Skip to main content
Log in

A QoE adaptive management system for high definition video streaming over wireless networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The development of the smart devices had led to demanding high-quality streaming videos over wireless communications. In Multimedia technology, the Ultra-High Definition (UHD) video quality has an important role due to the smart devices that are capable of capturing and processing high-quality video content. Since delivery of the high-quality video stream over the wireless networks adds challenges to the end-users, the network behaviors ‘factors such as delay of arriving packets, delay variation between packets, and packet loss, are impacted on the Quality of Experience (QoE). Moreover, the characteristics of the video and the devices are other impacts, which influenced by the QoE. In this research work, the influence of the involved parameters is studied based on characteristics of the video, wireless channel capacity, and receivers’ aspects, which collapse the QoE. Then, the impact of the aforementioned parameters on both subjective and objective QoE is studied. A smart algorithm for video stream services is proposed to optimize assessing and managing the QoE of clients (end-users). The proposed algorithm includes two approaches: first, using the machine-learning model to predict QoE. Second, according to the QoE prediction, the algorithm manages the video quality of the end-users by offering better video quality. As a result, the proposed algorithm which based on the least absolute shrinkage and selection operator (LASSO) regression is outperformed previously proposed methods for predicting and managing QoE of streaming video over wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cisco report, Last Accessed July 1, 2017. [Available Online]: http://bit.ly/2gg1F6B

  2. Kitamura, M., Shirai, D., Kaneko, K., Murooka, T., Sawabe, T., Fujii, T., & Takahara, A. (2011). Beyond 4K: 8K 60p live video streaming to multiple sites. Future Generation Computer Systems, 27(7), 952–959. https://doi.org/10.1016/j.future.2010.11.025.

    Article  Google Scholar 

  3. Juluri, P., Tamarapalli, V., & Medhi, D. (2016). Measurement of quality of experience of video-on-demand services: A survey. IEEE Communications Surveys & Tutorials, 18(1), 401–418.

    Article  Google Scholar 

  4. Frnda, J., Voznak, M., & Sevcik, L. (2016). Impact of packet loss and delay variation on the quality of real-time video streaming. Telecommunication Systems, 62(2), 265–275.

    Article  Google Scholar 

  5. Al-Jobouri, L., Fleury, M., & Ghanbari, M. (2016). Broadband wireless video streaming: achieving unicast and multicast IPTV in a practical manner. Multimedia Tools and Applications, Springer, 75(11), 6403–6430. https://doi.org/10.1007/s11042-015-2577-6.

    Article  Google Scholar 

  6. Moorthy, A. K., & Bovik, A. C. (2011). Visual quality assessment algorithms: What does the future hold? Multimedia Tools and Applications, 51(2), 675–696. https://doi.org/10.1007/s11042-010-0640-x.

    Article  Google Scholar 

  7. T.-L. Chin, T.-Y. Chen, C.-C. Huang, T.-R. (2015). Hsiang. Scalable video streaming for multicast in wireless networks. In Intelligent Signal Processing and Communication Systems (ISPACS), International Symposium on, IEEE, Nusa Dua, Indonesia, pp. 182–187, Nov. 2015. https://doi.org/10.1109/ISPACS.2015.7432762

  8. Shmueli, R., Hadar, O., Huber, R., Maltz, M., & Huber, M. (2008). Effects of an encoding scheme on perceived video quality transmitted over lossy internet protocol networks. Transactions on Broadcasting, IEEE, 54(3), 628–640.

    Article  Google Scholar 

  9. Seufert, M., Egger, S., Slanina, M., Zinner, T., Hoßfeld, T., & Tran-Gia, P. (2015). A survey on quality of experience of HTTP adaptive streaming. IEEE Communications Surveys & Tutorials, 17(1), 469–492.

    Article  Google Scholar 

  10. Ge, C., Wang, N., Foster, G., & Wilson, M. (2017). Towards QoE-assured 4K Video-on-Demand Delivery through Mobile Edge Virtualization with Adaptive Prefetching. Transactions on Multimedia, IEEE, PP(99), 1–1. https://doi.org/10.1109/TMM.2017.2735301.

    Article  Google Scholar 

  11. Lim, W.-S., Kim, D.-W., & Suh, Y.-J. (2012). Design of efficient multicast protocol for IEEE 802.11 n WLANs and cross-layer optimization for scalable video streaming. Transactions on Mobile Computing, IEEE, 11(5), 780–792. https://doi.org/10.1109/TMC.2011.95.

