Skip to main content

Advertisement

Log in

A secure and efficient key agreement framework for critical energy infrastructure using mobile device

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Internet of Energy (IoE) provides two-way communication for reform of energy utilization between service providers and consumers. To provide secure, efficient, and reliable operations in IoE should be protected from cyber-attacks. Many frameworks have been proposed so far to address security and privacy concerns of these systems. In the vehicle-grid system, we propose a useful mutual authenticated key agreement framework using elliptic curve cryptography and hash function. The aim of the proposed protocol is to maintain secure communication between vehicles and the grid system with reliable computation and communication costs. In the proposed protocol, a vehicular user securely access services that are provided by the grid server. We prove the security of the proposed framework in formal and informal ways. We also show the correctness of the mutual authentication and key agreement of this framework by using Burrows–Abadi–Needham logic. We provide formal security verification of the proposed protocol by using AVISPA tool. Further, we show that this work is better in terms of computation and communication costs compare to other related protocols in the same environment. As a result, the proposed framework is a real life-application in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang, W.-Z., Elgendy, I. A., Hammad, M., Iliyasu, A. M., Du, X., Guizani, M., & Abd El-Latif, A. A. (2020). Secure and optimized load balancing for multitier IoT and edge-cloud computing systems. IEEE Internet of Things Journal, 8(10), 8119–8132.

  2. Abou-Nassar, E. M., Iliyasu, A. M., El-Kafrawy, P. M., Song, O.-Y., Bashir, A. K., & Abd El-Latif, A. A. (2020). Ditrust chain: Towards blockchain-based trust models for sustainable healthcare IoT systems. IEEE Access, 8, 111223–111238.

    Article  Google Scholar 

  3. Mirsadeghi, F., Rafsanjani, M. K., & Gupta, B. B. (2020). A trust infrastructure based authentication method for clustered vehicular ad hoc networks. Peer-to-Peer Networking and Applications., 14, 2537–2553. https://doi.org/10.1007/s12083-020-01010-4

  4. Stergiou, C. L., Psannis, K. E., & Gupta, B. B. (2020). Iot-based big data secure management in the fog over a 6g wireless network. IEEE Internet of Things Journal, 8(7), 5164–5171.

  5. Abd El-Latif, A. A., Abd-El-Atty, B., Venegas-Andraca, S. E., Elwahsh, H., Piran, M. J., Bashir, A. K., et al. (2020). Providing end-to-end security using quantum walks in IoT networks. IEEE Access, 8, 92687–92696.

  6. Gad, R., Talha, M., Abd El-Latif, A. A., Zorkany, M., Ayman, E.-S., Nawal, E.-F., & Muhammad, G. (2018). Iris recognition using multi-algorithmic approaches for cognitive internet of things (CIoT) framework. Future Generation Computer Systems, 89, 178–191.

    Article  Google Scholar 

  7. Mishra, A., Gupta, N., & Gupta, B. (2021). Defense mechanisms against DDoS attack based on entropy in SDN-cloud using pox controller. Telecommunication Systems, 77(1), 47–62.

  8. Zhou, K., Yang, S., & Shao, Z. (2016). Energy internet: The business perspective. Applied Energy, 178, 212–222.

    Article  Google Scholar 

  9. Gupta, B., & Quamara, M. (2020). An overview of internet of things (IoT): Architectural aspects, challenges, and protocols. Concurrency and Computation: Practice and Experience, 32, e4946.

    Article  Google Scholar 

  10. Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2012). A survey on smart grid potential applications and communication requirements. IEEE Transactions on Industrial Informatics, 9, 28–42.

    Article  Google Scholar 

  11. Gharavi, H., & Ghafurian, R. (2011). Smart grid: The electric energy system of the future (Vol. 99). IEEE.

  12. Abd El-Latif, A. A., Abd-El-Atty, B., Mehmood, I., Muhammad, K., Venegas-Andraca, S. E., & Peng, J. (2021). Quantum-inspired blockchain-based cybersecurity: Securing smart edge utilities in IoT-based smart cities. Information Processing & Management, 58, 102549.

    Article  Google Scholar 

  13. Li, D., Deng, L., Gupta, B. B., Wang, H., & Choi, C. (2019). A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Information Sciences, 479, 432–447.

    Article  Google Scholar 

  14. Sani, A. S., Yuan, D., Jin, J., Gao, L., Yu, S., & Dong, Z. Y. (2019). Cyber security framework for internet of things-based energy internet. Future Generation Computer Systems, 93, 849–859.

