Skip to main content

Advertisement

Log in

A survey on IRS NOMA integrated communication networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Intelligent reflecting surfaces aided communication have been emerging as strong candidates to support the 6G wireless physical platforms. IRS has shown promising qualities in enhancing the spectral efficiency of wireless networks because of its capability to alter the conduct of interacting electromagnetic waves through intelligent handling of the reflections phase shifts. Also, NOMA proves itself to be superior among the other multiple access techniques as it supports a greater number of users using non-orthogonal resource allocation. This paper brings a survey over the IRS-assisted NOMA networks. The IRS and NOMA technologies, and their physical working principles are first introduced in the paper. The state-of-the-art of the IRS-assisted NOMA communication networks is next presented followed by a discussion of related performance parameters for analysis. Afterward, it discusses the resource allocation, and secrecy requirements in the IRS–NOMA networks. Furthermore, it presents the relevant work related to the optimization of energy efficiency, power efficiency and coverage. A comparison of IRS–NOMA network with MIMO–NOMA, and relay aided NOMA network is provided. Finally, a few exciting open challenges for IRS-assisted NOMA networks are identified including optimization problem using ML, identifying implementing scenarios of NOMA or OMA with IRS, PLS, and terahertz communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Figure. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

N/A.

Code availability

N/A.

References

  1. Mahmoud, H. H. H., Amer, A. A., & Ismail, T. (2021). 6G A comprehensive survey on technologies, applications, challenges, and research problems. Transactions on Emerging Telecommunications Technologies, 32(4), e4233.

    Article  Google Scholar 

  2. Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70–75.

    Article  Google Scholar 

  3. Long, W., Chen, R., Moretti, M., Zhang, W., & Li, J. (2021). A promising technology for 6G wireless networks: Intelligent reflecting surface. Journal of Communications and Information Networks, 6(1), 1–16.

    Google Scholar 

  4. Y. Yuan, Y. Zhao, B. Zong and S. Parolari, “Potential key technologies for 6G mobile communications,” [Online] Available: arXiv:1910.00730 [cs.IT] , accessed on April2021.

  5. Alghamdi, R., et al. (2020). Intelligent surfaces for 6G wireless networks: A survey of optimization and performance analysis techniques. IEEE Access, 8, 202795–202818.

    Article  Google Scholar 

  6. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170.

    Article  Google Scholar 

  7. Nguyen, H. V., et al. (2020). A survey on non-orthogonal multiple access: From the perspective of spectral efficiency and energy efficiency. Energies, 13(16), 4106.

    Article  Google Scholar 

  8. Yang, G., Xu, X. & Liang, Y. (2020). Intelligent reflecting surface assisted non-orthogonal multiple access. In IEEE proc. of international wireless commun. networking conf. (WCNC), Seoul, Kr.

  9. Wu, Q., Zhou, X. & Schober, R. (2021). IRS-assisted wireless powered NOMA: Do we really need different phase shifts in DL and UL?, [Online] Available: arXiv:2102.08739v4 [cs.IT]. Accessed on May 2021.

  10. Zhao, J. (2021). A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks. [Online] Available: https://arxiv.org/pdf/1907.04789.pdf. accessed on May 2021.

  11. Wu, Q., Zhang, S., Zheng, B., You C. & Zhang, R. (2021). Intelligent reflecting surface aided wireless communications: A tutorial. [Online] Available: https://arXiv.org/pdf:2007.02759v2.pdf [cs.IT]. Accessed on May 2021.

  12. Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112.

    Article  Google Scholar 

  13. Gong, S. et al. (2021). Towards smart wireless communications via intelligent reflecting surfaces: A contemporary survey. [Online] Available: arXiv:1912.07794v2 [cs.IT]. Accessed on May 2021.

  14. Basar, E., Di Renzo, M., de Rosny, J., Debbah, M., Alouini, M.-S., & Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773.

    Article  Google Scholar 

  15. Di Renzo, M. et al. (2021). Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and road ahead. [Online] Availble:arXiv preprint arXiv:2004.09352. Accessed on May 2021.

  16. Yuan, X., Zhang, Y.-J., Shi, Y., Yan, W. & Liu, H. (2021). Reconfigurable-intelligent-surface empowered 6G wireless communications:Challenges and opportunities. [Online] available: arXiv:2001.00364. Accessed on May 2021.

  17. Bjornson, E., Zdogan, O¨ & Larsson, E. G. (2021). Reconfigurable intelligent surfaces: Three myths and two critical questions. [Online] availble: arXiv:2006.03377. Accessed on May 2021.

  18. Di Renzo, K. M., et al. (2020). Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison. IEEE Open Journal of the Communications Society, 1, 798–807.

    Article  Google Scholar 

  19. ElMossallamy, M. A., Zhang, H., Song, L., Seddik, K. G., Han, Z., & Li, G. Y. (2020). Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Transactions on Cognitive Communications and Networking, 6(3), 990–1002.

