Skip to main content

Advertisement

Log in

Broadcast and Reliable Coverage based Efficient Recursive Routing in Large-Scale WSNs

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents a Broadcast and Reliable Coverage based Efficient Recursive Routing (BRCER) in Large-Scale Wireless Sensor Networks for Event-Driven Applications with Mobile Sinks (MSs). For data routing in the network, the proposed protocol updates the connectivity list by using local broadcast and multicast announcement. Instead of broadcasting in the whole network, the local broadcasting is used to save sensor node energy which maximizes the battery lifetime of sensors. However, the multicast announcement provides the appropriate path whenever the event activities are performed by MSs. In addition, reliable communication connectivity among sensor nodes, which depends on the surrounding and the deployment of sensor nodes, is also our prime concern for better quality of service (QoS). The main focus of BRCER protocol is to timely route the data with proper load distribution in the network with reliable connectivity. Theoretical concept and simulation results further validate that BRCER protocol can withstand in worse environmental conditions with effective network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aziz, A. A., Sekercioglu, Y. A., Fitzpatrick, P., & Ivanovich, M. (2013). A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks. IEEE Communications Surveys & Tutorials, 15(1), 121–144.

    Google Scholar 

  2. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591.

    Google Scholar 

  3. Abbas, M. M., Muhammad, Z., Saleem, K., Saqib, N. A., & Mahmood, H. (2015). Energy harvesting and management in wireless networks for perpetual operations. Journal of Circuits, Systems and Computers, 24(03), 1550041.

    Google Scholar 

  4. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.

    Google Scholar 

  5. Khattar, N., Sidhu, J., & Singh, J. (2019). Toward energy-efficient cloud computing: A survey of dynamic power management and heuristics-based optimization techniques. The Journal of Supercomputing, 75(8), 4750–4810.

    Google Scholar 

  6. Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications, 38, 185–201.

    Google Scholar 

  7. Venkateswarlu, K. M., Kandasamy, A., & Chandrasekaran, K. (2015). An energy-efficient hybrid clustering mechanism for wireless sensor network. Unmanned Systems, 3(02), 109–125.

    Google Scholar 

  8. Masdari, M., & Tanabi, M. (2013). Multipath routing protocols in wireless sensor networks: A survey and analysis. International Journal of Future Generation Communication and Networking, 6(6), 181–192.

    Google Scholar 

  9. Mohamed, R. E., Ghanem, W. R., Khalil, A. T., Elhoseny, M., Sajjad, M., & Mohamed, M. A. (2018). Energy efficient collaborative proactive routing protocol for wireless sensor network. Computer Networks, 142, 154–167.

    Google Scholar 

  10. Xu, L., Collier, R., & O’Hare, G. M. (2017). A survey of clustering techniques in wsns and consideration of the challenges of applying such to 5g iot scenarios. IEEE Internet of Things Journal, 4(5), 1229–1249.

    Google Scholar 

  11. Nathalie, M., & David, S.-R. (2013). Wireless sensor and robot networks: From topology control to communication aspects. Singapore: World Scientific.

    Google Scholar 

  12. Sharma, D., Ojha, A., & Bhondekar, A. P. (2018). Heterogeneity consideration in wireless sensor networks routing algorithms: A review. The Journal of Supercomputing, 75(5), 2341–2394.

    Google Scholar 

  13. Liu, N., Pan, J.-S., et al. (2019). A bi-population quasi-affine transformation evolution algorithm for global optimization and its application to dynamic deployment in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2019(1), 175.

    Google Scholar 

  14. Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189.

    Google Scholar 

  15. Mahmood, M. A., Seah, W. K., & Welch, I. (2015). Reliability in wireless sensor networks: A survey and challenges ahead. Computer Networks, 79, 166–187.

    Google Scholar 

  16. Bellalta, B., Bononi, L., Bruno, R., & Kassler, A. (2016). Next generation ieee 802.11 wireless local area networks: Current status, future directions and open challenges. Computer Communications, 75, 1–25.

