Skip to main content

Advertisement

Log in

Impacts of imperfect SIC and imperfect hardware in performance analysis on AF non-orthogonal multiple access network

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In normal non-orthogonal multiple access (NOMA) network, perfect successive interference cancellation (SIC) and perfect hardware impairments are usually admitted at transceivers. However, imperfections of SIC and hardware exist in mathematical analysis of practical system, and such imperfections provide guideline to deploy NOMA in practical circumstances effectively. To overcome these disadvantages, this paper considers relaying NOMA as existence of hardware noise and interference of imperfect SIC operation and hence degraded performance under related factors can be addressed. We examine the system performance of the proposed system and develop a closed-form formulation of outage probabilities for each user. In high signal to noise ratio regime, we consider the corresponding asymptotic outage probability to provide meaningful insights in our proposed schemes. We also exhibit comparison study with other works related performance evaluation and with Decode and Forward based NOMA as useful benchmark. To further examine system performance of the proposed scheme, we derive formula and verify results in term of the throughput performance. Finally, numerical examples are performed to validate the effectiveness of the proposed scheme as practical challenges are raised, and compare these performance considerations with that in other system models with respect to outage behavior as varying related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. S. (2018). Resource allocation for downlink noma systems: Key techniques and open issues. IEEE Wireless Communications, 25(2), 40–47.

    Article  Google Scholar 

  2. Han, G., Liu, L., Chan, S., Yu, R., & Yang, Y. (2017). HySense: A hybrid mobile crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint. IEEE Communications Magazine, 55(3), 93–99.

    Article  Google Scholar 

  3. Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.

    Article  Google Scholar 

  4. Han, G., Wan, L., Shu, L., & Feng, N. (2017). Two novel DOA estimation approaches for real-time assistant calibration systems in future vehicle industrial. IEEE Systems Journal, 11(3), 1361–1372. https://doi.org/10.1109/JSYST.2015.2434822.

    Article  Google Scholar 

  5. Im, G., & Lee, J. H. (2019). Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks. IEEE Communications Letters, (Early Access).

  6. Duan, W., Jiang, X.-Q., Wen, M., Wang, J., & Zhang, G. (2018). Two-stage superposed transmission for cooperative NOMA systems. IEEE Access, 6, 3920–3931.

    Article  Google Scholar 

  7. Kim, J.-B., Lee, I.-H., & Lee, J.-H. (2018). Capacity scaling for D2D aided cooperative relaying systems using NOMA. IEEE Wireless Communications Letters, 7(1), 42–45.

    Article  Google Scholar 

  8. Liu, Q., Lv, T., & Lin, Z. (2018). Energy-efficient transmission design in cooperative relaying systems using NOMA. IEEE Communications Letters, 22(3), 594–597.

    Article  Google Scholar 

  9. Do, D.-T., Van Nguyen, M.-S., Hoang, T.-A., & Voznak, M. (2019). NOMA-assisted multiple access scheme for IoT deployment: Relay selection model and secrecy performance improvement. Sensors, 19(3), 736.

    Article  Google Scholar 

  10. Do, D.-T., & Le, C.-B. (2018). Application of NOMA in wireless system with wireless power transfer scheme: Outage and ergodic capacity performance analysis. Sensors, 18(10), 3501.

    Article  Google Scholar 

  11. Nguyen, X.-X., & Do, D.-T. (2017). Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel. EURASIP Journal on Wireless Communications and Networking, 2017, 152.

    Article  Google Scholar 

  12. Nguyen, X.-X., & Do, D.-T. (2017). Maximum harvested energy policy in full-duplex relaying networks with SWIPT. International Journal of Communication Systems, 30(17), e3359.

    Article  Google Scholar 

  13. Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless-powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436.

    Article  Google Scholar 

  14. Nguyen, T.-L., & Do, D.-T. (2018). Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Communications and Mobile Computing (p 12), 2018, Article ID 2525492.

  15. Li, X., Li, J., Mathiopoulos, P. T., Zhang, D., Li, L., & Jin, J. (2018). Joint impact of hardware impairments and imperfect CSI on cooperative SWIPT NOMA multi-relaying systems. In 2018 IEEE/CIC international conference on communications in China (ICCC) (pp. 95–99). IEEE.

  16. Gong, J., & Chen, X. (2017). Achievable rate region of non-orthogonal multiple access systems with wireless powered decoder. IEEE Journal on Selected Areas in Communications, 35(12), 2846–2859.

    Article  Google Scholar 

  17. Xu, Y., et al. (2017). Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems. IEEE Transactions on Signal Processing, 65(18), 4874–4886.

    Article  Google Scholar 

  18. Hanif, M. F., Ding, Z., Ratnarajah, T., & Karagiannidis, G. K. (2016). A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Transactions on Signal Processing, 64(1), 76–88.

