Skip to main content

Advertisement

Log in

Robust adaptive multi-service transmission with hierarchical modulation for OFDM systems in high mobility scenarios

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Wireless communications play a key role in intelligent transportation systems for bearing multiple application services with different quality of service (QoS) requirements. Hierarchical modulation (HM) is an effective technique to increase the spectral efficiency (SE) of differentiated services multiplexing transmissions. In high mobility scenario, due to the impact of the feedback delay and channel estimation error, only the imperfect channel state information is available at the transmitter. Thus, the performance of the existing HM schemes degrades severely. In this paper, we propose a robust adaptive HM scheme to increase the overall SE in the mobile orthogonal frequency division multiplexing system. The bit error rate of the HM symbol is derived for the reliable QoS-aware multi-service transmission, and the strategies of bit assignment and modulation parameters selection for different services are designed. Finally, comparing with the traditional uniform modulation scheme, the proposed robust adaptive HM scheme increases the overall SE of multiplexing transmissions by \(15\%\) at \(300\,\hbox { km}/\hbox {h}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng, K., Zheng, Q., Chatzimisios, P., Xiang, W., & Zhou, Y. (2015). Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Communications Surveys and Tutorials, 17(4), 2377–2396.

    Article  Google Scholar 

  2. Ai, B., Guan, K., Rupp, M., Kurner, T., Cheng, X., Yin, X. F., et al. (2015). Future railway services-oriented mobile communications network. IEEE Communications Magazine, 53(10), 78–85.

    Article  Google Scholar 

  3. Barbu, G. (2010). E-train-broadband communication with moving trains technical report-technology state of the art. International Union Railways, Paris, France, Technical Report

  4. Cai, L., Xiang, S., Luo, Y., & Pan, J. (2011). Scalable modulation for video transmission in wireless networks. IEEE Transactions on Vehicular Technology, 60(9), 4314–4323.

    Article  Google Scholar 

  5. Wang, H., Huang, Y., Yang, L., Du, Y., & Zhao, M. (2010). A cooperative transmission design combining network coding and superposition coding. In Proceedings of wireless communications and signal processing (WCSP), Suzhou, pp. 1–5.

  6. Vitthaladevuni, P., & Alouini, M. S. (2003). A recursive algorithm for the exact BER computation of generalized hierarchical QAM constellations. IEEE Transactions on Information Theory, 49(1), 297–307.

    Article  Google Scholar 

  7. Alouini, M. S., Tang, X., & Goldsmith, A. (1999). An adaptive modulation scheme for simultaneous voice and data transmission over fading channels. IEEE Journal on Selected Areas in Communications, 17(5), 837–850.

    Article  Google Scholar 

  8. Hossain, J., Vitthaladevuni, P., Alouini, M. S., Bhargava, V., & Goldsmith, A. (2006). Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels. IEEE Transactions on Vehicular Technology, 55(4), 1181–1194.

    Article  Google Scholar 

  9. Khakzad, H., Shakeri, R., Taherpour, A., & Khattab, T. (2015). Multiuser scheduling on downlink communications by using adaptive hierarchical modulation. In Proceedings of international communications conference(ICC), London, pp. 2583–2589.

  10. Pham, T. T., Nguyen, H. H., & Tuan, H. D. (2013). Optimization of hierarchical modulation for decode-and-forward wireless relay networks. IEEE Transactions on Vehicular Technology, 62(9), 4484–4493.

    Article  Google Scholar 

  11. Wang, X., & Cai, L. (2013). Proportional fair scheduling in hierarchical modulation aided wireless networks. IEEE Transactions on Wireless Communications, 12(4), 1584–1593.

    Article  Google Scholar 

  12. Goldsmith, A., & Chua, S. G. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.

    Article  Google Scholar 

  13. Astely, D., Dahlman, E., Furuskar, A., Jading, Y., Lindstrom, M., & Parkvall, S. (2009). LTE: The evolution of mobile broadband. IEEE Communications Magazine, 47(4), 44–51.