    Google Scholar 

  17. Tanwar, S., Kumar, N., & Rodrigues, J. J. (2015). A systematic review on heterogeneous routing protocols for wireless sensor network. Journal of Network and Computer Applications, 53, 39–56.

    Google Scholar 

  18. Arora, V. K., Sharma, V., & Sachdeva, M. (2016). A survey on leach and other’s routing protocols in wireless sensor network. Optik-International Journal for Light and Electron Optics, 127(16), 6590–6600.

    Google Scholar 

  19. Yu, Y., Krishnamachari, B., & Kumar, V. P. (2006). Information processing and routing in wireless sensor networks. Singapore: World Scientific.

    Google Scholar 

  20. Liu, X. (2015). Atypical hierarchical routing protocols for wireless sensor networks: A review. IEEE Sensors Journal, 15(10), 5372–5383.

    Google Scholar 

  21. Afsar, M. M., & Tayarani-N, M.-H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.

    Google Scholar 

  22. Krishna, P., Vaidya, N. H., Chatterjee, M., & Pradhan, D. K. (1997). A cluster-based approach for routing in dynamic networks. ACM SIGCOMM Computer Communication Review, 27(2), 49–64.

    Google Scholar 

  23. McDonald, A. B., & Znati, T. F. (2001). Design and performance of a distributed dynamic clustering algorithm for ad-hoc networks. In Proceedings 34th Annual Simulation Symposium, 2001, pp. 27–35. IEEE.

  24. Gu, Y., Ren, F., Ji, Y., & Li, J. (2016). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 18(1), 507–524.

    Google Scholar 

  25. Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.

    Google Scholar 

  26. Ovsthus, K., Kristensen, L. M., et al. (2014). An industrial perspective on wireless sensor networks—a survey of requirements, protocols, and challenges. IEEE Communications Surveys & Tutorials, 16(3), 1391–1412.

    Google Scholar 

  27. Royer, E. M., & Perkins, C. E. (1999). Multicast operation of the ad-hoc on-demand distance vector routing protocol. In: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking. ACM, pp. 207–218.

  28. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (aodv) routing. Technical Report.

  29. Vaishampayan, R., & Garcia-Luna-Aceves, J. J. (2004). Efficient and robust multicast routing in mobile ad hoc networks. In 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems. IEEE, pp. 304–313.

  30. Abdulwahid, H., Dai, B., Huang, B., & Chen, Z. (2016). Scheduled-links multicast routing protocol in manets. Journal of Network and Computer Applications, 63, 56–67.

    Google Scholar 

  31. Biradar, R. C., & Manvi, S. S. (2012). Review of multicast routing mechanisms in mobile ad hoc networks. Journal of Network and Computer Applications, 35(1), 221–239.

    Google Scholar 

  32. Garcia-Luna-Aceves, J., & Menchaca-Mendez, R. (2011). Prime: An interest-driven approach to integrated unicast and multicast routing in manets. IEEE/ACM Transactions on Networking, 19(6), 1573–1586.

    Google Scholar 

  33. Valera, A. C., Soh, W.-S., & Tan, H.-P. (2014). Survey on wakeup scheduling for environmentally-powered wireless sensor networks. Computer Communications, 52, 21–36.

    Google Scholar 

  34. Moss, D., & Levis, P. (2008). Box-macs: Exploiting physical and link layer boundaries in low-power networking. Computer Systems Laboratory Stanford University, 64(66), 120.

    Google Scholar 

  35. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the 2nd international conference on Embedded networked sensor systems. ACM, pp. 95–107.

  36. Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006) X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th international conference on Embedded networked sensor systems. ACM, pp. 307–320.

  37. Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). Ri-mac: a receiver-initiated asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor networks. In Proceedings of the 6th ACM conference on Embedded network sensor systems. ACM, pp. 1–14.