    Article  Google Scholar 

  19. Chen, Z., Ding, Z., Xu, P., & Dai, X. (2016). Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Communications Letters, 20(6), 1263–1266.

    Article  Google Scholar 

  20. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22(10), 1647–1651.

    Article  Google Scholar 

  21. Choi, J. (2016). Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Communications Letters, 20(10), 2055–2058.

    Article  Google Scholar 

  22. Nguyen, V.-D., Tuan, H.-D., Duong, T.-Q., Poor, H. V., & Shin, O.-S. (2017). Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE Journal on Selected Areas in Communications, 35(12), 2681–2695.

    Article  Google Scholar 

  23. Zeng, J., Li, B., Mao, Y., Su, X., & Kuang, Y. (2015). ‘Research of heterogeneous networks convergence with NOMA. In 2015 IEEE/CIC International conference on communications in China (ICCC) (pp. 1–5). IEEE.

  24. Tian, Y., Nix, A. R., & Beach, M. (2016). On the performance of opportunistic noma in downlink comp networks. IEEE Communications Letters, 20(5), 998–1001.

    Article  Google Scholar 

  25. Men, J., Ge, J., & Zhang, C. (2017). Performance analysis of nonorthogonal multiple access for relaying networks over nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.

    Article  Google Scholar 

  26. Yin, L., Popoola, W. O., Wu, X., & Haas, H. (2016). Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Transactions on Communications, 64(12), 5162–5175.

    Article  Google Scholar 

  27. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Chen, Y. (2018). Modeling and analysis of two-way relay non-orthogonal multiple access systems. IEEE Transactions on Communications, 66(9), 3784–3796.

    Article  Google Scholar 

  28. Schenk, T. (2008). RF imperfections in high-rate wireless systems: Impact and digital compensation. Dordrecht: Springer.

    Book  Google Scholar 

  29. Do, D.-T. (2015). Power switching protocol for two-way relaying network under hardware impairments. Radioengineering, 24(3), 765–771.

    Article  Google Scholar 

  30. Do, D.-T. (2015). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems, 62(2), 449–459.

    Article  Google Scholar 

  31. Yue, X., et al. (2018). Outage performance of a unified non-orthogonal multiple access framework. In 2018 IEEE International conference on communications (ICC) (pp. 1–6). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

To prove outage probability, we recall achieved SINR as presentation in previous section. In this case, the outage probability for \(D_2\) can be computed by

$$\begin{aligned} \begin{aligned} {\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {\mathrm{I}} \right) } \buildrel \varDelta \over =&\Pr \left( \frac{{{\alpha }{\rho ^2}{X}{Z}}}{{{\rho ^2}{X}{{\left| g \right| }^2}{(1-\alpha )} + \rho {X} + \rho {Z} + 1}}< {\delta _{t{h_1}}},\right. \\&\left. \frac{{{(1-\alpha )}{\rho ^2}{X}{Z}}}{{\rho {X} + \rho {Z} + 1}}< {\delta _{t{h_2}}} \right) \\ =&\Pr \left( {{Z} < \frac{{\rho {X} + 1}}{{\rho \left( {\chi \rho {X} - 1} \right) }}} \right) \end{aligned}. \end{aligned}$$
(A.1)

In the case of \(\chi \rho {\left| h \right| ^2} - 1 < 0\), it leads to following inequality \( {\left| h \right| ^2} < {1 /{\rho \chi }} \), the outage probability in this case can be calculated as \({\mathrm{OP}}_{{\mathrm{D2,x2}}}^{\left( {\mathrm{I}} \right) } = 1\).

In the case of \(\chi \rho {\left| h \right| ^2} - 1 > 0\), the outage probability is given by

$$\begin{aligned} {\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {\mathrm{I}} \right) }&= 1 - \int \limits _{\frac{1}{{\rho \chi }}}^\infty {\exp \left( { - \frac{{\rho z + 1}}{{\rho \left( {\chi \rho z - 1} \right) }} - z} \right) } dz\nonumber \\&= 1 - \frac{1}{{\rho \chi }} \times \exp \left( { - \frac{2}{{\rho \chi }}} \right) \nonumber \\&\times \int \limits _0^\infty {\exp \left( { - \frac{4}{{4\rho t}}\left( {\frac{1}{{\rho \chi }} + 1} \right) - \frac{t}{{\rho \chi }}} \right) } dt. \end{aligned}$$
(A.2)

After simple manipulation, it can be found final expression. This is end of the proof. \(\square \)

