Skip to main content
Log in

Message authentication algorithm for OFDM communication systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

With the huge expansion in the telecommunications industry, the need for robust information security is becoming more critical than ever. Physical Layer Security has, recently, emerged as a promising candidate to secure emerging communication systems in a lightweight manner. This approach has proven to be superior to existing schemes, which has motivated many researchers to shift their work towards studying, understanding and exploiting the randomness of the physical layer. In this context, this paper presents a novel keyed-hash function for Orthogonal Frequency Division Multiplexing (OFDM) systems based on the physical characteristics and properties of wireless channels. More specifically, communicating entities sharing the same channel, extract common properties and mix them with a pre-shared secret key to produce a channel-based dynamic key. This key will later be used to generate the cipher primitives needed for performing source authentication and message integrity of the transmitted OFDM symbols. Since OFDM symbols, in the frequency-domain and time-domain, have different properties, the proposed keyed-hash function is modified and adapted to suit each case leading to two variants of the solution. To the best of our knowledge, this is the first work that proposes a keyed-hash function for complex OFDM symbols, based on physical layer conditions. Finally, different security and performance tests are conducted to prove the robustness and efficiency of this technique, in comparison to currently employed message authentication schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Acar, Y., & Cooklev, T. (2019). High performance OFDM with index modulation. Physical Communication, 32, 192–199.

    Article  Google Scholar 

  2. Melki, R., Noura, H., Mansour, M., & Chehab, A. (2019). A survey on OFDM physical layer security. Physical Communication, 32, 1–30.

    Article  Google Scholar 

  3. Melki, R., Noura, H., Mansour, M., & Chehab, A. (2018). An efficient OFDM-based encryption scheme using a dynamic key approach. IEEE Internet of Things Journal, 6(1), 361–378.

    Article  Google Scholar 

  4. Noura, H., Melki, R., Chehab, A., & Mansour, M. (2018). A physical encryption scheme for low-power wireless M2M devices: A dynamic key approach. Mobile Networks and Applications, 24, 1–17.

    Google Scholar 

  5. Tippenhauer, N., Rasmussen, K., & Capkun, S. (2016). Physical-layer integrity for wireless messages. Computer Networks, 109, 31–38.

    Article  Google Scholar 

  6. Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592.

    Article  Google Scholar 

  7. Prasad, R. (2004) OFDM for wireless communications systems. Artech House.

  8. Rahbari, H., & Krunz, M. (2017). Exploiting frame preamble waveforms to support new physical-layer functions in OFDM-based 80211 systems. IEEE Transactions on Wireless Communications, 16(6), 3775–3786.

    Article  Google Scholar 

  9. Franzin, R., et al. (2017). A performance comparison between OFDM and FBMC in PLC applications. In IEEE international conference on ecuador technical chapters meeting (ETCM). IEEE.

  10. Moles-Cases, V., et. al. (2017). A comparison of OFDM, QAM-FBMC, and OQAM-FBMC waveforms subject to phase noise. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  11. Surnilla, G., & Surnilla, K. (2019). Method and apparatus for vehicular communication, September 5. US Patent App. 15/910,946.

  12. Arif, M., et al. (2019). A survey on security attacks in VANETs: Communication, applications and challenges. Vehicular Communications, 19, 100179.

    Article  Google Scholar 

  13. PRIME Alliance TWG. Specification for powerline intelligent metering evolution. R1.3.6, April 2013.

  14. PRIME Alliance TWG. (2014). Specification for powerline intelligent metering. Evolution, R1, 4.

  15. Naik, P., & Murthy, K. (2019) Framework for controlling interference and power consumption on femto-cells in-wireless system. In Proceedings of the computational methods in systems and software (pp. 199–208). Springer.

  16. Adame, T., Bel, A., Bellalta, B., Barcelo, J., & Oliver, M. (2014). IEEE 802.11 ah: The WiFi approach for M2M communications. IEEE Wireless Communications, 21(6), 144–152.

    Article  Google Scholar 

  17. Chen, M., Wan, J., & Li, F. (2012). Machine-to-machine communications: Architectures, standards and applications. KSII Transactions on Internet & Information Systems, 6(2), 480–497.

    Google Scholar 

  18. Jiang, D., & Delgrossi, L. (2008). IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. In IEEE Transactions on Vehicular Technology (VTC Spring) (pp. 2036–2040). IEEE.

  19. Chang, K., & Mason, B. (2012). The IEEE 802.15. 4G standard for smart metering utility networks. In Proceedings IEEE international conference smart grid communications (SmartGridComm) (pp. 476–480). IEEE.

  20. Mangalvedhe, N., Ratasuk, R., & Ghosh, A. (2016) NB-IoT deployment study for low power wide area cellular IoT. In Proceedings of IEEE annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6). IEEE.

  21. G ITU. 9960, unified high-speed wire-line based home networking transceivers-system architecture and physical layer specification, 2010.

  22. Unified High-Speed Wireline-Based Home. Networking transceivers-data link layer specification.

  23. HOME PLUG ALLIANCE. Homeplug 1.0 technology white paper, 2005, 2014.

  24. Yonge, L., et al. (2013). An overview of the HomePlug AV2 technology. Journal of Electrical and Computer Engineering, 2013, 1–20.

