$$
(45)

Applying the binominal expansion to \({\left( {x + \texttt {b}} \right) ^k}\) to further rewrite (45) as

$$\begin{aligned} {\Upsilon _1}= & {} 1 - \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{{e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}}}}}{{k!\Omega _2^k\Gamma \left( {{\alpha _1}} \right) \Omega _1^{{\alpha _1}}}}} {\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) ^k}\nonumber \\&\times \int \limits _0^\infty {{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{1}{x} - \frac{x}{{{\Omega _{_1}}}}}}\left[ {\sum \limits _{u = 0}^k {C_k^u{x^u}{\texttt {b}^{k - u}}} } \right] {x^{{\alpha _1} - k - 1}}dx} \nonumber \\= & {} 1 - \sum \limits _{k = 0}^{{\alpha _2} - 1} {\sum \limits _{u = 0}^k {\frac{{C_k^u{\texttt {b}^{k - u}}{e^{ - \frac{{{\tau _1}}}{{{\Omega _2}{} \texttt {a}_2}}}}}}{{k!\Omega _2^k\Gamma \left( {{\alpha _1}} \right) \Omega _1^{{\alpha _1}}}}{{\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) }^k}} }\nonumber \\&\underbrace{\int \limits _0^\infty {{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}\frac{1}{x} - \frac{x}{{{\Omega _{_1}}}}}}{x^{{\alpha _1} - k + u - 1}}dx} }_\mathcal {D}. \end{aligned}$$
(46)

By denoting

$$\begin{aligned} \Psi \left( {l,m,j} \right) = \int \limits _0^\infty {{x^{l - 1}}{e^{ - \frac{m}{x} - jx}}dx}, \end{aligned}$$
(47)

it is straightforwardly seen that \(\mathcal {D}\) can be expressed as \(\mathcal {D} = \Psi \left( {{\alpha _1} - k + u,\frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}},\frac{1}{{{\Omega _{_1}}}}} \right) \), resulting in the exact agreement between (28) and (46). This completes the proof of Lemma 1 if (47) coincides (29). With the aid of [56, Eq. (3.471.9)], one can easily reduce (47) to (29).

Appendix B: Proof of \(\Upsilon _3\)

This appendix proves (31). Using the explicit forms of \({\Phi _1} = \frac{{\texttt {a}_2xy}}{{x + \texttt {b}}}\) and \({\Phi _2} = \frac{{\texttt {a}_1xy}}{{y + \texttt {b}}}\) in (26) and (27), respectively, one can rewrite \({\Upsilon _3}\) in (21) as

$$\begin{aligned} {\Upsilon _3}= & {} \Pr \left\{ {\left\{ {\frac{{\texttt {a}_2xy}}{{x + \texttt {b}}}< {\tau _1}} \right\} \cap \,\,\left\{ {\,\frac{{\texttt {a}_1xy}}{{y + \texttt {b}}}< \,{\tau _2}} \right\} } \right\} \nonumber \\= & {} \Pr \left\{ {\left\{ {y< \frac{{{\tau _1}(x + \texttt {b})}}{{\texttt {a}_2x}}} \right\} \cap \,\,\left\{ {x < \frac{{{\tau _2}(y + \texttt {b})}}{{\texttt {a}_1y}}} \right\} } \right\} \nonumber \\= & {} \int \limits _0^{{x_0}} {\int \limits _{\frac{{{y_0}}}{{{x_0}}}x}^{\frac{{{\tau _1}(x + \texttt {b})}}{{\texttt {a}_2x}}} {{f_{x,y}}(x,y)dydx} }\nonumber \\&+ \int \limits _0^{{y_0}} {\int \limits _{\frac{{{x_0}}}{{{y_0}}}y}^{\frac{{{\tau _2}(y + \texttt {b})}}{{\texttt {a}_1y}}} {{f_{x,y}}(x,y)dxdy} }, \end{aligned}$$
(48)

where \(f_{x,y}\left( x,y\right) \) is the joint PDF of x and y; (\(x_0, y_0\)) is the intersection point of two curves, \(y = \frac{{{\tau _1}(x + \texttt {b})}}{{\texttt {a}_2x}}\) and \(x = \frac{{{\tau _2}(y + \texttt {b})}}{{\texttt {a}_1y}}\), which can be expressed as

$$\begin{aligned} {x_0}= & {} \frac{{{\mu } + \sqrt{{\mu }^2 + 4\texttt {a}_1\texttt {b}{\tau }_1^2{\tau _2}} }}{{2\texttt {a}_1{\tau _1}}}, \end{aligned}$$
(49)
$$\begin{aligned} {y_0}= & {} \frac{{{\tau _2}{} \texttt {b}}}{{\texttt {a}_1{x_0} - {\tau _2}}}, \end{aligned}$$
(50)

with

$$\begin{aligned} {\mu } = {\tau _1}{\tau _2} - \texttt {a}_1\texttt {b}{\tau _1} + \texttt {a}_2\texttt {b}{\tau _2}. \end{aligned}$$
(51)

