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Dataset Mismatched Steganalysis Using Subdomain Adaptation with 
Guiding Feature 

Lei Zhang1 · Sani M. Abdullahi2 · Peisong He1· Hongxia Wang1  

 

Abstract 
The generalization problem in deep learning has always been an important problem to be solved. In the field of steganalysis, 
generalization is also an important factor that makes steganalysis models difficult to deploy in real-world scenarios. For a group 
of suspicious images that never appeared in the training set, the pre-trained deep learning-based steganalysis models tend to suffer 
from distinct performance degradation. To address this limitation, in this paper, a feature-guided subdomain adaptation 
steganalysis framework is proposed to improve the performance of the pre-trained models when detecting new data. Initially, the 
source domain and target domain will be divided into subdomains according to class, and the distributions of the relevant 
subdomains are aligned by subdomain adaptation. Afterward, the guiding feature is generated to make the division of subdomains 
more stable and precise. When it is used to detect three spatial steganographic algorithms with a wide variety of datasets and 
payloads, the experimental results show that the proposed steganalysis framework can significantly improve the average accuracy 
of SRNet model by 5.4% at 0.4bpp, 8.5% at 0.2bpp, and 8.0% at 0.1bpp in the case of dataset mismatch. 
 

Keywords Image steganalysis · Subdomain adaptation · Cover source mismatch · Steganography

1 Introduction 

Steganography is a kind of covert communication that can 
leverage the visual redundancy of digital images to embed 
secret information. The minor changes introduced by 
steganography are visually imperceptible and the security 
against steganalysis is the first consideration for 
steganography. In recent years, many spatial adaptive 
steganography algorithms have been proposed, such as S-
UNIWARD [1], WOW [2], HUGO [3], etc. By analyzing 
image information, these algorithms can adaptively search for 
regions with more complex textures in images to minimize the 
influence of embedding secret information, which brings great 
challenges to statistical-based steganalysis. 

As the opposite of steganography, the purpose of 
steganalysis is to detect the presence of hidden communication 
and distinguish between cover and stego images. For 

traditional steganalysis methods, feature extraction and 
classifier training are two independent steps. The hand-crafted 
features used in steganalysis mainly depend on accumulated 
experience and rich statistical knowledge of steganography. In 
the past few years, Convolutional Neural Network (CNN) has 
been adopted to construct powerful steganalysis methods [4-7] 
to take place of traditional hand-crafted feature-based methods 
[8-12]. The aforementioned deep learning-based methods [4-
7] have more or less introduced the component of hand design. 
SRNet [13] is the first end-to-end residual structure 
steganalysis network, which does not adopt hand-designed 
initialized parameters, and has a good detection accuracy 
performance of image steganography in both spatial domain 
and JPEG domain. 

However, applying steganalysis tools to real-world 
scenarios is still very challenging, where testing samples 
always undergo unknown capturing processes. Generally, the 
detection error increases when a steganalysis detector trained 
on one cover source is applied to images from a different 
source due to the mismatch between both sources. This 
situation is recognized as the so-called Cover Source 
Mismatch (CSM). In [14], Fridrich et al. summarized several 
types of CSM, including payload mismatch, quantization table 
mismatch, steganographic methods mismatch, mismatched 
image content, etc. In [15], five mismatch scenarios were  
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Fig. 1  Differences among the four datasets (four images were randomly selected from each dataset as representatives) 

carried out to explore the different effects of these factors on 
steganalysis, which contain the camera sensors, ISO, image 
processing pipeline, Quality Factor (QF), and semantic 
content.  

In this paper, dataset mismatch is mainly discussed since 
we believe that it is more common in realistic application 
scenarios. In practical applications, the analyzers always need 
to deal with the collected images from the Internet. However, 
these suspicious images are more likely to have quite different 
capturing and processing history compared with the samples 
used to train the detection model, which can lead to the trained 
model suffering from a distinct performance drop. More 
specifically, there are many differences in the images uploaded 
by various users, including image capturing processes, image 
content, texture complexity and so on. To illustrate above 
mentioned difference more intuitively, several datasets are 
presented in Fig. 1. In order to reduce the effect of dataset 
mismatch, we take the image intercepted as the target domain, 
and adjust the parameters of the pre-trained steganalysis model 
by minimizing the discrepancy between the source domain and 
the target domain, making the model adapt from the source 
domain to the target domain. Unlike the supervised 
steganalysis methods, we believe that test data can be used to 
train models for adaptation, which is important information for 
steganalysis. 