    Article  Google Scholar 

  25. Guo, H., Chen, C., Gao, Y., Li, X., & Jin, J. (2018). A secure three-factor multiserver authentication protocol against the honest-but-curious servers. Wireless Communications and Mobile Computing, 2018, 1–14.

    Google Scholar 

  26. Ohtake, G., Safavi-Naini, R., & Zhang, L. (2019). Outsourcing scheme of ABE encryption secure against malicious adversary. Computers & Security, 86, 437–452.

    Article  Google Scholar 

  27. Chen, D., Zhang, N., Lu, R., Cheng, N., Zhang, K., & Qin, Z. (2019). Channel precoding based message authentication in wireless networks: Challenges and solutions. IEEE Network, 33(1), 99–105.

    Article  Google Scholar 

  28. Chen, D., Zhang, N., Cheng, N., Zhang, K., Qin, Z., & Shen, X. (2020). Physical layer based message authentication with secure channel codes. IEEE Transactions on Dependable and Secure Computing, 17(5), 1079–1093.

    Article  Google Scholar 

  29. Iwata, T., et al. (2017). ZMAC: A fast tweakable block cipher mode for highly secure message authentication. In Annual international cryptology conference (pp. 34–65). Springer.

  30. Kuwakado, H., Hirose, S., & Mambo, M. (2018). Parallelizable message preprocessing for merkle-damgård hash functions. In Proceedings of IEEE international symposium on information theory and its applications (ISITA) (pp. 457–461). IEEE.

  31. Hosoyamada, A., & Yasuda, K. (2018). Building quantum-one-way functions from block ciphers: Davies–Meyer and Merkle–Damgård constructions. In International conference on the theory and application of cryptology and information security (pp. 275–304). Springer.

  32. Chen, Y., et al. (2018). A publicly verifiable network coding scheme with null-space HMAC. International Journal of Intelligent Information and Database Systems, 11(2–3), 117–131.

    Article  Google Scholar 

  33. Echandouri, B., Omary, F., Ziani, F., & Sadak, A. (2018). SEC-CMAC a new message authentication code based on the symmetrical evolutionist ciphering algorithm. International Journal of Information Security and Privacy (IJISP), 12(3), 16–26.

    Article  Google Scholar 

  34. Sung, B., Kim, K., & Shin, K. (2018). An AES-GCM authenticated encryption crypto-core for IOT security. In International conference on electronics, information, and communication (ICEIC) (pp. 1–3). IEEE.

  35. Kumar, N., & Chaudhary, P. (2018) Password security using bcrypt with AES encryption algorithm. In Smart computing and informatics (pp. 385–392). Springer.

  36. Nairn, D., et al. (2019). Authenticating messages sent over a vehicle bus that include message authentication codes. US Patent App. 10/211,990.

  37. Gribanova, I., Semenov, A. (2018). Using automatic generation of relaxation constraints to improve the preimage attack on 39-step MD4. In International convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1174–1179). IEEE.

  38. Tian, Y., Zhang, K., Wang, P., Zhang, Y., & Yang, J. (2018). Add salt MD5 algorithm’s FPGA implementation. Procedia Computer Science, 131, 255–260.

    Article  Google Scholar 

  39. Visconti, A., & Gorla, F. (2020). Exploiting an HMAC-SHA-1 optimization to speed up PBKDF2. IEEE Transactions on Dependable and Secure Computing, 17(4), 775–781.

    Article  Google Scholar 

  40. Yap, K., et al. (2018). Method and apparatus to process SHA-2 secure hashing algorithm, December 4 . US Patent App. 10/146,544.

  41. Luo, P., Athanasiou, K., Fei, Y., & Wahl, T. (2018). Algebraic fault analysis of SHA-3 under relaxed fault models. IEEE Transactions on Information Forensics and Security, 13(7), 1752–1761.

    Article  Google Scholar 

  42. Noura, H. (2012). Conception et simulation des générateurs, crypto-systèmes et fonctions de hachage basés chaos performants. PhD thesis, université de Nantes.

  43. Noura, H., et al. (2018). Efficient and secure physical encryption scheme for low-power wireless M2M devices. In IWCMC security symposium, Limassol, Cyprus

  44. Melki, R., Noura, H., & Chehab, A. (2019). Lightweight multi-factor mutual authentication protocol for IoT devices. International Journal of Information Security, 2019, 1–16.

    Google Scholar 

  45. Noura, H., Chehab, A., Sleem, L., Noura, M., Couturier, R., & Mansour, M. M. (2018). One round cipher algorithm for multimedia IoT devices. Multimedia Tools and Applications, 77, 18383–18413.

    Article  Google Scholar 

  46. Menezes, A., et al. (1996). Handbook of Applied Cryptography. Boca Raton: CRC Press.

    Google Scholar 

  47. Rupanagudi, S., et al. (2019). A further optimized mix column architecture design for the advanced encryption standard. In Proceedings IEEE international conference on knowledge and smart technology (KST) (pp. 181–185). IEEE.

Download references

Acknowledgements

This publication is supported by Iberdrola S.A. as part of its innovation department research studies. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Iberdrola Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem Melki.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melki, R., Noura, H.N., Hernandez Fernandez, J. et al. Message authentication algorithm for OFDM communication systems. Telecommun Syst 76, 403–422 (2021). https://doi.org/10.1007/s11235-020-00724-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00724-3

Keywords

Navigation