Because x is statistically independent of y, one can decompose \(f_{x,y}\left( x,y\right) \) as \(f_{x,y}\left( x,y\right) =f_{x}(x)f_{y}(y)\). Therefore, (48) can be rewritten as

$$\begin{aligned} {\Upsilon _3}= & {} \underbrace{\int \limits _0^{{x_0}} {\left[ {\int \limits _{\frac{{{y_0}}}{{{x_0}}}x}^{\frac{{{\tau _1}(x + \texttt {b})}}{{\texttt {a}_2x}}} {{f_y}(y)dy} } \right] {f_x}(x)dx} }_{{H_1}}\nonumber \\&+ \underbrace{\int \limits _0^{{y_0}} {\left[ {\int \limits _{\frac{{{x_0}}}{{{y_0}}}y}^{\frac{{{\tau _2}(y + \texttt {b})}}{{\texttt {a}_1y}}} {{f_x}(x)dx} } \right] } {f_y}(y)dy}_{{H_2}}. \end{aligned}$$
(52)

By using (2) for \({f_x}(x)\) and \({f_y}(y)\), one rewrites \(H_1\) in a more compact form as

$$\begin{aligned} {H_1}= & {} \int \limits _0^{{x_0}} {\left[ {\int \limits _{\frac{{{y_0}}}{{{x_0}}}x}^{\frac{{{\tau _1}\left( {x + \texttt {b}} \right) }}{{\texttt {a}_2x}}} {\frac{{{y^{{\alpha _2} - 1}}}}{{\Gamma \left( {{\alpha _2}} \right) \Omega _2^{{\alpha _2}}}}{e^{ - \frac{y}{{{\Omega _2}}}}}dy\,} } \right] } \frac{{{x^{{\alpha _1} - 1}}}}{{\Gamma \left( {{\alpha _1}} \right) \Omega _1^{{\alpha _1}}}}{e^{ - \frac{x}{{{\Omega _{_1}}}}}}dx\nonumber \\= & {} \frac{\Omega _1^{{-\alpha _1}}\Omega _2^{{-\alpha _2}}}{{\Gamma \left( {{\alpha _1}} \right) \Gamma \left( {{\alpha _2}} \right) }}\int \limits _0^{{x_0}} {{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}}}}\left[ {\int \limits _{\frac{{{y_0}}}{{{x_0}}}x}^{\frac{{{\tau _1}(x + \texttt {b})}}{{\texttt {a}_2x}}} {{y^{{\alpha _2} - 1}}{e^{ - \frac{y}{{{\Omega _2}}}}}dy\,} } \right] dx} \nonumber \\= & {} \frac{{\Omega _1^{ - {\alpha _1}}\Omega _2^{ - {\alpha _2}}}}{{\Gamma \left( {{\alpha _1}} \right) \Gamma \left( {{\alpha _2}} \right) }}\int \limits _0^{{x_0}} {x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}}}}\nonumber \\&\times \left[ {\underbrace{\int \limits _{\frac{{{y_0}}}{{{x_0}}}x}^\infty {{y^{{\alpha _2} - 1}}{e^{ - \frac{y}{{{\Omega _2}}}}}dy\,} }_{{{\bar{H}}_{11}}} - \underbrace{\int \limits _{\frac{{{\tau _1}(x + \texttt {b})}}{{\texttt {a}_2x}}}^\infty {{y^{{\alpha _2} - 1}}{e^{ - \frac{y}{{{\Omega _2}}}}}dy\,} }_{{{\bar{H}}_{12}}}} \right] dx\nonumber \\= & {} \frac{{{H_{11}} - {H_{12}}}}{{\Gamma \left( {{\alpha _1}} \right) \Gamma \left( {{\alpha _2}} \right) \Omega _1^{{\alpha _1}}\Omega _2^{{\alpha _2}}}}. \end{aligned}$$
(53)

where

$$\begin{aligned} {H_{11}}= & {} \int \limits _0^{{x_0}} {{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}}}}{{\bar{H}}_{11}}} dx, \end{aligned}$$
(54)
$$\begin{aligned} {H_{12}}= & {} \int \limits _0^{{x_0}} {{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}}}}{{\bar{H}}_{12}}} dx. \end{aligned}$$
(55)