To date, many works [16-24] have attempted to solve the 
problem of CSM. We observed that few works are focusing on 
the CSM problems in relation to deep learning-based 
steganalysis which occupies a very important part of 
steganalysis. Most of them studied the mismatch problem on 
hand-crafted features. Moreover, existing solutions for 

mismatch problems mostly leveraged a global strategy to align 
source and target distributions, which cannot effectively 
describe the boundary between two different classes. In this 
paper, considering gaps in deep learning-based steganalysis 
application scenarios and weaknesses of the global alignment 
strategy, a feature-guided subdomain adaptation steganalysis 
framework is proposed to improve the performance of a deep 
learning-based steganalysis model in the case of dataset 
mismatch. By fusing guiding features, more robust pseudo 
labels are obtained to divide the subdomains, further 
stimulating the model to transfer in the right direction, and 
effectively resisting the influence of the wrong prediction. 

In summary, the main contributions of our work can be 
described as follows.  

1) We propose a feature-guided subdomain adaptation 
steganalysis framework for dataset mismatched detection, 
which can reduce the distance in feature distributions between 
subdomains and help improve the performance of deep 
learning-based steganalysis model in the case of dataset 
mismatch. 

2) We not only use a local alignment strategy to mitigate 
the undesired variation of related subdomains’ distributions 
but also design a feature-guided module to make subdomain 
division more precise, which further improves the detection 
accuracy. 

3) By considering various datasets and steganographic 
methods, we perform extensive experiments to demonstrate 
the utility of the proposed steganalysis framework.  

The rest of this paper is organized as follows. In Section 
2, we introduce the related work. In Section 3, our motivation 
is expounded. In Section 4, our framework is given in detail. 



In Section 5, experiments are designed to verify the 
effectiveness and utility of the proposed framework. Finally, 
in Section 6, we summarize our work.  

2 Related work 

For the traditional supervised learning framework, it is hard to 
construct a reliable steganalysis model with good 
generalization ability since there is a high cost of collecting a 
large number of images with various capturing processes. 
Even if applying data augmentation in the training phase can 
improve the generalization performance of steganalysis 
models, the performance gain is still limited [25]. Therefore, 
cover source mismatch is still an important issue to be studied 
in the field of steganalysis.  

In recent years, several methods have been proposed to 
mitigate the negative effects of cover source mismatch in 
steganalysis. Generally, they can be divided into two 
categories, which are subspace method and classifier 
construction method.  

For the first kind of method, researchers tried to find a 
projection to map the features into a common subspace to 
reduce the distribution discrepancy between the two domains. 
The work in [16] attempted to find a projection matrix to 
transfer source and target domain data into a common feature 
subspace. Then, joint low-rank constraint and sparse 
representation were applied to the reconstructed matrix to 
preserve local and global data structures. In [17], an 
unsupervised steganalysis method based on subspace learning 
was proposed, the global and local structures of data were 
maintained by the low-rank and sparse constraints of the 
reconstruction coefficient matrix to obtain a new feature 
representation. In this way, the feature distributions of training 
data and testing data are close to each other. For JPEG 
recompression, multiple classifiers were constructed to detect 
the recompression Markov characteristics of the testing 
images, and the steganalysis features were then transferred to 
a new feature subspace [18]. A feature transfer algorithm based 
on contribution was designed in [19], which attempted to 
transfer training set features by evaluating the contribution of 
sample features and dimension features.  