    Article  Google Scholar 

  20. Almohamad, A., et al. (2020). Smart and secure wireless communications via reflecting intelligent surfaces: A short survey. IEEE Open Journal of the Communications Society, 1, 1442–1456.

    Article  Google Scholar 

  21. Wu, Q. & Zhang, R. (2018). Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design. In 2018 IEEE global communications conference (GLOBECOM) (pp. 1–6), Abu Dhabi, UAE.

  22. Hu, S., Rusek, F., & Edfors, O. (2018). Beyond massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE Transactions on Signal Processing, 66(10), 2746–2758.

    Article  Google Scholar 

  23. Hu, S., Rusek, F. & Edfors, O. (2017). The potential of using large antenna arrays on intelligent surfaces. In 2017 IEEE 85th vehicular technology conference (VTC Spring), 2017 (pp. 1–6), Sydney, Australia.

  24. Jung, M., Saad, W., & Kong, G. (2021). Performance analysis of active large intelligent surfaces (LISs): Uplink spectral efficiency and pilot training. IEEE Transactions on Communications, 69(5), 3379–3394.

    Article  Google Scholar 

  25. Yuan, X., & He, Z. (2020). Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wireless Communications Letters, 9(2), 210–214.

    Article  Google Scholar 

  26. Di Renzo, M. et al. (2019). Smart radio environments empowered by AI reconfigurable meta-surfaces: An idea whose time has come. EURASIP J. Wireless Commun. Netw., Article no. 129.

  27. Tan, X., Sun, Z., Koutsonikolas, D. & Jornet, J. M. (2018). Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays. In IEEE Conference on Computer Communications (pp. 270–278), Honolulu, HI, USA

  28. Tan, X., Sun, Z., Jornet, J. M. & Pados, D. (2016). Increasing indoor spectrum sharing capacity using smart reflect-array. In IEEE international conference on communications (ICC) (pp. 1–6), Kuala Lumpur, Malaysia.

  29. Johansson, H. & Mishra, D. (2019). Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer. In IEEE international conference on acoustics, speech and signal processing (ICASSP), Brighton, UK.

  30. Huang, C., Zappone, A., Debbah, M. & Yuen, C. (2018). Achievable rate maximization by passive intelligent mirrors. In Proc. IEEE ICASSP (pp. 3714–3718), Calgary,AB, Canada.

  31. Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications, 68(5), 3187–3196.

    Article  Google Scholar 

  32. Liaskos, C., Tsioliaridou, A., Nie, S., Pitsillides, A., Ioannidis, S. & Akyildiz, I. (2019). An interpretable neural network for configuring programmable wireless environments. In IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC), (pp. 1–5) Cannes, France.

  33. Liu, F. et al. (2018). Programmable metasurfaces: State of the art and prospects. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1–5), Florence, Italy.

  34. Liang, Y.-C., Long, R., Zhang, Q., Chen, J., Cheng, H. V., & Guo, H. (2019). Large intelligent surface/antennas (LISA): Making reflective radios smart. Journal of Communications and Information Networks, 4(2), 40–50.

    Google Scholar 

  35. Yadav, P., Kumar, R., & Kumar, S. (2020). Effective capacity analysis over generalized lognormal shadowed composite fading channels. Internet Technology Letters. https://doi.org/10.1002/itl2.171

    Article  Google Scholar 

  36. Yadav, P., Kumar, S. & Kumar, R. (2020). Effective capacity analysis over α-κ-μ/gamma composite fading channel. In 2nd international conference on advances in computing, communication control and networking (ICACCCN), Greater Noida, India, 2020, pp. 587–592.

  37. Yadav, P., Kumar, S., & Kumar, R. (2021). A review of transmission rate over wireless fading channels: Classifications, applications, and challenges. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08968-1

    Article  Google Scholar 

  38. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  39. Wu, Q., & Zhang, R. (2019). Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Transactions on Wireless Communications, 18(11), 5394–5409.

    Article  Google Scholar 

  40. Cui, T. J., et al. (2014). Coding metamaterials, digital metamaterials metamaterials and programmable metamaterials. Light Science & Applications, 3, e218.

    Article  Google Scholar 

  41. Yu, X., Xu, D. & Schober, R. (2019). Enabling secure wireless communications via intelligent reflecting surfaces. IEEE Global Communications Conference (GLOBECOM) (pp. 1–6), Waikoloa, HI, USA.

  42. Cui, M., Zhang, G., & Zhang, R. (2019). Secure wireless communication via intelligent reflecting surface. IEEE Wireless Communications Letters, 8(5), 1410–1414. https://doi.org/10.1109/LWC.2019.2919685

    Article  Google Scholar 

  43. Chen, J., Liang, Y.-C., Pei, Y., & Guo, H. (2019). Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access, 7, 82599–82612. https://doi.org/10.1109/ACCESS.2019.2924034

    Article  Google Scholar 

  44. Xu, D., Yu, X., Sun, Y., Ng, D. W. K. & Schober, R. (2019). Resource allocation for secure IRS-assisted multiuser MISO systems. In 2019 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6), Waikoloa, HI, USA.