    Article  Google Scholar 

  14. Lin, S., Kong, L., He, L., Guan, K., Ai, B., Zhong, Z., et al. (2015). Finite-state markov modeling for high-speed railway fading channels. IEEE Antennas and Wireless Propagation Letters, 14, 954–957.

    Article  Google Scholar 

  15. Zhu, H. (2012). Radio resource allocation for OFDMA systems in high speed environments. IEEE Journal on Selected Areas in Communications, 30(4), 748–759.

    Article  Google Scholar 

  16. Choi, Y. S., Voltz, P., & Cassara, F. (2001). On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Transactions on Communications, 49(8), 1375–1387.

    Article  Google Scholar 

  17. Ye, S., Blum, R., & Cimini, L. (2006). Adaptive OFDM systems with imperfect channel state information. IEEE Transactions on Wireless Communications, 5(11), 3255–3265.

    Article  Google Scholar 

  18. Pao, W. C., Chen, Y. F., & Tsai, M. G. (2014). An adaptive allocation scheme in multiuser OFDM systems with time-varying channels. IEEE Transactions on Wireless Communications, 13(2), 669–679.

    Article  Google Scholar 

  19. Dong, Z., Fan, P., Panayirci, E., & Lei, X. (2015). Conditional power and rate adaptation for MQAM/OFDM systems under CFO with perfect and imperfect channel estimation errors. IEEE Transactions on Vehicular Technology, 64(11), 5042–5055.

    Article  Google Scholar 

  20. Wendler, M. L. I., & Guillemaut, S. (2014). ETCS in PS-mode GPRS/EGPRS Guideline. Kapsch CarrierCom, Nokia: UIC ERTMS/GSM-R Operators Group.

  21. Harsini, J. S., & Zorzi, M. (2014). Transmission strategy design in cognitive radio systems with primary ARQ control and QoS provisioning. IEEE Transactions on Communications, 62(6), 1790–1802.

    Article  Google Scholar 

  22. Tandon, A., & Motani, M. (2017). A cross-layer approach to reducing packet delay in polling-based multiuser system. IEEE Transactions on Vehicular Technology, 66(2), 1506–1518.

    Article  Google Scholar 

  23. Liu, W., Sun, L., Liu, Y., Zhu, H., Zhong, Z., & He, T. (2012). Exploiting ephemeral link correlation for mobile wireless networks. In Proceedings of ACM conference on embedded network sensor systems NY, USA, pp. 239–252.

  24. Pack, S., Rutagemwa, H., Shen, X., Mark, J. W., & Cai, L. (2007). Performance analysis of mobile hotspots with heterogeneous wireless links. IEEE Transactions on Wireless Communications, 6(10), 3717–3727.

    Article  Google Scholar 

  25. Aniba, G., & Aissa, S. (2011). Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels. IEEE Transactions on Wireless Communications, 10(4), 1026–1031.

    Article  Google Scholar 

  26. Liu, Q., Zhou, S., & Giannakis, G. (2004). Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5), 1746–1755.

    Article  Google Scholar 

  27. Wu, D., Ci, S., & Wang, H. (2007). Cross-layer optimization for video summary transmission over wireless networks. IEEE Journal on Selected Areas in Communications, 25(4), 841–850.

    Article  Google Scholar 

  28. Cai, X., & Giannakis, G. B. (2003). Bounding performance and suppressing intercarrier interference in wireless mobile OFDM. IEEE Transactions on Communications, 51(12), 2047–2056.

    Article  Google Scholar 

  29. Dong, Z., Fan, P., Hu, R. Q., Gunther, J., & Lei, X. (2016). On the spectral efficiency of rate and subcarrier bandwidth adaptive OFDM systems over very fast fading channels. IEEE Transactions on Vehicular Technology, 65(8), 6038–6050.

    Article  Google Scholar 

  30. Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys and Tutorials, 19(3), 92–106.

    Article  Google Scholar 

  31. Rhee, W., & Cioffi, J. M. (2000). Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In Proceedings of IEEE vehicular technology conference (VTC) spring, Tokyo, pp. 1085–1089.

