Skip to main content
Log in

MACD e-ICIC: a dynamic LTE interference coordination method based on trend and trading know-how

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Mobile communications are preparing for the incredible changes from \(4\mathrm{th} \,\hbox {Generation (4G)}\) to \(5\mathrm{th}\hbox { Generation (5G)}\) in the coming years. In this new generation, co-channel interference is one of the critical challenges to be tackled due to network densification by providing high data rates through several macro and small cells working together, configuring the so-called \(\hbox {Heterogeneous Network (HetNet)}\). The umbrella of 3GPP system (including LTE and its evolution towards 5G) provides the \(\hbox {Almost Blank Subframe (ABS)}\) as a scheme of the \(\hbox {Enhanced Inter-Cell Interference Coordination (e-ICIC)}\) framework to mitigate interference among macro and small cells. The ABS mutes some of the macro cell transmissions in selected subframes to decrease interference to small cells, thus orthogonalizing macro and small cell transmissions in time-domain. In this paper, we use a \(\hbox {moving average convergence/divergence}\) technique based on trading know-how to propose a \(\hbox {real time ABS e-ICIC}\) algorithm. Our proof-of-concept simulation results show relative capacity gains of 112% compared to the case without \(\hbox {ABS}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 3GPP. (2018). Vocabulary for 3GPP specifications. TR 21.905, 3rd Generation Partnership Project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/21905.htm.

  2. 3GPP. (2011). Evolved universal terrestrial radio access network (E-UTRAN); X2 application protocol (X2AP). TS 36.423, 3rd Generation Partnership Project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/36423.htm.

  3. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10. https://doi.org/10.1109/MWC.2011.5876496.

    Article  Google Scholar 

  4. Moon, S., Kim, B., Malik, S., Kim, D., & Hwang, I. (2013). Interference management with cell selection using cell range expansion and ABS in the heterogeneous network based on LTE-advanced. Journal of the Institute of Electronics and Information Engineers,. https://doi.org/10.5573/ieek.2013.50.8.039.

    Article  Google Scholar 

  5. Chen, W., Ahmad, I., & Chang, K. (2017). Co-channel interference management using eICIC/FeICIC with coordinated scheduling for the coexistence of PS-LTE and LTE-R networks. EURASIP Journal on Wireless Communications and Networking,. https://doi.org/10.1186/s13638-017-0822-6.

    Article  Google Scholar 

  6. Ling, L., Zhou, Y., Vasilakos, A., Tian, L., & Shi, J. (2019). Time-domain ICIC and optimized designs for 5G and beyond: A survey. Science China Information Sciences,. https://doi.org/10.1007/s11432-017-9477-4.

    Article  Google Scholar 

  7. Ma, C., Ding, M., Lopez-Perez, D., Lin, Z., Li, J., & Mao, G. (2018). Performance analysis of the idle mode capability in a dense heterogeneous cellular network. IEEE Transactions on Communications, 66(9), 3959. https://doi.org/10.1109/tcomm.2018.2822805.

    Article  Google Scholar 

  8. Lee, C. N., Lin, J. H., Wu, C. F., Lee, M. F., & Yeh, F. M. (2018). A dynamic CRE and ABS scheme for enhancing network capacity in LTE-advanced heterogeneous networks. Wireless Networks, 25, 1. https://doi.org/10.1007/s11276-018-1723-2.

    Article  Google Scholar 

  9. Abinader, F. M., de Sousa, V. A., Choudhury, S., Chaves, F. S., Cavalcante, A. M., Almeida, E. P., et al. (2018). LTE/Wi-Fi coexistence in 5 GHz ISM spectrum: Issues, solutions and perspectives. Wireless Personal Communications, 99(1), 403. https://doi.org/10.1007/s11277-017-5114-2.

    Article  Google Scholar 

  10. Abinader, F. M., Almeida, E. P. L., Chaves, F. S., Cavalcante, A. M., Vieira, R. D., Paiva, R. C. D., et al. (2014). Enabling the coexistence of LTE and Wi-Fi in unlicensed bands. IEEE Communications Magazine, 52(11), 54. https://doi.org/10.1109/MCOM.2014.6957143.