  45. Ye, J., Guo, S., & Alouini, M.-S. (2020). Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems. IEEE Transactions on Wireless Communications, 19(8), 5561–5574.

    Article  Google Scholar 

  46. Pan, C., et al. (2020). Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Transactions on Wireless Communications, 19(8), 5218–5233.

    Article  Google Scholar 

  47. Waqar, O. (2021). Performance analysis for IRS-aided communication systems with composite fading/shadowing direct link and discrete phase shifts. Transactions on Emerging Telecommunications Technologies, 32(10), e4320.

    Article  Google Scholar 

  48. Nagarajan, D., & Balakrishnan, R. (2021). Error probability and throughput analysis of IRS-assisted wireless system over generalized κ–μ fading channels. Wireless Personal Communications, 120, 1929–1944.

    Article  Google Scholar 

  49. Wu, Q., & Zhang, R. (2020). Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wireless Communications Letters, 9(5), 586–590. https://doi.org/10.1109/LWC.2019.2961656

    Article  Google Scholar 

  50. Pan, C., et al. (2020). Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 38(8), 1719–1734. https://doi.org/10.1109/JSAC.2020.3000802

    Article  Google Scholar 

  51. Rasethuntsa, T. R., Kumar, S., & Kaur, M. (2021). On the performance of DF-based multi-hop system over α − κ − μ and α − κ − μ-extreme fading channels. Digital Signal Processing. https://doi.org/10.1016/j.dsp.2020.102909

    Article  Google Scholar 

  52. Agarwal, D., Bansal, A., & Kumar, A. (2018). Analyzing selective relaying for multiple relay based differential DF-FSO network with pointing errors. Transaction on Emerging Telecommunications Technologies, 29(9), 1–17.

    Google Scholar 

  53. Björnson, E., Özdogan, Ö., & Larsson, E. G. (2020). Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wireless Communications Letters, 9(2), 244–248.

    Article  Google Scholar 

  54. Vaezi, M., Ding, Z., & Poor, H. V. (2019). Multiple access techniques for 5G wireless networks and beyond. Springer.

    Book  Google Scholar 

  55. Aldababsa, M., Toka, M., Gökçeli, S., Kurt, G. K., & Kucur, O. (2018). A tutorial on nonorthogonal multiple access for 5G and beyond. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/9713450

    Article  Google Scholar 

  56. Saito, Y. et al. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In IEEE vehicular technology conference (VTC Spring),, Dresden, Germany.

  57. Islam, S. R., Zeng, M., Dobre, O. A. & Kwak, K. (2019). Nonorthogonal multiple access (NOMA): How it meets 5G and beyond. Wiley 5G Ref, pp. 1–28.

  58. Xu, Y., Shen, C., Chang, T., Lin, S., Zhao, Y., & Zhu, G. (2020). Transmission energy minimization for heterogeneous low-latency NOMA downlink. IEEE Transactions on Wireless Communications, 19(2), 1054–1069.

    Article  Google Scholar 

  59. Xu, Y., Shen, C., Cai, D., & Zhu, G. (2020). Latency constrained non-orthogonal packets scheduling with finite blocklength codes. IEEE Transactions on Vehicular Technology, 69(10), 12312–12316.

    Article  Google Scholar 

  60. Xu, Y., Cai, D., Fang, F., Ding, Z., Shen, C., & Zhu, G. (2020). Outage constrained power efficient design for downlink NOMA systems with partial HARQ. IEEE Transactions on Communications, 68(8), 5188–5201.

    Article  Google Scholar 

  61. Xu, Y., et al. ( 2017). Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems. IEEE Transactions on Signal Processing, 65(18), 4874–4886.

    Article  Google Scholar 

  62. Yuan, Z., Yu, G., & Li, W. (2015). Multi-user shared access for 5G. Telecommunications Network Technology, 5(5), 28–30.

    Google Scholar 

  63. Nikopour, H. & Baligh, H. (2013) Sparse code multiple access. In IEEE 24th Annual international symposium on personal, indoor, and mobile radio communications (PIMRC'13), London, UK.

  64. Dai, L., Wang, B., Yuan, Y., Han, S., & C. I, and Z. Wang,. (2015). Nonorthogonal multiple access for 5G: solutions, challenges, opportunities and future research trends. IEEE Communications, 53(9), 74–81.

    Article  Google Scholar 

  65. Benjebbovu, A., Li, A., Saito, Y., Kishiyama, Y. Harada, A. & Nakamura, T. (2013). System-level performance of downlink NOMA for future LTE enhancements. In IEEE global communications conference (GLOBECOM), Atlanta, USA, 2013, pp. 66–70.

  66. Islam, S. M. R., Avazov, N., Dobre, O. A. & Kwak, K. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), pp. 721–742, Second quarter 2017.