  32. Sun, N., & Wu, J. (2014). Maximizing spectral efficiency for high mobility systems with imperfect channel state information. IEEE Transactions on Wireless Communications, 13(3), 1462–1470.

    Article  Google Scholar 

  33. Panayirci, E., Dogan, H., & Poor, H. V. (2011). Low-complexity map-based successive data detection for coded OFDM systems over highly mobile wireless channels. IEEE Transactions on Vehicular Technology, 60(6), 2849–2857.

    Article  Google Scholar 

  34. Chiani, M., Dardari, D., & Simon, M. K. (2003). New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transactions on Vehicular Technology, 2(4), 840–845.

    Google Scholar 

  35. Gradshten, I., Ryzhik, I., Jeffrey, A., & Zwillinger, D. (2007). Table of integrals, series and products (7th ed.). San Diego, CA: Academic.

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Key Research and Development Program of China (No. 2016YFB1200 102), the National Natural Science Foundation of China (Nos. 61501023, U1334202, U1534201, 61672349), and the Project of China Railway Corporation under Grant (No. 2016X003-L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Lin.

Appendices

Appendix

Proof of Eq. (34)

Proof

According to (8), (26), considering the channel estimation error and feedback delay, the ICI power of the kth subcarrier with the equal average transmit power constraint \({\bar{P}} = E\{ |s_k|^2\}\) can be expressed as

$$\begin{aligned} \begin{aligned} {\mathbb {E}} \{ |\hat{I}_k|^2\}&= \frac{1}{N^2} \sum _{q=0, q \ne k}^{N-1} {\mathbb {E}}\{|s_q|^2\} {\mathbb {E}}\{{\hat{H}}_q(n_1) {\hat{H}}_q(n_2)^*\} \\&\quad \times \exp \left( \frac{j 2\pi (n_1 - n_2) (q-k)}{N} \right) \\&= \frac{1}{N^2} \sum _{q=0, q \ne k}^{N-1} {\bar{P}} \sum _{n_1=0}^{N-1} \sum _{n_2=0}^{N-1} {\mathbb {E}} \big \{ \big (H_q(n_1 - \varDelta n) \\&\quad + \varepsilon _q(n_1 - \varDelta n) \big ) \big (H_q(n_2 - \varDelta n)^* + \varepsilon _q(n_2 - \varDelta n) \big ) \big \} \\&\quad \times \exp \left( \frac{j 2\pi (n_1 - n_2) (q-k)}{N} \right) \\&= \frac{1}{N^2} \sum _{q=0, q \ne k}^{N-1} {\bar{P}} \sum _{n_1=0}^{N-1} \sum _{n_2=0}^{N-1} E\{ H_q(n_1 - \varDelta n) \\&\quad \times H_q(n_2 - \varDelta n)^* \} \exp \left( \frac{j 2\pi (n_1 - n_2) (q-k)}{N} \right) \\&\quad + \frac{1}{N^2} \sum _{q=0, q \ne k}^{N-1} {\bar{P}} N \sigma _{\varepsilon }^2 \\&= {\bar{P}} \left( \sum _{q=0, q \ne k}^{N-1} \varphi _{k,q} + \frac{1}{N^2} \sum _{q=0, q \ne k}^{N-1} N \sigma _{\varepsilon }^2 \right) \\&= {\bar{P}} \left( P_N + \frac{N-1}{N} \sigma _{\varepsilon }^2 \right) . \end{aligned} \end{aligned}$$

We have the normalized ICI power: \(\hat{P}_N = P_N + \frac{N-1}{N} \sigma _{\varepsilon }^2 \). According to (18), the instantaneous received SINR can be formulated as

$$\begin{aligned} \begin{aligned} \hat{\eta }_k&= \frac{\gamma _k}{ (P_N + \frac{N-1}{N} \sigma _{\varepsilon }^2 ) {\bar{\gamma }} +1} \\&= \frac{\gamma _k}{\hat{P}_N {\bar{\gamma }} +1}, \end{aligned} \end{aligned}$$
(48)

where \(\hat{P}_N = P_N + \frac{N-1}{N} \sigma _{\varepsilon }^2\) is the normalized ICI power with the imperfect CSI. \(\square \)