  38. Huang, P., Wang, C., Xiao, L., & Chen, H. (2010). Rc-mac: A receiver-centric medium access control protocol for wireless sensor networks. In 2010 18th International Workshop on Quality of Service (IWQoS). IEEE, pp. 1–9.

  39. Nguyen, K., Nguyen, V.-H., Le, D.-D., Ji, Y., Duong, D. A., & Yamada, S. (2014). A receiver-initiated mac protocol for energy harvesting sensor networks. In Ubiquitous information technologies and applications. Springer, pp. 603–610.

  40. Djenouri, D., & Bagaa, M. (2016). Synchronization protocols and implementation issues in wireless sensor networks: A review. IEEE Systems Journal, 10(2), 617–627.

    Google Scholar 

  41. Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). Ttdd: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1–2), 161–175.

    Google Scholar 

  42. Hamida, E. B., & Chelius, G. (2008). A line-based data dissemination protocol for wireless sensor networks with mobile sink. In Communications,. . ICC’08. IEEE International Conference on Communications, 2008. ICC’08. IEEE, pp. 2201–2205.

  43. Liu, X., Zhao, H., Yang, X., & Li, X. (2013). Sinktrail: A proactive data reporting protocol for wireless sensor networks. IEEE Transactions on Computers, 62(1), 151–162.

    Google Scholar 

  44. Saputro, N., Akkaya, K., & Uludag, S. (2012). A survey of routing protocols for smart grid communications. Computer Networks, 56(11), 2742–2771.

    Google Scholar 

  45. Reina, D., Toral, S., Johnson, P., & Barrero, F. (2015). A survey on probabilistic broadcast schemes for wireless ad hoc networks. Ad Hoc Networks, 25, 263–292.

    Google Scholar 

  46. Malathi, A., & Sreenath, N. (2017). Multicast routing selection for vanet using hybrid scatter search abc algorithm. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). IEEE, pp. 441–446.

  47. Sajwan, M., Gosain, D., & Sharma, A. K. (2018). Hybrid energy-efficient multi-path routing for wireless sensor networks. Computers & Electrical Engineering, 67, 96–113.

    Google Scholar 

  48. Lafetá, T., Bueno, M. L., Brasil, C., & Oliveira, G. M. (2018). Meands: A many-objective evolutionary algorithm based on non-dominated decomposed sets applied to multicast routing. Applied Soft Computing, 62, 851–866.

    Google Scholar 

  49. Clausen, T., Cordero, J.-A., Yi, J., & Igarashi, Y. (2018). Use’em or lose’em: On unidirectional links in reactive routing protocols. Ad Hoc Networks, 73, 51–64.

    Google Scholar 

  50. Younis, M., Senturk, I. F., Akkaya, K., Lee, S., & Senel, F. (2014). Topology management techniques for tolerating node failures in wireless sensor networks: A survey. Computer Networks, 58, 254–283.

    Google Scholar 

  51. Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2012). A least-movement topology repair algorithm for partitioned wireless sensor–actor networks. International Journal of Sensor Networks, 11(4), 250–262.

    Google Scholar 

  52. Tamboli, N., & Younis, M. (2010). Coverage-aware connectivity restoration in mobile sensor networks. Journal of Network and Computer Applications, 33(4), 363–374.

    Google Scholar 

  53. Zin, S. M., Anuar, N. B., Kiah, M. L. M., & Ahmedy, I. (2015). Survey of secure multipath routing protocols for wsns. Journal of Network and Computer Applications, 55, 123–153.

    Google Scholar 

  54. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.

    Google Scholar 

  55. Sun, W., Yang, Z., Zhang, X., & Liu, Y. (2014). Energy-efficient neighbor discovery in mobile ad hoc and wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1448–1459.