    Article  Google Scholar 

  15. Aggarwal, S., Kumar, N., & Gope, P. (2021). An efficient blockchain-based authentication scheme for energy-trading in v2g networks. IEEE Transactions on Industrial Informatics, 17(10), 6971–6980. https://doi.org/10.1109/TII.2020.3030949

  16. Dong, Z. (2016). Towards an intelligent future energy grid. New South Wales: The University of Sydney.

    Google Scholar 

  17. Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for building secure channels. In International conference on the theory and applications of cryptographic techniques (pp. 453–474). Springer. https://doi.org/10.1007/3-540-44987-6_28

  18. Wu, D., & Zhou, C. (2011). Fault-tolerant and scalable key management for smart grid. IEEE Transactions on Smart Grid, 2, 375–381.

    Article  Google Scholar 

  19. Xia, J., & Wang, Y. (2012). Secure key distribution for the smart grid. IEEE Transactions on Smart Grid, 3, 1437–1443.

    Article  Google Scholar 

  20. Nicanfar, H., & Leung, V. C. (2013). Multilayer consensus ECC-based password authenticated key-exchange (MCEPAK) protocol for smart grid system. IEEE Transactions on Smart Grid, 4, 253–264.

    Article  Google Scholar 

  21. Park, J. H., Kim, M., & Kwon, D. (2013). Security weakness in the smart grid key distribution scheme proposed by Xia and Wang. IEEE Transactions on Smart Grid, 4, 1613–1614.

    Article  Google Scholar 

  22. Odelu, V., Das, A. K., Wazid, M., & Conti, M. (2016). Provably secure authenticated key agreement scheme for smart grid. IEEE Transactions on Smart Grid, 9, 1900–1910.

    Google Scholar 

  23. Tsai, J.-L., & Lo, N.-W. (2016). Secure anonymous key distribution scheme for smart grid. IEEE Transactions on Smart Grid, 7, 906–914.

    Google Scholar 

  24. Chen, Y., Martínez, J.-F., Castillejo, P., & López, L. (2017). An anonymous authentication and key establish scheme for smart grid: Fauth. Energies, 10, 1354.

    Article  Google Scholar 

  25. Gope, P., & Sikdar, B. (2018). Privacy-aware authenticated key agreement scheme for secure smart grid communication. IEEE Transactions on Smart Grid, 10, 3953–3962.

    Article  Google Scholar 

  26. Mohammadali, A., Haghighi, M. S., Tadayon, M. H., & Mohammadi-Nodooshan, A. (2016). A novel identity-based key establishment method for advanced metering infrastructure in smart grid. IEEE Transactions on Smart Grid, 9, 2834–2842.

    Article  Google Scholar 

  27. Gope, P., & Sikdar, B. (2019). An efficient privacy-preserving authentication scheme for energy internet-based vehicle-to-grid communication. IEEE Transactions on Smart Grid, 10, 6607–6618.

    Article  Google Scholar 

  28. Li, X., Wu, F., Kumari, S., Xu, L., Sangaiah, A. K., & Choo, K.-K.R. (2019). A provably secure and anonymous message authentication scheme for smart grids. Journal of Parallel and Distributed Computing, 132, 242–249.

    Article  Google Scholar 

  29. Mahmood, K., Chaudhry, S. A., Naqvi, H., Kumari, S., Li, X., & Sangaiah, A. K. (2018). An elliptic curve cryptography based lightweight authentication scheme for smart grid communication. Future Generation Computer Systems, 81, 557–565.

    Article  Google Scholar 

  30. He, D., Wang, H., Khan, M. K., & Wang, L. (2016). Lightweight anonymous key distribution scheme for smart grid using elliptic curve cryptography. IET Communications, 10, 1795–1802.

    Article  Google Scholar 

  31. Khan, A. A., Kumar, V., Ahmad, M., & Rana, S. (2021). Lakaf: Lightweight authentication and key agreement framework for smart grid network. Journal of Systems Architecture, 116, 102053.

    Article  Google Scholar 

  32. Yang, Z., Yu, S., Lou, W., & Liu, C. (2011). Privacy-preserving communication and precise reward architecture for v2g networks in smart grid. IEEE Transactions on Smart Grid, 2, 697–706.

    Article  Google Scholar 

  33. Guo, H., Wu, Y., Bao, F., Chen, H., & Ma, M. (2011). Ubapv2g: A unique batch authentication protocol for vehicle-to-grid communications. IEEE Transactions on Smart Grid, 2, 707–714.

    Article  Google Scholar 

  34. Abdallah, A., & Shen, X. S. (2016). Lightweight authentication and privacy-preserving scheme for v2g connections. IEEE Transactions on Vehicular Technology, 66, 2615–2629.

    Article  Google Scholar 

  35. Tanveer, M., Zahid, A. H., Ahmad, M., Baz, A., & Alhakami, H. (2020). Lake-IoD: Lightweight authenticated key exchange protocol for the internet of drone environment. IEEE Access, 8, 155645–155659.

