Skip to main content
Log in

System reliability analysis of small-cell deployment in heterogeneous cellular networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper exhibits a primer on the use of modern system reliability techniques on several important topologies of small-cell deployment in multi-tier dense cellular networks. We synthesize a network into several subnetworks and use outage probability as a performance metric to formulate the small-cell deployment problem in the Boolean domain by means of an indicator function. The methodology employed herein includes disjointness for logically added expressions, arriving at a probability ready expression, and a transformation to the probability domain on a one-to-one basis by replacing indicator Boolean variables by their expectations and replacing logical operations by their arithmetical counterparts. This work also presents a systematic procedure of computing several reliability metrics such as the useful redundancy region, mean-time-to-failure, importance measures of the links, and quantification of uncertainty in system reliability as a function of uncertainties in link reliabilities by considering both identical and non-identical link failures. Non-linear algorithms are also tested on the optimization problem that minimizes system unreliability. We contribute to the important issue of analyzing small-cell deployment by providing exact system reliability metrics and hence open a new frontier for software defined networks controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anonymous. (2019). Global mobile data traffic forecast update, 2017–2022 (Cisco Visual Networking Index), White Paper.

  2. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  3. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  4. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communication Magazine, 52(5), 86–92.

    Article  Google Scholar 

  5. Parkvall, S., Dahlman, E., Jöngren, G., Landström, S., & Lindbom, L. (2011) Heterogeneous network deployments in LTE—The soft-cell approach. Ericsson Review 2

  6. Liu, C., Natarajan, B., & Xia, H. (2016). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661.

    Article  Google Scholar 

  7. Zhang, G., Quek, T. Q. S., Huang, A., Kountouris, M., & Shan, H. (2015). Backhaul-aware base station association in two-tier heterogeneous cellular networks. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC). Stockholm (pp. 390–394).

  8. Zhang, G., Quek, T. Q. S., Huang, A., & Shan, H. (2016). Delay and reliability tradeoffs in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(2), 1101–1113.

    Article  Google Scholar 

  9. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.

    Article  Google Scholar 

  10. Siddique, U., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Wireless backhauling of 5G small cells: Challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31.

    Article  Google Scholar 

  11. Moore, E. F., & Shannon, C. E. (1956). Reliable circuits using less reliable relays. Journal of The Franklin Institute, 262(3), 191–208.

    Article  Google Scholar 

  12. Bennetts, R. G. (1975). On the analysis of fault trees. IEEE Transactions on Reliability, 24(3), 175–185.

    Article  Google Scholar 

  13. Bennetts, R. G. (1982). Analysis of reliability block diagrams by Boolean techniques. IEEE Transactions on Reliability, 31(2), 159–166.

    Article  Google Scholar 

  14. Kuo, W., & Zuo, M. J. (2003). Optimal reliability modeling: Principles and applications. Hoboken: Wiley.

    Google Scholar 

  15. Misra, K. B. (Ed.). (2008). Handbook of performability engineering. London: Springer.

    Google Scholar 

  16. Rushdi, A. M. A., & Hassan, A. K. (2015). Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecological Modelling, 304, 1–10.

    Article  Google Scholar 

  17. Rushdi, A. M. A., & Hassan, A. K. (2016). An exposition of system reliability analysis with an ecological perspective. Ecological Indicators, 63, 282–295.

    Article  Google Scholar 

  18. Rushdi, A. M., & Rushdi, M. A. (2017). Switching-algebraic analysis of system reliability, chapter 6. In M. Ram & P. Davim (Eds.), Advances in reliability and system engineering, management and industrial engineering series (pp. 139–161). Cham: Springer.

    Chapter  Google Scholar 

  19. Ryabinin, I. A. (2015). Logical probabilistic analysis and its history. International Journal of Risk Assessment and Management, 18(3-4), 256–265.

    Article  Google Scholar 

  20. Premo, A. F. (1963). The use of Boolean algebra and a truth table in the formulation of a mathematical model of success. IEEE Transactions on Reliability, 12(3), 45–49.

    Article  Google Scholar 

  21. Fratta, L., & Montanari, U. (1973). A Boolean algebra method for computing the terminal reliability in a communication network. IEEE Transactions on Circuit Theory, 20(3), 203–211.

    Article  Google Scholar 

  22. Tabassum, H., Sakr, A. H., & Hossain, E. (2016). Analysis of Massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Transactions on Communications, 64(6), 2354–2369.

    Article  Google Scholar 

  23. Aurenhammer, F. (1991). Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3), 345–405.

    Article  Google Scholar 

  24. ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 996–1019.

    Article  Google Scholar 

  25. Lee, N., Morales-Jimenez, D., Lozano, A., & Heath, R. W. (2015). Spectral efficiency of dynamic coordinated beamforming: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 14(1), 230–241.