    Article  Google Scholar 

  11. Almeida, E., Cavalcante, A. M., Paiva, R. C. D., Chaves, F. S., Abinader, F. M., Vieira, R. D., et al. (2013). Enabling LTE/WiFi coexistence by LTE blank subframe allocation. https://doi.org/10.1109/ICC.2013.6655388.

  12. Maglogiannis, V., Naudts, D., Shahid, A., & Moerman, I. (2018). A Q-learning scheme for fair coexistence between LTE and Wi-Fi in unlicensed spectrum. IEEE Access, 6, 27278. https://doi.org/10.1109/ACCESS.2018.2829492.

    Article  Google Scholar 

  13. de Santana, P. M., de Sousa, V. A., Abinader, F. M., & Neto, J. M. (2019). DM-CSAT: A LTE-U/Wi-Fi coexistence solution based on reinforcement learning. Telecommunication Systems,. https://doi.org/10.1007/s11235-018-00535-7.

    Article  Google Scholar 

  14. Bajracharya, R., Shrestha, R., & Kim, S. W. (2019). Q-learning based fair and efficient coexistence of LTE in unlicensed band. Sensors, 19(13), 2875. https://doi.org/10.3390/s19132875.

    Article  Google Scholar 

  15. Yu, Y., Wang, T., & Liew, S. C. (2019). Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 37(6), 1277. https://doi.org/10.1109/JSAC.2019.2904329.

    Article  Google Scholar 

  16. Guppy, D. (2011). Market trading tactics. New York: Wiley.

    Google Scholar 

  17. Glabadanidis, P. (2015). Market timing and moving averages: An empirical analysis of performance in asset allocation (Palgrave Macmillan US). https://doi.org/10.1057/9781137359834.

  18. Zinno, S., Di Stasi, G., Avallone, S., & Ventre, G. (2018). On a fair coexistence of LTE and Wi-Fi in the unlicensed spectrum: A Survey. Computer Communications, 115, 35. https://doi.org/10.1016/j.comcom.2017.10.019.

    Article  Google Scholar 

  19. Bocanegra, C., Kennouche, T. E., Li, Z., Favalli, L., Felice, M. D., & Chowdhury, K. (2019). E-Fi: Evasive Wi-Fi measures for surviving LTE within 5 GHz unlicensed band. IEEE Transactions on Mobile Computing, 18(4), 830. https://doi.org/10.1109/TMC.2018.2849409.

    Article  Google Scholar 

  20. Saha, R. K. (2019). A hybrid system and technique for sharing multiple spectrums of satellite plus mobile systems with indoor small cells in 5G and beyond era. IEEE Access, 7, 77569. https://doi.org/10.1109/ACCESS.2019.2921723.

    Article  Google Scholar 

  21. Teerasuttakorn, N., Nuanyai, K., Zamani, A., Schmeink, A., & Chantaraskul, S. (2018). Study of almost blank subframe configurations for traffic offload in HetNets. In 2018 international conference on information and communication technology convergence (ICTC) (pp. 201–206). https://doi.org/10.1109/ICTC.2018.8539494.

  22. Pao, W. C., Lin, J. W., Chen, Y. F., & Wang, C. L. (2017). Joint ABS and user grouping allocation for HetNet with picocell deployment in downlink. EURASIP Journal on Wireless Communications and Networking, 2017, 163. https://doi.org/10.1186/s13638-017-0945-9.

    Article  Google Scholar 

  23. Sciancalepore, V., Filippini, I., Mancuso, V., Capone, A., & Banchs, A. (2018). A multi-traffic inter-cell interference coordination scheme in dense cellular networks. IEEE/ACM Transactions on Networking, 26(5), 2361. https://doi.org/10.1109/TNET.2018.2866410.

    Article  Google Scholar 

  24. Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. (2014). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE hetnets. IEEE/ACM Transactions on Networking, 22(1), 137. https://doi.org/10.1109/TNET.2013.2246820.

    Article  Google Scholar 

  25. Zheng, J., Li, J., Wang, N., & Yang, X. (2017). Joint load balancing of downlink and uplink for eICIC in heterogeneous network. IEEE Transactions on Vehicular Technology, 66(7), 6388.