Proof of Eq. (36)

Proof

According to (36), we have the following expression

$$\begin{aligned} \begin{aligned}&{{\widetilde{BER}}}_4^{I, 1}(\hat{\gamma }_k, \alpha _1) \\&\quad = \int _0^\infty \kappa s_4^{I, 1} \exp \left( {t_4^{I, 1}(\alpha _1) \gamma _k} \right) f(\gamma _k | \hat{\gamma }_k) ~d\gamma _k \\&\quad = \int _0^\infty \kappa s_4^{I, 1} \frac{1}{{\bar{\gamma }} \sigma ^2} \exp \left( \frac{\rho ^2 \hat{\gamma }_k}{- {\bar{\gamma }} \sigma ^2 (\sigma _{{\hat{H}}_k}^2)^2} \right) \\&\qquad \times \exp \left( {t_4^{I, 1}(\alpha _1) \gamma _k} + \frac{\gamma _k (\sigma _{{\hat{H}}_k}^2)^2}{- {\bar{\gamma }} \sigma ^2 (\sigma _{{\hat{H}}_k}^2)^2}\right) \mathrm {I}_0 \left( \frac{2 \rho \sqrt{\hat{\gamma }_k \gamma _k}}{{\bar{\gamma }} \sigma ^2 \sigma _{{\hat{H}}_k}^2} \right) d\gamma _k , \end{aligned} \end{aligned}$$
(49)

By means of the integral formula in [35], we have the following result

$$\begin{aligned} \begin{aligned}&\int _{0}^{+\infty } x^{\mu - \frac{1}{2}} \exp (- \alpha x) \mathrm {I}_{2 v} (2 \beta \sqrt{x}) ~dx\\&\quad = \frac{\varGamma \left( \mu + v + \frac{1}{2}\right) }{\varGamma \left( 2 v + \frac{1}{2}\right) } \beta ^{-1} \exp \left( \frac{\beta ^2}{2 \alpha }\right) \alpha ^{- \mu } \mathrm {M}_{(-\mu , v)} \left( \frac{\beta ^2}{\alpha }\right) , \end{aligned} \end{aligned}$$
(50)

where \(\mathrm {M}_{(a, b)}(y) = y^{(b+ \frac{1}{2})} \exp (\frac{-y}{2}) \varPhi (b- a+ \frac{1}{2}, 2 b+ 1, y)\), and \(\varPhi (d, d, z) = \exp (z)\).

Considering the expression of the average BER (49), we have \(\mu = \frac{1}{2}\), \(v = 0\), \(\alpha = -t_4^{I, 1}(\alpha _1) + {(\sigma _{{\hat{H}}_k}^2)^2} / {{\bar{\gamma }} \sigma ^2 (\sigma _{{\hat{H}}_k}^2)^2}\), and \(\beta = {\rho \sqrt{\hat{\gamma }_k}} / {{\bar{\gamma }} \sigma ^2 (\sigma _{{\hat{H}}_k}^2)^2}\). Substituting (50) into (49), the approximation of the average BER can be derived as

$$\begin{aligned} \begin{aligned}&{{\widetilde{BER}}}_4^{I, 1}(\hat{\gamma }_k, \alpha _1) \\&\quad = \frac{\kappa s_4^{I, 1}}{1- {\bar{\gamma }} \sigma ^2 t_4^{I, 1}(\alpha _1) } \\&\qquad \exp \bigg (\frac{\rho ^2 \hat{\gamma }_k }{(\sigma _{{\hat{H}}_k}^2)^2} \frac{t_4^{I, 1}(\alpha _1)}{1- {\bar{\gamma }} \sigma ^2 t_4^{I, 1}(\alpha _1)} \bigg ), \end{aligned} \end{aligned}$$
(51)

where \(s_4^{I, 1} = 1/2\), and \(t_4^{I, 1}(\alpha _1) = {-\alpha _1^2} / {(K_4 (\hat{P}_N {\bar{\gamma }} +1)})\). \(\square \)

Proof of Eq. (43)