With the aid of [56, Eq. (3.351.2)], \({\bar{H}_{11}}\) is expressed in closed-form as

$$\begin{aligned} {{\bar{H}}_{11}} = \int \limits _{\frac{{{y_0}}}{{{x_0}}}x}^\infty {{y^{{\alpha _2} - 1}}{e^{ - \frac{y}{{{\Omega _2}}}}}dy} = {e^{ - \frac{{{y_0}}}{{{x_0}{\Omega _2}}}x}}\sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}} {\left( {\frac{{{y_0}}}{{{x_0}}}} \right) ^k}{x^k}. \end{aligned}$$
(56)

Inserting (56) into (54), one obtains

$$\begin{aligned} {H_{11}}= & {} \int \limits _0^{{x_0}} {{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}}}}{e^{ - \frac{{{y_0}}}{{{x_0}{\Omega _2}}}x}}\sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}} {{\left( {\frac{{{y_0}}}{{{x_0}}}} \right) }^k}{x^k}} dx \nonumber \\= & {} \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}} {\left( {\frac{{{y_0}}}{{{x_0}}}} \right) ^k}\,\int \limits _0^{{x_0}} {{x^{k + {\alpha _1} - 1}}{e^{ - \left( {\frac{1}{{{\Omega _1}}} + \frac{{{y_0}}}{{{x_0}{\Omega _2}}}} \right) x}}dx}.\nonumber \\ \end{aligned}$$
(57)

By using [56, Eq. (3.381.1)], one can represent the last integral in (57) in terms of the lower incomplete gamma function \(\gamma \left( \cdot ,\cdot \right) \). Therefore, (57) is rewritten in closed-form as

$$\begin{aligned} {H_{11}}= & {} \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}} {\left( {\frac{{{y_0}}}{{{x_0}}}} \right) ^k}{\left( {\frac{1}{{{\Omega _1}}} + \frac{{{y_0}}}{{{x_0}{\Omega _2}}}} \right) ^{ - \left( {k + {\alpha _1}} \right) }}\nonumber \\&\times \,\gamma \left( {k + {\alpha _1},\left[ {\frac{1}{{{\Omega _1}}} + \frac{{{y_0}}}{{{x_0}{\Omega _2}}}} \right] {x_0}} \right) . \end{aligned}$$
(58)

Now, we process \(H_{12}\). First, by imitating the derivation of \({\bar{H}_{11}}\), one can compute \({\bar{H}_{12}}\) as

$$\begin{aligned} {{\bar{H}}_{12}}= & {} \int \limits _{\frac{{{\tau _1}\left( {x + \texttt {b}} \right) }}{{\texttt {a}_2x}}}^\infty {{y^{{\alpha _2} - 1}}{e^{ - \frac{y}{{{\Omega _2}}}}}dy}\nonumber \\= & {} {e^{ - \,\frac{{{\tau _1}(x + \texttt {b})}}{{{\Omega _2}{} \texttt {a}_2x}}}}\sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}\left[ {x + \texttt {b}} \right] }}{{\texttt {a}_2x}}} \right) }^k}}. \end{aligned}$$
(59)

Then, inserting (59) into (55) to yield

$$\begin{aligned} {H_{12}}= & {} \int \limits _0^{{x_0}} {{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}}}}{e^{ - \frac{{{\tau _1}(x + \texttt {b})}}{{{\Omega _2}{} \texttt {a}_2x}}}} \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}\left[ {x + \texttt {b}} \right] }}{{\texttt {a}_2x}}} \right) }^k}} dx }\nonumber \\= & {} \sum \limits _{k = 0}^{{\alpha _2} - 1} \frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) }^k}{e^{ - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2}}}} \nonumber \\&\times \,\int \limits _0^{{x_0}} {{{\left( {\frac{{x + \texttt {b}}}{x}} \right) }^k}{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{{\Omega _2}{} \texttt {a}_2x}}}}} dx \nonumber \\= & {} \sum \limits _{k = 0}^{{\alpha _2} - 1} \frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}{} \texttt {b}}}{\texttt {a}_2}} \right) }^k}{e^{ - \frac{{{\tau _1}}}{{\texttt {a}_2{\Omega _2}}}}}\nonumber \\&\times \,\int \limits _0^{{x_0}} {{{\left( {\frac{1}{\texttt {b}} + \frac{1}{x}} \right) }^k}{x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{\texttt {a}_2{\Omega _2}x}}}}} dx \nonumber \\= & {} \sum \limits _{k = 0}^{{\alpha _2} - 1} \frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}{} \texttt {b}}}{\texttt {a}_2}} \right) }^k}{e^{ - \frac{{{\tau _1}}}{{\texttt {a}_2{\Omega _2}}}}}\nonumber \\&\times \,\int \limits _0^{{x_0}} {\left[ {\sum \limits _{z = 0}^k {C_k^z{x^{ - z}}{{\left( {\frac{1}{\texttt {b}}} \right) }^{k - z}}} } \right] {x^{{\alpha _1} - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{\texttt {a}_2{\Omega _2}x}}}}dx} \nonumber \\= & {} \sum \limits _{k = 0}^{{\alpha _2} - 1} \frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) }^k}{e^{ - \frac{{{\tau _1}}}{{\texttt {a}_2{\Omega _2}}}}} \sum \limits _{z = 0}^k {C_k^z{\texttt {b}^z}} \nonumber \\&\times \,\int \limits _0^{{x_0}} {{x^{{\alpha _1} - z - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{\texttt {a}_2{\Omega _2}x}}}}} dx . \end{aligned}$$
(60)