    Article  Google Scholar 

  26. de Melo, Y  Lima, Junior, V., & Maciel, T. (2019). Dynamic e-ICIC using moving average crossover. Journal of Communication and Information Systems, 34(1), 87. https://doi.org/10.14209/jcis.2019.9.

    Article  Google Scholar 

  27. Box, G., & Jenkins, G. (1970). Time series analysis: Forecasting and control. Holden-Day series in time series analysis. San Francisco: Holden-Day.

    Google Scholar 

  28. Soon, Y. C. (2010). News which moves the market: Assessing the impact of published financial news on the stock market. Ph.D. thesis, Singapore Management University.

  29. Luo, F. (2020). Machine learning for future wireless communications. Hoboken: Wiley.

    Book  Google Scholar 

  30. Dong, X., Fan, W., & Gu, J. (2015). Predicting LTE throughput using traffic time series. ZTE Communications, 13(4), 61. https://doi.org/10.3969/j.issn.16735188.

    Article  Google Scholar 

  31. Mhamdi, F., Jadane, M., Saidane, J. S., & Poggi, J. M. (2010). Empirical mode decomposition for trend extraction: Application to electrical data. In Proceeding of international conference on computational statistics (CompStat) (Vol. 19).

  32. Zakamulin, V. (2017). Market timing with moving averages: The anatomy and performance of trading rules. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-60970-6.

    Book  Google Scholar 

  33. Gardner, E. S. (2006). Exponential smoothing: The state of the art part II. International Journal of Forecasting, 22(4), 637. https://doi.org/10.1016/j.ijforecast.2006.03.005.

    Article  Google Scholar 

  34. Turner, T. (2006). Short-term trading in the new stock market. New York: St. Martin’s Publishing Group.

    Google Scholar 

  35. 3GPP. (2018). FDD repeater radio transmission and reception. TS 36.106 V15.0.0, Technical specification group radio access networks.

  36. 3GPP. (2018). Radio network planning aspects. TR 43.030 V15.0.0, Third Generation Partnership Project.

  37. 3GPP. (2013). Coordinated multi-point operation for LTE physical layer aspects. TS 36.819 V11.2.0, Technical specification group services and system aspects.

  38. Sadiq, B., Madan, R., & Sampath, A. (2009). Downlink scheduling for multiclass traffic in LTE. EURASIP Journal on Wireless Communications and Networking,. https://doi.org/10.1155/2009/510617.

    Article  Google Scholar 

  39. 3GPP. (2009). Further advancements for E-UTRA physical layer aspects. TR 36.814 V9.0.0, Third Generation Partnership Project.

  40. Claussen, H., Lopez-Perez, D., Ho, L., Razavi, R., & Kucera, S. (2016). Small cell networks: Deployment, management, and optimization. New York: Wiley.

    Google Scholar 

  41. Cho, Y. S., Kim, J., & Yang, W. Y. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley.

  42. 3GPP. (2006). Physical layer aspects for evolved universal terrestrial radio access (UTRA). TR 25.814 V7.1.0, Third Generation Partnership Project.

  43. 3GPP. (2018). Radio frequency (RF) system scenarios. TS 36.942 V15.0.0, Technical specification group services and system aspects.

  44. 3GPP. (2013). Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN); Overall description; Stage 2. TS 36.300, 3rd Generation Partnership Project (3GPP). http://www.3gpp.org/ftp/Specs/html-info/36300.htm.

  45. Wang, Y. C., & Huang, B. J. (2019). Efficient coordination of almost blank subframes with coupling macro cells in heterogeneous networks. International Journal of Communication Systems,. https://doi.org/10.1002/dac.4256.

    Article  Google Scholar 

Download references

Acknowledgements

The proof of concept simulations provided by this paper was supported by High Performance Computing Center at UFRN (NPAD/UFRN). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Tarcisio F. Maciel was supported by CNPq under the Grants 426385/2016-0 and 308621/2018-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente A. de Sousa Jr..

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, Y.V.L., de Sousa, V.A. & Maciel, T.F. MACD e-ICIC: a dynamic LTE interference coordination method based on trend and trading know-how. Telecommun Syst 76, 391–402 (2021). https://doi.org/10.1007/s11235-020-00725-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00725-2

Keywords

Navigation