Proof

According to (37), assuming the average BER denoted by \(p(s, t, \hat{\gamma }_k)\) should to meet the target BER \(\varepsilon \), we have the following equation

$$\begin{aligned} \frac{\kappa s}{1- {\bar{\gamma }} \sigma ^2 t} \exp \left( \frac{\rho ^2 \hat{\gamma }_k }{\left( \sigma _{{\hat{H}}_k}^2\right) ^2} \frac{t}{1- {\bar{\gamma }} \sigma ^2 t} \right) = \varepsilon . \end{aligned}$$
(52)

Let \(x = {t}/{(1- {\bar{\gamma }} \sigma ^2 t)}\), (52) can be reformed as

$$\begin{aligned} {\kappa s} (1+ {\bar{\gamma }} \sigma ^2 x) \exp \left( \frac{\rho ^2 \hat{\gamma }_k}{\left( \sigma _{{\hat{H}}_k}^2\right) ^2} x \right)&= \varepsilon \nonumber \\ \frac{\kappa s}{\epsilon } + \frac{\kappa s}{\epsilon } {\bar{\gamma }} \sigma ^2 x - \exp \left( \frac{- \rho ^2 \hat{\gamma }_k}{\left( \sigma _{{\hat{H}}_k}^2\right) ^2} x\right)&= 0. \end{aligned}$$
(53)

Many equations involving exponentials can be solved using the Lambert function \(z = W(z) e^{W(z)}\), i.e.

$$\begin{aligned} c z +d -\exp \left( a z +b \right) =0, \end{aligned}$$
(54)

which yields the final solution

$$\begin{aligned} z = \frac{- W\left( \frac{-a}{c} \exp (b- \frac{a d}{c}) \right) }{a} - \frac{d}{c}. \end{aligned}$$
(55)

According to (53), we have \(a = {- \rho ^2 \hat{\gamma }_k} / {(\sigma _{{\hat{H}}_k}^2)^2}\), \(b = 0\), \(c = {\bar{\gamma }} \sigma ^2 {\kappa s} / {\epsilon } \), and \(d = {\kappa s} / {\epsilon }\). Hence, the solution of (53) can be obtained as

$$\begin{aligned} x = \frac{W\left( \frac{\rho ^2 \hat{\gamma }_k }{(\sigma _{{\hat{H}}_k}^2)^2} \frac{\epsilon }{{\bar{\gamma }} \sigma ^2 {\kappa s} } \exp \Big ( \frac{\rho ^2 \hat{\gamma }_k }{(\sigma _{{\hat{H}}_k}^2)^2} \frac{1}{{\bar{\gamma }} \sigma ^2}\Big ) \right) }{{\rho ^2 \hat{\gamma }_k } / {(\sigma _{{\hat{H}}_k}^2)^2} } - \frac{1}{{\bar{\gamma }} \sigma ^2}. \end{aligned}$$
(56)

Substituting \(x = {t}/{(1- {\bar{\gamma }} \sigma ^2 t)}\) into the equation (56), the solution of modulation parameter t can be derived as

$$\begin{aligned} t = \frac{1}{{\bar{\gamma }} \sigma ^2} - \frac{\hat{\gamma }_k {\rho ^2} / {({\bar{\gamma }} \sigma ^2 \sigma _{{\hat{H}}_k}^2)^2}}{W \left( \frac{\rho ^2 \hat{\gamma }_k }{(\sigma _{{\hat{H}}_k}^2)^2}\frac{\epsilon }{\kappa s {\bar{\gamma }} \sigma ^2} \exp \Big (\frac{\hat{\gamma }_k \rho ^2}{(\sigma _{{\hat{H}}_k}^2)^2} \frac{1}{{\bar{\gamma }} \sigma ^2} \Big ) \right) }. \end{aligned}$$
(57)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Zhu, G., Lin, S. et al. Robust adaptive multi-service transmission with hierarchical modulation for OFDM systems in high mobility scenarios. Telecommun Syst 69, 381–395 (2018). https://doi.org/10.1007/s11235-018-0445-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-018-0445-1

Keywords

Navigation