Proof of Proposition 2

The outage probability considered in previous section is rewritten as

$$\begin{aligned}&{\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{{\mathrm{ipsic}}} \nonumber \\&\quad = 1 - \int \limits _0^\infty {\exp \left( { - x} \right) \underbrace{\int \limits _{\frac{{{\delta _{t{h_2}}}}}{{\rho {(1-\alpha )}}}}^\infty {\exp \left( { - \frac{{{\delta _{t{h_2}}}\left( {\upsilon {\rho ^2}x + \rho z + 1} \right) }}{{\rho \left( {{(1-\alpha )}\rho z - {\delta _{t{h_2}}}} \right) }} - z} \right) } dz}_{{\varTheta _1}}dx}\nonumber \\ \end{aligned}$$
(B.1)

in which,

$$\begin{aligned} {\varTheta _1}\left( x \right)&= \int \limits _{\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}\rho }}}^\infty {\exp \left( { - \frac{{{\delta _{t{h_2}}}\left( {\upsilon {\rho ^2}x + \rho z + 1} \right) }}{{\rho \left( {{(1-\alpha )}\rho z - {\delta _{t{h_2}}}} \right) }} - z} \right) } dz\nonumber \\&= \frac{1}{{{(1-\alpha )}\rho }}\exp \left( { - \frac{{2{\delta _{t{h_2}}}}}{{{(1-\alpha )}\rho }}} \right) \nonumber \\&\times \underbrace{\int \limits _0^\infty {\exp \left( { - \frac{{4{\delta _{t{h_2}}}}}{{4\rho t}}\left( {\upsilon {\rho ^2}x + \frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}}} + 1} \right) - \frac{t}{{{(1-\alpha )}\rho }}} \right) } dt}_{{\mu _1}} \end{aligned}$$
(B.2)

It is noted that \(\mu _1\) in above expression can be further computed by

$$\begin{aligned} {\mu _1}&= 2\exp \left( { - \frac{{2{\delta _{t{h_2}}}}}{{{(1-\alpha )}\rho }}} \right) \times \int \limits _0^\infty \exp \left( { - x} \right) \nonumber \\&\quad \times \sqrt{\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}{\rho ^2}}}\left( {\upsilon {\rho ^2}x + \frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}}} + 1} \right) } \nonumber \\&\quad \times {\mathrm{K}_1}\left( {2\sqrt{\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}{\rho ^2}}}\left( {\upsilon {\rho ^2}x + \frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}}} + 1} \right) } } \right) dx \end{aligned}$$
(B.3)

Next, it can be expressed such outage by

$$\begin{aligned} {\mathrm{OP}}_{{\mathrm{D2,x2}}}^{{\mathrm{ipsic}}} = 1 - \exp \left( { - \frac{{2{\delta _{t{h_2}}}}}{{{(1-\alpha )}\rho }}} \right) \times I \end{aligned}$$
(B.4)

where, \(I = \phi \left( {\frac{{\upsilon {\delta _{t{h_2}}}}}{{{(1-\alpha )}}},\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}{\rho ^2}}}\left( {\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}}} + 1} \right) } \right) = \phi \left( {a,b} \right) \), in which \({\frac{{\upsilon {\delta _{t{h_2}}}}}{{{(1-\alpha )}}}}=a\), \({\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}{\rho ^2}}}\left( {\frac{{{\delta _{t{h_2}}}}}{{{(1-\alpha )}}} + 1} \right) }=b\)

Interestingly, it can be re-expressed \(\phi \left( {a,b} \right) \) as below

$$\begin{aligned} \phi \left( {a,b} \right) \buildrel \varDelta \over =&2\int \limits _0^\infty {\exp \left( { - x} \right) \sqrt{ax + b} \times {\mathrm{K}_1}\left( {2\sqrt{ax + b} } \right) dx} \nonumber \\ =&2\exp \left( { - \frac{b}{a}} \right) \left\{ \underbrace{\sqrt{a} \int \limits _0^\infty {\sqrt{x} \times {\mathrm{K}_1}\left( {\sqrt{4a} \sqrt{x} } \right) \exp \left( { - x} \right) dx} }_{{\varDelta _1}}\right. \nonumber \\&\left. - \int \limits _0^b {\sqrt{y} \times {\mathrm{K}_1}\left( {2\sqrt{y} } \right) \exp \left( { - \frac{y}{a}} \right) dy} \right\} \end{aligned}$$
(B.5)

The integral formula in (B.5) can be obtained by using [32, vol. 4, eq. (1.1.2.3)]. The first term in above equation can be fulfilled by applying [32, vol. 4, eq. (3.16.2.4)]

$$\begin{aligned} {\varDelta _1}&= \sqrt{a} \times \int \limits _0^\infty {\sqrt{x} \times {\mathrm{K}_1}\left( {\sqrt{4a} \sqrt{x} } \right) \times \exp \left( { - x} \right) dx} \nonumber \\&= \sqrt{a} \times \frac{{\varGamma \left( 2 \right) \sqrt{4a} }}{4} \times \exp \left( {\frac{{4a}}{4}} \right) \times \varGamma \left( { - 1,\frac{{4a}}{4}} \right) \nonumber \\&= \frac{{a \times \varGamma \left( 2 \right) }}{2} \times \exp \left( a \right) \times \varGamma \left( { - 1,a} \right) . \end{aligned}$$
(B.6)