Plugging (58) and (60) in (53), one obtains

$$\begin{aligned} {H_1}= & {} \frac{{\Omega _1^{ - {\alpha _1}}\Omega _2^{ - {\alpha _2}}}}{{\Gamma \left( {{\alpha _1}} \right) \Gamma \left( {{\alpha _2}} \right) }}\left[ \sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}} {{\left( {\frac{{{y_0}}}{{{x_0}}}} \right) }^k}{\left( {\frac{1}{{{\Omega _1}}} + \frac{{{y_0}}}{{{x_0}{\Omega _2}}}} \right) ^{ - \left( {k + {\alpha _1}} \right) }}\right. \nonumber \\&\quad \times \,\gamma \left( {k + {\alpha _1},\left[ {\frac{1}{{{\Omega _1}}} + \frac{{{y_0}}}{{{x_0}{\Omega _2}}}} \right] {x_0}} \right) \nonumber \\&\quad -\,\sum \limits _{k = 0}^{{\alpha _2} - 1} \frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}{{\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) }^k}{e^{ - \frac{{{\tau _1}}}{{\texttt {a}_2{\Omega _2}}}}}\sum \limits _{z = 0}^k {C_k^z{\texttt {b}^z}}\nonumber \\&\quad \times \,\left. \int \limits _0^{{x_0}} {{x^{{\alpha _1} - z - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{\texttt {a}_2{\Omega _2}x}}}}} dx \right] \nonumber \\&= \frac{{\Omega _1^{ - {\alpha _1}}\Omega _2^{ - {\alpha _2}}}}{{\Gamma \left( {{\alpha _1}} \right) \Gamma \left( {{\alpha _2}} \right) }}\sum \limits _{k = 0}^{{\alpha _2} - 1} {\frac{{\left( {{\alpha _2} - 1} \right) !}}{{k!\Omega _2^{k - {\alpha _2}}}}} \left[ \phantom {\int \limits _0^{{x_0}} {{x^{{\alpha _1} - z - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{\texttt {a}_2{\Omega _2}x}}}}} dx} {{\left( {\frac{{{y_0}}}{{{x_0}}}} \right) }^k} \left( \frac{1}{{{\Omega _1}}} \right. \right. \nonumber \\&\quad \left. +\, \frac{{{y_0}}}{{{x_0}{\Omega _2}}} \right) ^{ - \left( {k + {\alpha _1}} \right) }\gamma \left( {k + {\alpha _1},\left[ {\frac{1}{{{\Omega _1}}} + \frac{{{y_0}}}{{{x_0}{\Omega _2}}}} \right] {x_0}} \right) \nonumber \\&\quad - \,{\left( {\frac{{{\tau _1}}}{\texttt {a}_2}} \right) ^k}{e^{ - \frac{{{\tau _1}}}{{\texttt {a}_2{\Omega _2}}}}}\left. {\sum \limits _{z = 0}^k {C_k^z{\texttt {b}^z}} \int \limits _0^{{x_0}} {{x^{{\alpha _1} - z - 1}}{e^{ - \frac{x}{{{\Omega _1}}} - \frac{{{\tau _1}{} \texttt {b}}}{{\texttt {a}_2{\Omega _2}x}}}}} dx} \right] . \end{aligned}$$
(61)

Given (34), one can write the last integral in (61) in terms of \(U\left( {l,v,p,u} \right) \). Therefore, (61) exactly matches (32).

Following the same procedure as deriving (61), it is straightforwardly proven that \(H_2\) in (52) coincides that in (33), completing the proof of (31).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Huu, P., Ho-Van, K. Bidirectional relaying with energy harvesting capable relay: outage analysis for Nakagami-m fading. Telecommun Syst 69, 335–347 (2018). https://doi.org/10.1007/s11235-018-0441-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0441-5

Keywords

Navigation