    Article  Google Scholar 

  12. Su, G.-M., Su, X., Bai, Y., Wang, M., Vasilakos, A. V., & Wang, H. (2016). QoE in video streaming over wireless networks: perspectives and research challenges. Wireless networks, Springer, 22(5), 571–1593. https://doi.org/10.1007/s11276-015-1028-7.

    Article  Google Scholar 

  13. Lloret, J., Garcia, M., Atenas, M., & Canovas, A. (2010). A QoE management system to improve the IPTV networks. International Journal of Communication Systems, 24(1), 118–138. https://doi.org/10.1002/dac.1145.

    Article  Google Scholar 

  14. Richards, A., Rogers, G., Antoniades, M., Witana, V. (1998) Mapping user level QoS from a single parameter. In Second IFIP/IEEE International Conference of Management of Multimedia Networks and Services, (pp. 16–18) Versailles, France, November 1998.

  15. Soh, K., & Iah, S. (2001). Subjectively assessing method for audiovisual quality using equivalent signal-to-noise ratio conversion. Transactions of the Institute of Electronics, Information and Communication Engineers, J84A(11), 1305–1313.

    Google Scholar 

  16. Sedano, I., Brunnström, K., Kihl, M., & Aurelius, A. (2014). Full-reference video quality metric assisted the development of no-reference bitstream video quality metrics for real-time network monitoring. EURASIP Journal on Image and Video Processing, Springer, 2014(1), 4.

    Article  Google Scholar 

  17. Hadizadeh, H., & Bajic, I. V. (2017). Full-reference objective quality assessment of tone-mapped images. Transactions on Multimedia, IEEE, PP(99), 1–1. https://doi.org/10.1109/TMM.2017.2740023.

    Article  Google Scholar 

  18. Wang, H., Chan, M. C., & Ooi, W. T. (2015). Wireless multicast for zoomable video streaming. ACM Transactions on Multimedia, Computing Communications, and Applications (TOMM), 12(1), 5. https://doi.org/10.1145/2801123.

    Article  Google Scholar 

  19. Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010). Study of subjective and objective quality assessment of video. IEEE transactions on Image Processing, 19(6), 1427–1441. https://doi.org/10.1109/TIP.2010.2042111.

    Article  Google Scholar 

  20. Taha, M., Jimenez, J. M., Canovas, A., & Lloret, J. (2018). Intelligent Algorithm for Enhancing MPEG-DASH QoE in eMBMS. Network Protocols and Algorithms, 9(3–4), 94–114. https://doi.org/10.5296/npa.v9i3-4.12573.

    Article  Google Scholar 

  21. Taha, M., Lloret, J., Canovas, A., & Garcia, L. (2017). Survey of transportation of adaptive multimedia streaming service in internet. Network Protocols and Algorithms, 9(1–2), 85–125. https://doi.org/10.5296/npa.v9i1-2.12412.

    Article  Google Scholar 

  22. Mateos-Cañas, I., Sendra, S., Lloret, J., & Jimenez, J. M. (2017). Autonomous video compression system for environmental monitoring. Network Protocols and Algorithms. https://doi.org/10.5296/npa.v9i1-2.12386.

    Article  Google Scholar 

  23. Vega, M. T., Perra, C., De Turck, F., & Liotta, A. (2018). A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Transactions on Broadcasting, 64(2), 432–445.

    Article  Google Scholar 

  24. Taha, M., Lloret, J., Ali, A., & Garcia, L. (2018). Adaptive video streaming testbed design for performance study and assessment of QoE. International Journal of Communication Systems, 31(9), e3551. https://doi.org/10.1002/dac.3551.

    Article  Google Scholar 

  25. Cánovas, A., Taha, M., Lloret, J., & Tomas, J. (2019). A cognitive network management system to improve QoE in stereoscopic IPTV service. International Journal of Communication Systems, 32(12), e3992.

    Article  Google Scholar 

  26. Abdullah, M. T. (2018). Smart client-server protocol and architecture for adaptive multimedia streaming. PhD diss., UniversitatPolitècnica de València.

Download references

Acknowledgment

This work has been partially supported by the "Ministerio de Economía y Competitividad" in the "Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia, Subprograma Estatal de Generación de Conocimiento" with in the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lloret.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M., Canovas, A., Lloret, J. et al. A QoE adaptive management system for high definition video streaming over wireless networks. Telecommun Syst 77, 63–81 (2021). https://doi.org/10.1007/s11235-020-00741-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-020-00741-2

Keywords

Navigation