The second term in (B.5) is difficult to solve in closed-form because of the Bessel function and exponential function. This is end of proof. \(\square \)

Proof of Proposition 3

Extracting from obtained SNDR as findings in previous section, we formula outage probability at \(D_2\) as

$$\begin{aligned} {\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {{\mathrm{II}}} \right) }&= \Pr \left( {{\mathrm{SND}}{{\mathrm{R}}_{1 \rightarrow 2}}< {\delta _{t{h_1}}},{\mathrm{SND}}{{\mathrm{R}}_2} < {\delta _{t{h_2}}}} \right) \nonumber \\&= 1 - \Pr \left( {{\mathrm{SND}}{{\mathrm{R}}_{1 \rightarrow 2}} \ge {\delta _{t{h_1}}},{\mathrm{SND}}{{\mathrm{R}}_2} \ge {\delta _{t{h_2}}}} \right) \end{aligned}$$
(C.1)

In particular, after replacing specific SNDR expressions, we have following formula

$$\begin{aligned} {\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {{\mathrm{II}}} \right) }&= \Pr \left( \min \left( {\frac{{{\alpha }}}{{{\delta _{t{h_1}}}}} - \left( {{(1-\alpha )} + {d_0}} \right) ,\frac{{{(1-\alpha )}}}{{{\delta _{t{h_2}}}}}} \right) \right. \nonumber \\&\left. {\rho ^2}{X}{Z}< {d_1}\rho {X} + {d_2}\rho {Z} + 1 \right) \nonumber \\&= \Pr \left( {\chi {\rho ^2}{X}{Z} < {d_1}\rho {X} + {d_2}\rho {Z} + 1} \right) \end{aligned}$$
(C.2)

It is further expressed by

$$\begin{aligned} {\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {{\mathrm{II}}} \right) } = \Pr \left( {{Z} < \frac{{{d_1}\rho {X} + 1}}{{\rho \left( {\chi \rho {X} - {d_2}} \right) }}} \right) . \end{aligned}$$
(C.3)

It is noted as \(\chi \buildrel \varDelta \over = \min \left( {\frac{{{\alpha }}}{{{\delta _{t{h_1}}}}} - \left( {{(1-\alpha )} + {d_0}} \right) ,\frac{{{(1-\alpha )}}}{{{\delta _{t{h_2}}}}}} \right) \).

We obtain \({\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {{\mathrm{II}}} \right) } = 1\) as \(\chi \rho {\left| h \right| ^2} - {d_2} < 0\).

In case of \(\chi \rho {\left| h \right| ^2} - {d_2} \ge 0\) the related outage probability is given by

$$\begin{aligned} {\mathrm{OP}}_{{\mathrm{D_2,x_2}}}^{\left( {{\mathrm{II}}} \right) }&= 1 - \frac{1}{{{\varOmega _1}{\varOmega _2}\rho \chi }}\int \limits _0^\infty \exp \left( - \frac{{{d_1}}}{{{\varOmega _1}\rho \chi }} \right. \nonumber \\&\quad \left. - \frac{1}{{\rho t}}\left( {\frac{{{d_1}{d_2}}}{\chi } + 1} \right) - \frac{t}{{{\varOmega _1}{\varOmega _2}\rho \chi }} - \frac{{{d_2}}}{{{\varOmega _2}\rho \chi }} \right) dt\nonumber \\&= 1 - \frac{1}{{{\varOmega _1}{\varOmega _2}\rho \chi }}\exp \left( { - \frac{{\left( {{d_1}{\varOmega _2} + {d_2}{\varOmega _1}} \right) }}{{{\varOmega _1}{\varOmega _2}\rho \chi }}} \right) \nonumber \\&\times \int \limits _0^\infty {\exp \left( { - \frac{4}{{4\rho t}}\left( {\frac{{{d_1}{d_2}}}{\chi } + 1} \right) - \frac{t}{{{\varOmega _1}{\varOmega _2}\rho \chi }}} \right) } dt. \end{aligned}$$
(C.4)

Finally, a closed-form expression of the outage probability for \(D_2\) in case of existence of hardware impairment is written as in Proposition 3 after performing simple computation. It completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, DT., Nguyen, TT.T. Impacts of imperfect SIC and imperfect hardware in performance analysis on AF non-orthogonal multiple access network. Telecommun Syst 72, 579–593 (2019). https://doi.org/10.1007/s11235-019-00583-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00583-7

Keywords

Navigation