For the second kind of method, a domain adaptation 
classifier was constructed, which directly integrated domain 
adaptation principles as regularization terms. For instance, by 
adding conditional distribution into the Laplacian 
regularization, ARTL [26] was improved by [20]. Joint 

distribution adaptation and geometric structure were also 
integrated into the domain adaptation classifier. In the spatial 
domain, the joint distribution of input image and prediction 
label were considered simultaneously in [21]. In their 
experiment, when a model trained on a dataset with low 
texture complexity detects a test set with high texture 
complexity, the accuracy of steganalysis will decrease 
significantly. J-NET proposed in [21] alleviates this decline to 
a certain extent. 

In addition to the aforementioned methods, a novel 
approach that can effectively measure texture complexity was 
proposed by [22]. The authors improved the accuracy of 
steganalysis by finding the block closest to the Most Effective 
Range (MER) in an image to represent the whole image. 
Concerning payload mismatch, a general idea [23,24] was to 
first train the model at a high payload and further fine-tune the 
model with new data at low payload asymptotically. Finally, a 
steganalysis model that can detect steganographic methods at 
a low embedding rate is obtained. Although these methods can 
reduce the impact of CSM to a certain extent, there is still room 
for improvement.  

First, most of the existing steganalysis schemes are based 
on deep learning. However, to the best of our knowledge, the 
cover source mismatch problems solved by [16-22] are all for 
hand-crafted features, such as Pevny Method (PEV) [27], Rich 
Model [28], CC-PEV [29], and DCTR [30]. Few works 
[21][31] have been conducted on cover source mismatch in 
deep learning-based steganalysis. Another observation is that 
the existing solutions mostly follow a strategy of global 
alignment, which cannot effectively enlarge the distance 
between different classes. In our case, however, a subdomain 
aligning strategy is adopted to describe a clearer margin. 

3 Motivation 

The cover source mismatch in steganalysis is similar to 
the domain adaptation problem. Domain adaptation focus on 
solving the problem of inconsistent feature distribution, where 
feature space and category space are consistent [32]. In 
domain adaptation, the source domain represents a domain 
with rich supervisory information and the target domain is the 
domain of testing samples where there are no labels or only a 
few labels. For a target task, we collect a batch of unlabeled 
data from the target domain and labeled data from the source 
domain. How to use these data to get a well-behaved model 
for the target task is the problem to be solved. 



 
Fig. 2 The comparison of several relevant domain adaptation processes 

The most common metric in domain adaptation is the 
Maximum Mean Discrepancy (MMD) [33], which maps two 
primitive variables to the Reproducing Kernel Hilbert Space 
(RKHS) and then measures the distance between the two 
distributions in RKHS. Based on MMD, many domain 
adaptation methods have been proposed, such as single kernel 
method deep domain confusion (DDC) [34], multi-kernel 
method deep adaptation network (DAN) [35], joint adaptation 
networks (JAN) [36], and so on. Recently, more works have 
focused on subdomain adaptation [37-39]. However, most of 
them are adversarial methods with multiple loss functions and 
slow convergence. A non-adversarial deep subdomain 
adaptation network (DSAN) [40] was proposed for image 
classification to align the distributions of correlated 
subdomains. Compared with the adversarial method, the 
method in [40] was more simple and more efficient, which also 
achieved comparable results with the adversarial method [37]. 
Due to the advantages and feasibility of DSAN, we introduced 
and optimized it into the image steganalysis field to solve the 
dataset mismatch problem. 

DSAN is an image classification method that is quite 
different from image steganalysis, where image steganalysis 
focuses on the subtle traces instead of content sematic. When 
the model does not perform well in the target domain, such as 
at low embedding rate or under severe mismatch, it is not 
reliable to directly apply DSAN method. A guiding feature 
module is designed to deal with this situation. The advantages 
of our proposed steganalysis framework are illustrated 
intuitively in Fig. 2. More specifically, (a) The global methods 
make the classifier miss a lot of fine-grained information for 
each class. As a result, the classifier cannot adequately 
describe the boundary between two different classes. (b) By 
dividing domains into subdomains, the distance between 
classes is increased and the distance within classes is 

decreased. Note that the division of subdomains largely 
depends on the prediction given by the model in target domain. 
However, mismatch has already existed, i.e. the predictions 
given by the model in target domain are probably wrong which 
will lead to a bad subdomain division (red points). (c) To 
correct the division, we design guiding feature to guide the 
steganalysis network to obtain more robust pseudo labels and 
further urge the model to transfer in the right direction. 
4 Proposed framework 