  67. Wang, P., Xiao, J., & Ping, L. (2006). Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 1(3), 4–11.

    Article  Google Scholar 

  68. Al-Imari, M., Xiao, P., Imran, M. A. & Tafazolli, R. (2014). Uplink nonorthogonal multiple access for 5G wireless networks. In Proc. IEEE intern. sympos. on wireless commun. systems, pp. 781–785.

  69. Zhang, N., Wang, J., Kang, G., & Liu, Y. (2016). Uplink nonorthogonal multiple access in 5G systems. IEEE Communications Letters, 20(3), 458–461.

    Article  Google Scholar 

  70. Al-Imari, M., Xiao, P., Imran, M. A. & Tafazolli, R. (2014). Uplink nonorthogonal multiple access for 5G wireless networks. In: Proc. IEEE intern. sympos. on wireless commun. systems (pp. 781–785) Barcelona, Spain.

  71. Vergados, D. D., & Miridakis, N. I. (2013). A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems. IEEE Commun. Surveys Tutorials, 15(1), 312–335.

    Article  Google Scholar 

  72. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation. IEICE Transactions on Communications, E98-B(3), 403–414.

    Article  Google Scholar 

  73. RiazulIslam, S. M., Zeng, M., & Dobre, O. A. (2017). NOMA in 5G Systems: Exciting Possibilities for Enhancing. IEEE Tech Focus, 1(2), 1–6.

    Google Scholar 

  74. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE, 105(12), 2347–2381.

    Article  Google Scholar 

  75. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22(10), 1647–1651.

    Article  Google Scholar 

  76. Wei, Z., Guo, J., Kwan Ng, D. W. & Yuan, J. (2017). Fairness comparison of uplink NOMA and OMA. In: IEEE 85th vehicular technology conference: VTC2017-Spring.

  77. Tao, Y., Liu, L., Liu, S., & Zhang, Z. (2015). A survey: Several technologies of non-orthogonal transmission for 5G. China Communications, 12, 1–15.

    Article  Google Scholar 

  78. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., & Poor, H. V. (2017). Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. IEEE Communications Magazine, 55(10), 176–183.

    Article  Google Scholar 

  79. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  80. Zhang, Z., Sun, H. & Lei, X. (2018). Non-orthogonal multiple access. https://doi.org/10.1007/978-3-319-32903-1_57-1.

  81. Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of user pairing on 5G non-orthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023.

    Article  Google Scholar 

  82. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.

    Google Scholar 

  83. Liu, Y., Derakhshani, M., & Lambotharan, S. (2018). Outage analysis and power allocation in uplink non-orthogonal multiple access systems. IEEE Communications Letters, 22(2), 336–339.

    Article  Google Scholar 

  84. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  85. Men, J., Ge, J., & Zhang, C. (2016). Performance analysis for downlink relaying aided non-orthogonal multiple access networks with imperfect CSI over Nakagami-m fading. IEEE Access, 5, 998–1004.

    Article  Google Scholar 

  86. Sharma, P., Kumar, A., & Bansal, M. (2020). Performance analysis of downlink NOMA over η − µ and κ − µ fading channels. IET Communications, 14(3), 522–531.

    Article  Google Scholar 

  87. ElHalawany, B. M., Jameel, F., da Costa, D. B., Dias, U. S., & Wu, K. (2019). Performance analysis of downlink NOMA systems over κ-µ shadowed fading channels. IEEE Transactions on Vehicular Technology, 69(1), 1046–1050.

    Article  Google Scholar 

  88. Kumar, V., Cardiff, B., Prakriya, S. & Flanagan, M. F. (2020). Effective rate of downlink NOMA over κ − µ shadowed fading with integer fading parameters. In Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops) (pp. 1–7).

  89. Kumar, V., Cardiff, B., Prakriya, S., & Flanagan, M. F. (2020). Delay violation probability and effective rate of downlink NOMA over α-µ fading channels. IEEE Transactions on Vehicular Technology, 69(10), 11241–11252.

    Article  Google Scholar 

  90. Alqahtani, A. S. & Alsusa, E. (2020). Performance analysis of downlink NOMA system over α-η-µ generalized fading channel. In IEEE 91st Veh. Technol. Conf. (VTC-Spring) (pp. 1–5), Antwerp, Belgium.

  91. Papanikolaou, V. K., Karagiannidis, G. K., Mitsiou, N. A., & Diamantoulakis, P. D. (2020). Closed-form analysis for NOMA with randomly deployed users in generalized fading. IEEE Wireless Commun. Lett., 9(8), 1253–1257.

    Article  Google Scholar 

  92. Rabie, K et al. (2021). On the performance of non-orthogonal multiple access over composite fading channels. [Online] Available: https://arxiv.org/pdf/2004.07860.pdf. Accessed on May 2021.

