Skip to main content
Log in

An efficient pilot-symbol-aided and decision-directed hybrid channel estimation technique in OFDM systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The Channel estimation in Vehicle-to-Vehicle (V2V) communications is critical due to the time-varying characteristics of the V2V channel. Hence, the authors propose a hybrid approach towards channel estimation by combining Pilot Symbol Aided Channel Estimation (PSACE), Improved Crow Search Algorithm (ICSA), and Decision Directed Channel Estimation (DDCE) by employing Weight Regularized Convolutional Neural Network (WCNN). Hybrid channel estimation by combining the properties of PSACE and DDCE. PSACE suffers from pilot overhead issue due to the demand of huge number of pilots for channel estimation. On the other hand, DDCE suffers from error propagation in fast fading environments. The proposed system employs an ICSA and WCNN to overcome the issues faced by channel estimation methods. Further, the proposed strategy replaces the analytical modeling of the channel with the help of the neural network. Optimized pilots obtained from ICSA along with data symbols are fed to WCNN to estimate the channel in a non-stationary environment. Finally, the performance of the proposed method is evaluated in terms of Bit Error Rate, Mean Square Error, and Packet Error Rate and the simulations are carried out under various V2V scenarios for testing its sturdiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Matolak, D. W. (2014). Modeling the vehicle-to-vehicle propagation channel: A review. Radio Science,49(9), 721–736.

    Article  Google Scholar 

  2. Gomes, P., Olaverri-Monreal, C., & Ferreira, M. (2012). Making vehicles transparent through V2V video streaming. IEEE Transactions on Intelligent Transportation Systems,13(2), 930–938.

    Article  Google Scholar 

  3. He, J., Tang, Z., Fan, Z., & Zhang, J. (2018). Enhanced collision avoidance for distributed LTE vehicle to vehicle broadcast communications. IEEE Communications Letters,22(3), 630–633.

    Article  Google Scholar 

  4. Noh, S. K., Kim, P. J., & Yoon, J. H. (2016). Doppler effect on V2I path loss and V2V channel models. In: 2016 international conference on information and communication technology convergence (ICTC) (pp. 898–902). IEEE.

  5. Yang, Y., Fei, D., & Dang, S. (2017). Inter-vehicle cooperation channel estimation for IEEE 802.11 p V2I communications. Journal of Communications and Networks,19(3), 227–238.

    Article  Google Scholar 

  6. Edfors, O., Sandell, M., Van de Beek, J. J., Wilson, S. K., & Borjesson, P. O. (1998). OFDM channel estimation by singular value decomposition. IEEE Transactions on Communications,46(7), 931–939.

    Article  Google Scholar 

  7. Morelli, M., & Mengali, U. (2001). A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Transactions on Signal Processing,49(12), 3065–3073.

    Article  Google Scholar 

  8. Song, W. G., & Lim, J. T. (2003). Pilot-symbol aided channel estimation for OFDM with fast fading channels. IEEE Transactions on Broadcasting,49(4), 398–402.

    Article  Google Scholar 

  9. Nguyen-Le, H., & Le-Ngoc, T. (2010). Pilot-aided joint CFO and doubly-selective channel estimation for OFDM transmissions. IEEE Transactions on Broadcasting,56(4), 514–522.

    Article  Google Scholar 

  10. Muquet, B., De Courville, M., & Duhamel, P. (2002). Subspace-based blind and semi-blind channel estimation for OFDM systems. IEEE Transactions on Signal Processing,50(7), 1699–1712.

    Article  Google Scholar 

  11. Lin, R., & Petropulu, A. P. (2005). Linear precoding assisted blind channel estimation for OFDM systems. IEEE Transactions on Vehicular Technology,54(3), 983–995.

    Article  Google Scholar 

  12. Zeng, Y., & Ng, T. S. (2004). A semi-blind channel estimation method for multiuser multiantenna OFDM systems. IEEE Transactions on Signal Processing,52, 1419–1429.

    Article  Google Scholar 

  13. Kewen, L. (2010). Research of MMSE and LS channel estimation in OFDM systems. In: The 2nd international conference on information science and engineering (pp. 2308–2311). IEEE.

  14. Farzamnia, A., Hlaing, N. W., Haldar, M. K., &Rahebi, J. (2017). Channel estimation for sparse channel OFDM systems using least square and minimum mean square error techniques. In: 2017 international conference on engineering and technology (ICET) (pp. 1–5). IEEE.

  15. Savaux, V., & Louët, Y. (2016). LMMSE channel estimation in OFDM context: A review. IET Signal Processing,11(2), 123–134.

    Article  Google Scholar 

  16. Akin, S., & Gursoy, M. C. (2015). Performance analysis of cognitive radio systems with imperfect channel sensing and estimation. IEEE Transactions on Communications,63(5), 1554–1566.