4.1 Notation 

Before introducing the method, we first express the dataset 
mismatch problem in image steganalysis as follows. Let 𝐷𝑠 ={(𝑥𝑖𝑠, 𝑦𝑖𝑠)}𝑖=1𝑛𝑠   represents the source domain, which contains 𝑛𝑠  samples with labels. 𝑦𝑖   is a label vector with two 
dimensions, where its first component corresponds to the 
probability to be a cover image, and its second dimension 
corresponds to the probability to be a stego image. When 𝑦𝑖 
is related to samples on the source domain, 𝑦𝑖 = [1,0] or [0,1]. 
On the other hand, when 𝑦𝑖  is related to samples on the target 
domain, 𝑦𝑖 owns a soft label with the sum of all components 

equal to 1. 𝐷𝑡 = {𝑥𝑗𝑡}𝑗=1𝑛𝑡 represents the target domain, which 

contains 𝑛𝑡 samples without labels. The marginal probability 
distributions of 𝐷𝑠  and 𝐷𝑡   are 𝑝  and 𝑞 , where 𝑝 ≠ 𝑞 . In 
subdomain adaptation, the source domain 𝐷𝑠 and the target 
domain 𝐷𝑡   are divided into 𝐷𝑠(𝑐)  and 𝐷𝑡(𝑐)  according to 
class c, respectively. The main purpose of this paper is to 
reduce the change of distributions of related subdomains and 
make full use of the training set with labeled data to correctly 
predict the test set without labeled data. 

4.2 Architecture 



 

Fig. 3 The overall procedure of the proposed steganalysis framework 

As shown in Fig. 3, the overall steganalysis procedure consists 
of three stages, including the pre-training stage, subdomain 
adaptation stage, and testing stage. 
1. Pre-training Stage 

In the pre-training stage, the model is supervised 
trained on the dataset of the source domain. After training, 
a pre-trained model M is obtained. The performance of M 
on other datasets is usually not as good as that in the 
training set. M consists of a pre-trained feature extractor 
P and pre-trained classification layers. The features 
derived from higher levels of the network must depend to 
a large extent on specific datasets and tasks, which cannot 
be safely transferred to new tasks [35]. So the pre-trained 
classification layers are abandoned. Such as the SRNet 
steganalysis model, the last Fully Connected (FC) layer is 
abandoned. 

2. Subdomain Adaptation Stage 

The steganalysis framework we proposed works at 
this stage. Both source domain data and target domain 
data participate in the adaptation training. The data flows 
of source domain and target domain are represented in 
blue and yellow lines, respectively, as shown in Fig. 3 (b). 
The feature 𝑓𝑃  is extracted through the pre-trained 
feature extractor P. On the other hand, the hand-crafted 
features 𝑓𝐺  is extracted through the guiding-feature 
extractor G. 𝑓𝐺 is selected and dimensionally reduced to 
feature 𝑓𝐺′  by FC2. 𝑓𝑃  and 𝑓𝐺′  are concatenated to 
obtain 𝑓. 𝑓 is used to provide the final prediction. The 
weight of each sample belonging to class c is calculated 
for subdomain division using Eq. (4). 𝑋𝑠 use true labels 𝑌𝑠  and 𝑋𝑡  use the prediction result of FC1. The 
discrepancy between different subdomains belonging to 
the same class is narrowed by minimizing LMMD [40] 

loss. The details are shown in Pseudocode 1. 
3. Testing stage 

After training, the suspicious input is sent to the adapted 
feature extractor and the feature-guided module 
simultaneously. The concatenated feature is generated and 
used to obtain the final classification result.  

Pseudocode 1 Feature-guided deep subdomain adaptation 

1. Input: Pre-trained feature extractor P, guiding feature 

extractors G, source domain data 𝑋𝑠, target domain 

data 𝑋𝑡 , source domain labels 𝑌𝑠 , FC1 for 

classification, FC2 for dimension reduction. 