  93. Agarwal, A., Chaurasiya, R., Rai, S., & Jagannatham, A. K. (2020). OP analysis for NOMA downlink and uplink communication systems with generalized fading channels. IEEE Access, 8, 220461–220481.

    Article  Google Scholar 

  94. Khansa, A. A., Chen, X., Gui, G. & Sari, H. (2020). A BER analysis of NOMA on Rician fading channels. In 2020 IEEE Latin-American conference on communications (LATINCOM), (pp. 1–6), Santo Domingo, Dominican Republic.

  95. Assaf, T., Al-Dweik, A., Moursi, M. E., & Zeineldin, H. (2019). Exact BER performance analysis for downlink NOMA systems over nakagami-m fading channels. IEEE Access, 7, 134539–134555.

    Article  Google Scholar 

  96. Liu, Y., et al. (2018). Multiple-antenna-assisted non-orthogonal multiple access. IEEE Wireless Commun., 25(2), 17–23.

    Article  Google Scholar 

  97. Yue, X. & Liu, Y. (2021). Performance analysis of intelligent reflecting surface assisted NOMA networks. [Online] Available: arXiv:2002.09907v4 [cs.IT]. Accessed on May 2021.

  98. Renzo, M. D. & Song, J. (2019). Reflection probability in wireless networks with metasurface-coated environmental objects: An approach based on random spatial processes. EURASIP Journal on Wireless Communications and Networking 99.

  99. Jung, M., Saad, W., Jang, Y., Kong, G., & Choi, S. (2019). Reliability analysis of large intelligent surfaces (LISs): Rate distribution and OP. IEEE Wireless Commun. Lett., 8(6), 1662–1666.

    Article  Google Scholar 

  100. Al-Jarrah, M., Al-Dweik, A., Alsusa, E., Iraqi, Y. & Alouini, M.-S. (2021). IRS-assisted UAV communications with imperfect phase compensation. [Online] Available: TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.13153211.v1, Accessed on May 2021.

  101. Ferreira, R., Facina, M., De Figueiredo, F., Fraidenraich, G., & De Lima, E. (2020). Bit error probability for large intelligent surfaces under double-Nakagami fading channels. IEEE Open Journal of the Communications Society, 1, 750–759.

    Article  Google Scholar 

  102. Zheng, B., Wu, Q., & Zhang, R. (2020). Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA? IEEE Communications Letters, 24(4), 753–757.

    Article  Google Scholar 

  103. Fu, M., Zhou, Y. & Shi, Y. (2019). Intelligent reflecting surface for downlink non-orthogonal multiple access networks. In IEEE proc. of global commun. conf. (GLOBECOM), Waikoloa, USA.

  104. Bariah, L., et al. (2021). Large intelligent surface assisted non-orthogonal multiple access for 6G networks: Performance analysis. IEEE Internet of Things Journal, 8(7), 5129–5140.

    Article  Google Scholar 

  105. Thirumavalavan, V. C. & Jayaraman, T. S. (2020). BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In 2020 international conference on COMmunication systems & NETworkS (COMSNETS) (pp. 519–522) Bengaluru, India.

  106. X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploting intelligent reflecting surface in multi-antenna aided NOMA systems,” [Online] Available: https://arxiv.org/abs/1910.13636v1,accessed on May 2021.

  107. Yang, L., & Yuan, Y. (2020). Secrecy OP analysis for RIS-assisted NOMA systems. IET, 56(23), 1254–1256.

    Google Scholar 

  108. Ding, Z., Schober, R., & Poor, H. V. (2020). On the impact of phase shifting designs on IRS-NOMA. IEEE Wireless Communications Letters, 9(10), 1596–1600. https://doi.org/10.1109/LWC.2020.2991116

    Article  Google Scholar 

  109. Hou, T.,Liu, Y., Song, Z., Sun, X. Chen, Y. & Hanzo, L. (2021). Reconfigurable intelligent reflecting surface aided NOMA networks. [Online] Available: https://arxiv.org/abs/1912.10044v1. Accessed on May 2021.

  110. Cheng, Y., Li, K. H., Liu, Y., Teh, K. C., & Poor, H. V. (2021). Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA. IEEE Transactions on Wireless Communications, 20(6), 3988–4000.

    Article  Google Scholar 

  111. Tahir, B., Schwarz, S., & Rupp, M. (2021). Analysis of uplink IRS-assisted NOMA under nakagami-m fading via moments matching. IEEE Wireless Communications Letters, 10(3), 624–628.

    Article  Google Scholar 

  112. Tang, Z., Hou, T., Liu, Y., Zhang, J. & Hanzo, L. (2021). Physical layer security of intelligent reflective surface aided NOMA networks. [Online] Available: https://arxiv.org/pdf/2011.03417.v1. Accessed on May 2021.

  113. Zeng, M., Li, X., Li, G., Hao, W., & Dobre, O. A. (2021). Sum rate maximization for IRS-assisted uplink NOMA. IEEE Communications Letters, 25(1), 234–238.