    Article  Google Scholar 

  17. Wei, C., & Lin, D. W. (2016). A decision-directed channel estimator for OFDM-based bursty vehicular communication. IEEE Transactions on Vehicular Technology,66(6), 4938–4953.

    Article  Google Scholar 

  18. Awad, M. M., Seddik, K. G., & Elezabi, A. (2018). Low-complexity semi-blind channel estimation algorithms for vehicular communications using the IEEE 802.11 p standard. IEEE Transactions on Intelligent Transportation Systems,99, 1–10.

    Google Scholar 

  19. Shen, X., Liao, Y., Dai, X., Zhao, M., Liu, K., & Wang, D. (2018). Joint channel estimation and decoding design for 5G-enabled V2V channel. China Communications,15(7), 39–46.

    Article  Google Scholar 

  20. Sujitha, J., & Baskaran, K. (2018). Genetic grey wolf optimizer based channel estimation in wireless communication system. Wireless Personal Communications,99(2), 965–984.

    Article  Google Scholar 

  21. Bajwa, W. U., Haupt, J., Sayeed, A. M., & Nowak, R. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE,98(6), 1058–1076.

    Article  Google Scholar 

  22. Aldossari, S. M., & Chen, K. C. (2019). Machine learning for wireless communication channel modeling: An overview. Wireless Personal Communications,106(1), 41–70.

    Article  Google Scholar 

  23. Joo, J., Park, M. C., Han, D. S., & Pejovic, V. (2019). Deep learning-based channel prediction in realistic vehicular communications. IEEE Access,7, 27846–27858.

    Article  Google Scholar 

  24. Lee, C., Yilmaz, H. B., Chae, C. B., Farsad, N., & Goldsmith, A. (2017, July). Machine learning based channel modeling for molecular MIMO communications. In: 2017 IEEE 18th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5). IEEE.

  25. O’Shea, T., Karra, K., & Clancy, T. C. (2017). Learning approximate neural estimators for wireless channel state information. In: 2017 IEEE 27th international workshop on machine learning for signal processing (MLSP) (pp. 1–7). IEEE.

  26. O’Shea, T. J., & Hoydis, J. (2017). An introduction to machine learning communications systems. arXiv preprint arXiv:1702.00832.

  27. Yang, X., Shah, S. A., Ren, A., Zhao, N., Zhang, Z., Fan, D., et al. (2019). Freezing of gait detection considering leaky wave cable. IEEE Transactions on Antennas and Propagation,67(1), 554–561.

    Article  Google Scholar 

  28. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures,169, 1–12.

    Article  Google Scholar 

  29. Seyman, M. N., & Taşpınar, N. (2013). Pilot tones optimization using artificial bee colony algorithm for MIMO–OFDM systems. Wireless Personal Communications,71(1), 151–163.

    Article  Google Scholar 

  30. Yang, X., Shah, S. A., Ren, A., Zhao, N., Fan, D., Hu, F., et al. (2017). Wandering pattern sensing at S-band. IEEE Journal of Biomedical and Health Informatics,22(6), 1863–1870.

    Article  Google Scholar 

  31. Han, D., Sobabe, G. C., Zhang, C., Bai, X., Wang, Z., Liu, S., & Guo, B. (2017, October). Spectrum sensing for cognitive radio based on convolution neural network. In 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1–6). IEEE.

  32. O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing,12(1), 168–179.

    Article  Google Scholar 

  33. Mehrabi, M., Mohammadkarimi, M., Ardakani, M., & Jing, Y. (2019). Decision directed channel estimation based on deep neural network k-step predictor for MIMO communications in 5G. arXiv preprint arXiv:1901.03435.

  34. Iosifidis, A., Tefas, A., & Pitas, I. (2015). DropELM: Fast neural network regularization with Dropout and DropConnect. Neurocomputing,162, 57–66.

    Article  Google Scholar 

  35. Ye, H., Li, G. Y., & Juang, B. H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters,7(1), 114–117.

    Article  Google Scholar 

  36. Data sets. (2018). https://www.deepsig.io.

  37. Cheng, L., Henty, B., Bai, F., & Stancil, D. D. (2008). Doppler spread and coherence time of rural and highway vehicle-to-vehicle channels at 5.9 GHz. In IEEE GLOBECOM 2008–2008 IEEE global telecommunications conference, New Orleans, LO, 2008 (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Porselvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porselvi, R., Murugan, M. An efficient pilot-symbol-aided and decision-directed hybrid channel estimation technique in OFDM systems. Telecommun Syst 73, 531–544 (2020). https://doi.org/10.1007/s11235-019-00620-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00620-5

Keywords

Navigation