    Article  Google Scholar 

  36. Luo, M., Chang, X., Nie, L., Yang, Y., Hauptmann, A. G., & Zheng, Q. (2017a). An adaptive semisupervised feature analysis for video semantic recognition. IEEE Transactions on Cybernetics, 48, 648–660.

    Article  Google Scholar 

  37. Luo, M., Nie, F., Chang, X., Yang, Y., Hauptmann, A. G., & Zheng, Q. (2017b). Adaptive unsupervised feature selection with structure regularization. IEEE Transactions on Neural Networks and Learning Systems, 29, 944–956.

    Article  Google Scholar 

  38. Stallings, W. (2006). Cryptography and Network Security, 4/E, Pearson Education India.

  39. Kumari, A., Yahya Abbasi, M., Kumar, V., & Khan, A. A. (2019). A secure user authentication protocol using elliptic curve cryptography. Journal of Discrete Mathematical Sciences and Cryptography, 22, 521–530.

    Article  Google Scholar 

  40. Khan, A. A., Kumar, V., & Ahmad, M. (2019). An elliptic curve cryptography based mutual authentication scheme for smart grid communications using biometric approach. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2019.04.013

  41. Stinson, D. R. (2006). Some observations on the theory of cryptographic hash functions. Designs, Codes and Cryptography, 38, 259–277.

    Article  Google Scholar 

  42. Kumar, V., Jangirala, S., & Ahmad, M. (2018). An efficient mutual authentication framework for healthcare system in cloud computing. Journal of Medical Systems, 42, 1–25.

    Article  Google Scholar 

  43. Wang, W., Huang, H., Zhang, L., & Su, C. (2021). Secure and efficient mutual authentication protocol for smart grid under blockchain. Peer-to-Peer Networking and Applications, 14(5), 2681–2693.

  44. Abbasinezhad-Mood, D., & Nikooghadam, M. (2018). An anonymous ECC-based self-certified key distribution scheme for the smart grid. IEEE Transactions on Industrial Electronics, 65, 7996–8004.

    Article  Google Scholar 

  45. Islam, S. H. (2014). Provably secure dynamic identity-based three-factor password authentication scheme using extended chaotic maps. Nonlinear Dynamics, 78, 2261–2276.

    Article  Google Scholar 

  46. Khan, A. A., Kumar, V., Ahmad, M., Rana, S., & Mishra, D. (2020). Palk: Password-based anonymous lightweight key agreement framework for smart grid. International Journal of Electrical Power & Energy Systems, 121, 106121.

    Article  Google Scholar 

  47. Chaudhry, S. A., Naqvi, H., Sher, M., Farash, M. S., & Hassan, M. U. (2017). An improved and provably secure privacy preserving authentication protocol for sip. Peer-to-Peer Networking and Applications, 10, 1–15.

  48. Burrows, M., Abadi, M., & Needham, R. M. (1989). A logic of authentication. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 426, 233–271.

    Article  Google Scholar 

  49. Chaturvedi, A., Mishra, D., & Mukhopadhyay, S. (2017). An enhanced dynamic id-based authentication scheme for telecare medical information systems. Journal of King Saud University-Computer and Information Sciences, 29, 54–62.

    Article  Google Scholar 

  50. Kumar, V., Ahmad, M., Mishra, D., Kumari, S., & Khan, M. K. (2020). Rseap: Rfid based secure and efficient authentication protocol for vehicular cloud computing. Vehicular Communications, 22, 100213.

    Article  Google Scholar 

  51. Armando, A., Basin, D., Cuellar, J., Rusinowitch, M., & Viganó, L. (2006). Avispa: automated validation of internet security protocols and applications. ERCIM News,64, 76

  52. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma, P. H., Héam, P.-C. , Kouchnarenko, O., Mantovani, J., et al. (2005). The avispa tool for the automated validation of internet security protocols and applications. In International conference on computer aided verification (pp. 281–285). Springer, Berlin.

Download references

Acknowledgements

We would like to thanks Editor-in-Chief: Prof. Muhammad Khurram Khan and anonymous reviewers for their insightful comments and valuable suggestions that have resulted in the improvement of this manuscript. The author acknowledges Dr. Iftikhar and Dr. Aisha Jabeen, Jamia Millia Islamia, New Delhi for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod Kumar or B. B. Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Kumar, V., Ahmad, M. et al. A secure and efficient key agreement framework for critical energy infrastructure using mobile device. Telecommun Syst 78, 539–557 (2021). https://doi.org/10.1007/s11235-021-00826-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00826-6

Keywords

Navigation