    Article  Google Scholar 

  114. Guo, Y., Qin, Z., Liu, Y., & Al-Dhahir, N. (2021). Intelligent reflecting surface aided multiple access over fading channels. IEEE Transactions on Communications, 69(3), 2015–2027.

    Article  Google Scholar 

  115. Zuo, J., Liu, Y., Qin, Z., & Al-Dhahir, N. (2020). Resource allocation in intelligent reflecting surface assisted NOMA systems. IEEE Transactions on Communications, 68(11), 7170–7183.

    Article  Google Scholar 

  116. Mu, X., Liu, Y., Guo, L., Lin, J. & Al-Dhahir, N. (2021). Exploting intelligent reflecting surface in multi-antenna aided NOMA systems. [Online] Available: https://arxiv.org/abs/1910.13636v1. Accessed on May 2021.

  117. Fu, M., Zhou, Y., Shi, Y., & Letaief, K. B. (2021). Reconfigurable intelligent surface empowered downlink non-orthogonal multiple access. IEEE Transactions on Communications, 69(6), 3802–3817.

    Article  Google Scholar 

  118. Zhu, J., Huang, Y., Wang, J., Navaie, K., & Ding, Z. (2021). Power efficient IRS-assisted NOMA. IEEE Transactions on Communications, 69(2), 900–913.

    Article  Google Scholar 

  119. Mu, X., Liu, Y., Guo, L., Lin, J., & Al-Dhahir, N. (2021). Capacity and optimal resource allocation for IRS-assisted multi-user communication systems. IEEE Transactions on Communications, 69(6), 3771–3786.

    Article  Google Scholar 

  120. Fang, F., Xu, Y., Pham, Q.-V., & Ding, Z. (2020). Energy-efficient design of IRS-NOMA networks. IEEE Transactions on Vehicular Technology, 69(11), 14088–14092.

    Article  Google Scholar 

  121. Nadeem, Q.-U.-A., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M.-S. (2020). Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Transactions on Wireless Communications, 19(12), 7748–7764.

    Article  Google Scholar 

  122. Lv, L., Jiang, H., Ding, Z., Yang, L., & Chen, J. (2020). Secrecy-enhancing design for cooperative downlink and uplink NOMA with an untrusted relay. IEEE Transactions on Communications, 68(3), 1698–1715.

    Article  Google Scholar 

  123. Yadav, P., Kumar, S., & Kumar, R. (2021). A comprehensive survey of physical layer security over fading channels: Classifications, applications, and challenges. Transactions on Emerging Telecommunication Technologies. https://doi.org/10.1002/ett.4270

    Article  Google Scholar 

  124. Yan, S. et al. (2021). Intelligent reflecting surface for wireless communication security and privacy. [Online] Available: arXIv:2103.16696. Accessed on Oct 2021.

  125. Lv, L. et al. (2021) Secure non-orthogonal multiple access: An interference engineering perspective. [Online] Available: arXiv:2003.13488 [cs.IT]. Accessed on Oct 2021.

  126. Zhang, Z., Lv, L., Wu, Q., Deng, H., & Chen, J. (2021). Robust and secure communications in intelligent reflecting surface assisted NOMA networks. IEEE Communications Letters, 25(3), 739–743.

    Article  Google Scholar 

  127. Zhang, Z., Chen, J., Wu, Q., Liu, Y., Lv, L., & Su, X. (2021). Securing NOMA networks by exploiting intelligent reflecting surface. [Online] Available: http://arxiv.org/abs/2104.03460v3, Accessed on Oct 2021.

  128. Tang, Z. et al. (2021). Physical layer security of intelligent reflective surface aided NOMA networks. [Online] Available: arXiv:2011.03417v1 [eess.SP], Accessed on 2021.

  129. Li, N., Li, M., Liu, Y., Yuan, C., & Tao, X. (2021). Intelligent reflecting surface assisted NOMA with heterogeneous internal secrecy requirements. IEEE Wireless Communications Letters, 10(5), 1103–1107.

    Article  Google Scholar 

  130. Fang, F., Zhang, H., Cheng, J. & Leung, V. C. M. (2017). Energy-efficient resource scheduling for NOMA systems with imperfect channel state information. In 2017 IEEE international conference on communications (ICC), 2017 (pp. 1–5P, Paris, France.

  131. Thakre, A., & Sumathi, S. (2019). Impact of imperfect channel state information on downlink sum-rate of two user mmwave non orthogonal multiple access. In International conference on communication and electronics systems (ICCES) (pp. 1–6), Coimbatore, India, 2019.

  132. Murti, F. W., Siregar, R. F., Royyan, M. & Shin, S. Y. (2021) Exploiting non-orthogonal multiple access in downlink coordinated multipoint transmission with the presence of imperfect channel state information. [Online] available:arXiv:1812.10266 [cs.IT]. Accessed on Oct 2021.