    Google Scholar 

  56. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Google Scholar 

  57. De Rango, F., Palmieri, N., & Ranieri, S. (2015). Spatial correlation based low energy aware clustering (leach) in a wireless sensor networks. Advances in Electrical and Electronic Engineering, 13(4), 350–358.

    Google Scholar 

  58. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29(12), 2230–2237.

    Google Scholar 

  59. Wang, M.-Y., Ding, J., Chen, W.-P., & Guan, W.-Q. (2015). Search: A stochastic election approach for heterogeneous wireless sensor networks. IEEE Communications Letters, 19(3), 443–446.

    Google Scholar 

  60. Li, C., Bai, J., Gu, J., Yan, X., & Luo, Y. (2018). Clustering routing based on mixed integer programming for heterogeneous wireless sensor networks. Ad Hoc Networks, 72, 81–90.

    Google Scholar 

  61. Kong, L., Pan, J.-S., Tsai, P.-W., Vaclav, S., & Ho, J.-H. (2015). A balanced power consumption algorithm based on enhanced parallel cat swarm optimization for wireless sensor network. International Journal of Distributed Sensor Networks, 11(3), 729680.

    Google Scholar 

  62. Zhen, H., Li, Y., & Zhang, G.-J. (2013). Efficient and dynamic clustering scheme for heterogeneous multi-level wireless sensor networks. Acta Automatica Sinica, 39(4), 454–460.

    Google Scholar 

  63. Baranidharan, B., & Santhi, B. (2016). Ducf: Distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach. Applied Soft Computing, 40, 495–506.

    Google Scholar 

  64. Gupta, P., & Sharma, A. K. (2019). Clustering-based heterogeneous optimized-heed protocols for wsns. Soft Computing, 24(3), 1737–1761.

    Google Scholar 

  65. Chand, S., Singh, S., & Kumar, B. (2014). Heterogeneous heed protocol for wireless sensor networks. Wireless Personal Communications, 77(3), 2117–2139.

    Google Scholar 

  66. Gupta, P., & Sharma, A. K. (2019). Clustering-based optimized heed protocols for wsns using bacterial foraging optimization and fuzzy logic system. Soft Computing, 23(2), 507–526.

    Google Scholar 

  67. de Oliveira Brante, G. G., Kakitani, M. T., & Souza, R. D. (2011). Energy efficiency analysis of some cooperative and non-cooperative transmission schemes in wireless sensor networks. IEEE Transactions on Communications, 59(10), 2671–2677.

    Google Scholar 

  68. Memsic, M. (2012). Andover and USA, “iris sensor nodes,” Oct. 11, 2012 [online]. http://www.memsic.com/products/wireless-sensor-netwroks/wireless-modules.html.

  69. Perlman, R. (1985). An algorithm for distributed computation of a spanningtree in an extended lan. In ACM SIGCOMM Computer Communication Review, vol. 15, no. 4. ACM, pp. 44–53.

  70. M. M. Afsar and M.-H. Tayarani-N, “A. goldsmith, wireless communications, 1st edition. cambridge uni- versity press, 2005,” Journal of Network and Computer Applications, vol. 46, pp. 198–226, 2014.

  71. Kumar, S., Saini, M. L., & Kumar, S. (2020). Improved dymo-based aco for manet using distance and density of nodes. In Microservices in Big Data Analytics. Springer, pp. 29–38.

  72. Kolandaisamy, R., Noor, R. M., Z’aba, M. R., Ahmedy, I., & Kolandaisamy, I. (2019). Adapted stream region for packet marking based on ddos attack detection in vehicular ad hoc networks. The Journal of Supercomputing, pp. 1–23.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Verma.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest in the proposed manuscript as the publication is concerned.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Kumar, S., Gautam, P.R. et al. Broadcast and Reliable Coverage based Efficient Recursive Routing in Large-Scale WSNs. Telecommun Syst 75, 63–78 (2020). https://doi.org/10.1007/s11235-020-00679-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00679-5

Keywords

Navigation