    Article  Google Scholar 

  26. Hassan, A. K., Moinuddin, M., & Al-Saggaf, U. M. (2018). On modeling and performance analysis of non-cooperative multi-antenna multi-user MIMO systems. Journal of the Chinese Institute of Engineers, 41(1), 32–39.

    Article  Google Scholar 

  27. Mohammed, A. H. M., Moinuddin, M., Al-Saggaf, U. M., & Hassan, A. K. (2019). Outage probability analysis and adaptive combiner for multiuser multipolarized antenna systems. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 67–79.

    Article  Google Scholar 

  28. Hassan, A. K., Moinuddin, M., & Al-Saggaf, U. M. (2018). Sum ergodic capacity analysis using asymptotic design of massive MU-MIMO systems. Wireless Personal Communications, 100(4), 1743–1752.

    Article  Google Scholar 

  29. Astely, D., Dahlman, E., Fodor, G., Parkvall, S., & Sachs, J. (2013). LTE release 12 and beyond. IEEE Communication Magazine, 51(7), 154–160.

    Article  Google Scholar 

  30. Rushdi, A. M. (1983). How to hand-check a symbolic reliability expression. IEEE Transactions on Reliability, 32(5), 402–408.

    Article  Google Scholar 

  31. Rushdi, A. M. (1983). Symbolic reliability analysis with the aid of variable-entered Karnaugh maps. IEEE Transactions on Reliability, 32(2), 134–139.

    Article  Google Scholar 

  32. Rushdi, A. M., & Al-Hindi, K. A. (1993). A table for the lower boundary of the region of useful redundancy for k-out-of-n systems. Microelectronics and Reliability, 33(7), 979–992.

    Article  Google Scholar 

  33. Soh, S., & Rai, S. (2005). An efficient cutset approach for evaluating communication-network reliability with heterogeneous link-capacities. IEEE Transactions on Reliability, 54(1), 133–144.

    Article  Google Scholar 

  34. Kuo, W., & Zhu, X. (2012). Importance Measures in Reliability, Risk, and Optimization: Principles and Applications. Hoboken: Wiley.

    Book  Google Scholar 

  35. Tanaka, H., Fan, L. T., Lai, F. S., & Toguchi, K. (1983). Fault-tree analysis by fuzzy probability. IEEE Transactions on Reliability, 32(5), 453–457.

    Article  Google Scholar 

  36. Weber, D. P. (1994). Fuzzy fault tree analysis. In Proceedings of 1994 IEEE 3rd international fuzzy systems conference, Orlando, FL (Vol. 3, pp. 1899–1904).

  37. Li, Y. F., Ding, Y., & Zio, E. (2014). Random fuzzy extension of the universal generating function approach for the reliability assessment of multi-state systems under aleatory and epistemic uncertainties. IEEE Transactions on Reliability, 63(1), 13–25.

    Article  Google Scholar 

  38. Rushdi, A. M. (1985). Uncertainty analysis of fault-tree outputs. IEEE Transactions on Reliability, 34(5), 458–462.

    Article  Google Scholar 

  39. Masera, M. (1987). Uncertainty propagation in fault tree analyses using lognormal distributions. IEEE Transactions on Reliability, 36(1), 145–149.

    Article  Google Scholar 

  40. Rushdi, A. M., & Kafrawy, K. F. (1988). Uncertainty propagation in fault-tree analyses using an exact method of moments. Microelectronics and Reliability, 28(6), 945–965.

    Article  Google Scholar 

  41. Rushdi, A. M. A., & Hassan, A. K. (2016). Quantification of uncertainty in the reliability of migration between habitat patches. Computational Ecology and Software, 6(3), 66–82.

    Google Scholar 

  42. Verma, A. K., Ajit, S., & Karanki, D. R. (2016). Uncertainty analysis in reliability/safety assessment. Chapter 13 in Reliability and safety engineering (pp. 457–491). London: Springer.

  43. Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions. New York, NY: Wiley.

    Google Scholar 

  44. Ahmed, R., Al-Saggaf, U. M., Moinuddin, M., & Hassan, A. K. (2017). Mitigation of self-interference and multi-user interference in downlink multi-user MIMO system. IET Communications, 11(17), 2605–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia. It was also supported by the Higher Education Commission (HEC), Pakistan under Grant No. 21-1983/SRGP/R&D/HEC/2018. The three authors are greatly indebted and sincerely grateful to both generous funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Kamal Hassan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rushdi, A.M.A., Hassan, A.K. & Moinuddin, M. System reliability analysis of small-cell deployment in heterogeneous cellular networks. Telecommun Syst 73, 371–381 (2020). https://doi.org/10.1007/s11235-019-00615-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00615-2

Keywords

Navigation