  133. Zhang, R., & Zheng, B. (2020). Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization. IEEE Wireless Communications Letters, 9(4), 518–522.

    Article  Google Scholar 

  134. Wang, Z., Liu, L., & Cui, S. (2020). Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Transactions on Wireless Communications, 19(10), 6607–6620.

    Article  Google Scholar 

  135. Hu, C., Dai, L., Han, S., & Wang, X. (2021). Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2021.3072729

    Article  Google Scholar 

  136. Kundu, N. K., & McKay, M. R. (2021). Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions. IEEE Open Journal of the Communications Society, 2, 471–487.

    Article  Google Scholar 

  137. De Carvalho, E., & Jensen, T. L. (2020). An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator. In IEEE international conference on acoustics, speech and signal processing (ICASSP), Barcelona, Spain.

  138. Nadeem, Q.-U.-A., Alwazani, H., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M.-S. (2020). Intelligent reflecting surface-assisted multi-user MISO communication: channel estimation and beamforming design. IEEE Open Journal of the Communications Society, 1, 661–680.

    Article  Google Scholar 

  139. Wei, L, Huang, C., Alexandropoulos, G. C. & Yuen, C. (2020) Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication. In 2020 IEEE 11th sensor array and multichannel signal processing workshop (SAM) (pp. 1–5), Hangzhou, China, 2020.

  140. Sun, Q., Han, S., Chin-Lin, I., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters., 4(9), 405–408.

    Article  Google Scholar 

  141. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129.

    Article  Google Scholar 

  142. Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15(6), 4438–4454.

    Article  Google Scholar 

  143. Kishiyama, Y., & Higuchi, K. (2013).Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In IEEE Veh. Tech. Conf., Las Vegas, NV, US.

  144. Kader, M. F., Shin, S. Y., & Leung, V. C. (2018). Full-duplex non-orthogonal multiple access in cooperative relay sharing for 5G systems. IEEE Transactions on Vehicular Technology, 67(7), 5831–5840.

    Article  Google Scholar 

  145. Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.

    Article  Google Scholar 

  146. Tregancini, A., Olivo, E. E. B., Osorio, D. P. M., de Lima, C. H. M., & Alves, H. (2019). Performance analysis of full-duplex relay-aided NOMA systems using partial relay selection. IEEE Transactions on Vehicular Technology, 69(1), 622–635.

    Article  Google Scholar 

  147. Do, D.-T., Nguyen, M.-S.V., Jameel, F., Jäntti, R., & Ansari, I. S. (2020). Performance evaluation of relay-aided CR-NOMA for beyond 5G communications. IEEE Access, 8, 134838–134855.

    Article  Google Scholar 

  148. Shin, W., Yang, H., Vaezi, M., Lee, J., & Poor, H. V. (2017). Relay-Aided NOMA in Uplink Cellular Networks. IEEE Signal Processing Letters, 24(12), 1842–1846.

    Article  Google Scholar 

  149. Lee, I., & Keem, J. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communications Letters, 19(11), 1949–1952.

    Article  Google Scholar 

  150. Xu, M., Ji, F., Wen, M. W., & Duan, W. (2016). Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Communications Letters, 20(8), 1679–1682.

    Article  Google Scholar 

  151. Shokair, M., Saad, W., & Ibraheem, S. M. (2018). On the performance of downlink multiuser cognitive radio inspired cooperative NOMA. Wireless Personal Communications, 101, 875–895.

    Article  Google Scholar 

  152. Wang, Z., Peng, Z., Pei, Y., Wang, H. (2020). Performance analysis of cooperative NOMA systems with incremental relaying. Wireless Communications and Mobile Computing, vol. 2020, Article ID 4915638.

  153. Men, J., Ge, J., & Zhang, C. (2017). Performance analysis for downlink relaying aided non-orthogonal multiple access networks with imperfect CSI over Nakagami-m fading. IEEE Access, 5, 998–1004.

    Article  Google Scholar 

  154. Kumar, V., Cardiff, B., & Flanagan, M. F. NOMA-based cooperative relaying with receive diversity inNakagami-m Fading Channels. [Online] Available: arXiv:2011.11692v1. Accessed on May 2021.

  155. Jha, P. K., Kumar, S. S. S. & Kumar, D. S. (2017). Achievable rate analysis of cooperative relay assisted opportunistic-NOMA under Rician fading channels with channel state information,” Wireless Personal Communication.

  156. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Exploiting full/half-duplex user relaying in NOMA systems. IEEE Transactions on Communications, 66(2), 560–575.

    Article  Google Scholar 

  157. Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Spatially random relay selection for full/half-duplex cooperative NOMA networks. IEEE Transactions on Communications, 66(8), 3294–3308.

    Article  Google Scholar 

  158. Tang, X., An, K., Guo, K., et al. (2019). On the performance of two-way multiple relay non-orthogonal multiple access-based networks with hardware impairments. IEEE Access, 7, 128896–128909.

    Article  Google Scholar 

  159. Peng, Z., & Wang, Z. (2019). Secrecy performance analysis of relay selection in cooperative NOMA systems. IEEE Access, 7, 86274–86287.

    Article  Google Scholar 

  160. Tang, W., et al. (2020). Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Communications, 27(2), 180–187.

    Article  Google Scholar 

  161. Zappone, A., Renzo, M. D., Debbah, M., Thanh, T. L., & Qian, X. (2019). Model-aided wireless artificial intelligence: Embedding expert knowledge in deep neural networks towards wireless systems optimization. IEEE Vehicular Technology Magazine, 14(3), 60–69.

    Article  Google Scholar 

  162. Taha, A., Zhang, Y., Mismar, F. B., & Alkhateeb, A. (2020). Deep reinforcement learning for intelligent reflecting surfaces: Towards standalone operation. In IEEE 21st int. workshop signal process. Adv. Wirel. Commun. (SPAWC), Atlanta, GA, USA, 2020.

  163. Gao, X., Liu, Y., Liu, X. & Song, L. (2021). Machine learning empowered resource allocation in IRS aided MISO-NOMA networks. [Online] available: https://arxiv.org/abs/2103.11791. Accessed on May 2021

  164. Shehab, M., Ciftler, B. S., Khattab, T., Abdallah, M. M. & Trinchero, D. (2021). Deep reinforcement learning powered IRS-assisted downlink NOMA,” [Online] Available:arXiv:2104.01414v1 [cs.IT]. Accessed on May 2021

  165. Qin, Z., Liu, Y., Ding, Z., Gao, Y. & Elkashlan, M. (2016) Physical layer security for 5G non-orthogonal multiple access in large-scale networks. In 2016 IEEE international conference on communications (ICC) (pp. 1–6), Kuala lumpur , Malasia, 2016.

  166. Hu, L., Zheng, X., & Chen, C. (2019). Physical layer security in nonorthogonal multiple access wireless network with Jammer selection. Security and Communication Networks. https://doi.org/10.1155/2019/78693

    Article  Google Scholar 

  167. Wijewardena, M., Samarasinghe, T., Hemachandra, K. T., Atapattu, S., & Evans, J. S. (2021). Physical layer security for intelligent reflecting surface assisted two-way communications. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2021.3068102

    Article  Google Scholar 

  168. Tang, Z., Hou, T., Liu, Y., Zhang, J. & Hanzo, L. (2021). Physical layer security of intelligent reflective surface aided NOMA networks. Available:arXiv:2011.03417. Accessed on May2021.

  169. Chen, Y et.al. (2021). Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA,” [Online] Available: arXiv:2005.00996v2 [eess.SP]. Accessed on May 2021.

  170. Lima, C. D., et al. (2021). Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access, 9, 26902–26925.

    Article  Google Scholar 

  171. Sarieddeen, H., Saeed, N., Al-Naffouri, T. Y. & Alouini, M.-S. (2019) Next generation terahertz communications: A rendezvous of sensing, imaging and localization. arXiv:1909.10462v1 [eess.SP]

  172. Ülgen, O., Erküçük, S., & Baykaş, T. (2020). Non-orthogonal multiple access for terahertz communication networks. In: 11th IEEE annual ubiquitous computing, electronics & mobile communication conference (UEMCON), New York

  173. Ma, X., et al. (2020). Intelligent reflecting surface enhanced indoor terahertz communication systems. Nano Communication Networks, 24(2), 100284.

    Article  Google Scholar 

  174. Chen, W., Chen, Z., & Ma, X. (2020). Channel estimation for intelligent reflecting surface aided multi-user MISO terahertz system. Terahertz Science and Technology (TST), 30(2), 51–60.

    Article  Google Scholar 

  175. Chen, Z. et al., Intelligent reflecting surfaces assisted terahertz communications toward 6G,”[Online] available: https://arxiv.org/abs/2104.02897v2. Accessed on June 2021.

  176. Jiao, S., Fang, F., Zhou, X., & Zhang, H. (2020). Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA. Journal of Communications and Information Networks, 5(2), 138–149.

    Google Scholar 

  177. Mu, X., Liu, Y., Guo, L., Lin, J., & Poor, H. V. (2021). Intelligent reflecting surface enhanced multi-UAV NOMA networks. IEEE Journal on Selected Areas in Communications, 39(10), 3051–3066.

    Article  Google Scholar 

  178. Liu, X., Liu, Y., & Chen, Y. (2021). Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks. IEEE Journal on Selected Areas in Communications, 39(7), 2042–2055.

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed in this manuscript.

Corresponding author

Correspondence to Manpreet Kaur.

Ethics declarations

Conflicts of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Yadav, P., Kaur, M. et al. A survey on IRS NOMA integrated communication networks. Telecommun Syst 80, 277–302 (2022). https://doi.org/10.1007/s11235-022-00898-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00898-y

Keywords

Navigation