2. Output: Adapted steganalysis model 

3. for each epoch do 

4.    for each batch do 

5.       //Extract features using P. 

6.       𝑓𝑃𝑠 = P(𝑋𝑠) 

7.       𝑓𝑃𝑡 = P(𝑋𝑡) 

8.       //Extract features using G. 

9.       𝑓𝐺𝑠 = G(𝑋𝑠) 

10.       𝑓𝐺𝑡 = G(𝑋𝑡) 

11.       //Select and dimensionally reduce the guiding 

feature using a FC layer FC2. 

12.       𝑓𝐺𝑠′ = FC2(𝑓𝐺𝑠) 

13.       𝑓𝐺𝑡′ = FC2(𝑓𝐺𝑡) 

14.       //Concatenate two features. 

15.       𝑓𝑠 = concatenate (𝑓𝑃𝑠, 𝑓𝐺𝑠′) 
16.       𝑓𝑡 = concatenate (𝑓𝑃𝑡, 𝑓𝐺𝑡′) 
17.       //Feed the concatenated features 𝑓𝑠  and 𝑓𝑡 

into the classification layers FC1 to obtain the 

prediction result. 

18.      𝑌𝑠̂= FC1(𝑓𝑠) 

19.      𝑌𝑡̂= FC1(𝑓𝑡) 



20.      // Calculate the classification loss of source 

domain. 

21.      classification_loss= BCE (𝑌𝑠̂, 𝑌𝑠) 

22.      // Calculate the LMMD loss between two 

domains. 

23.      lmmd_loss = LMMD (𝑓𝑠, 𝑓𝑡, 𝑌𝑠, 𝑌𝑡̂) 

     // Calculate the total loss. 

24.      loss = classification_loss + 𝜆 ∗ lmmd_loss 

25.      Backpropagation 

26.      Update the parameters of P, FC1 and FC2. 

27.    end for 

28. end for 

4.3 Local alignment and LMMD 

In this paper, we adopt a local alignment strategy instead of 
the global alignment strategy to better reduce the distance in 
feature distributions between domains. The global alignment 
strategy tends to make the global distribution consistent, but 
cannot give a clear decision boundary after adaption. However, 
by applying a local alignment strategy, the distance between 
data of the same class in different domains is narrowed. 
Meanwhile, the distance between different classes is 
effectively enlarged, which is conducive to the improvement 
of classification accuracy. 

In subdomain adaptation, we divide the subdomains 
according to the labels of the data in the source domain, while 
in the target domain, the data has no labels. Therefore, the 
prediction of the model is used as the basis for the division of 
the target domain. Also, to align the distributions of related 
subdomains, we need a metric that can estimate the 
distribution differences between subdomains. In this paper, we 
applied LMMD [40], which is a measure based on MMD. 
Different from MMD, LMMD can measure differences in 
local distributions. It is defined as 𝑑𝐻(𝑝, 𝑞) ≜ 𝐸𝑐 ‖𝐸𝑝(𝑐)[𝜑(𝑥𝑠)] − 𝐸𝑞(𝑐)[𝜑(𝑥𝑡)]‖𝐻2 (1) 

where 𝐻 is the RKHS endowed with a characteristic kernel k. 𝐸𝑐[∙]  is the mathematical expectation of class c. 𝑝(𝑐)  and 𝑞(𝑐)  are the distributions of  𝐷𝑠(𝑐)  and 𝐷𝑡(𝑐) . 𝜑(·)  is the 
feature map which project the original samples from 𝐷𝑠  and  𝐷𝑡  to RKHS. 

4.4 Feature-guided module 

In domain adaptation, the data of the target domain has no 
labels, so we need to use the pseudo labels predicted by the 

model to divide the subdomains. However, models tend not to 
perform as well in the target domain as they do in the source 
domain since the feature distributions are different. Although 
soft labels (i.e. the probability distribution predicted by the 
model) were used to better utilize the output from the model, 
if the model itself performs poorly in the target domain due to 
large differences in sample distribution that leads to many 
wrong results, it is very likely that high accuracy will not be 
obtained even after alignment. This leads us to search for a 
way that generates more robust pseudo labels for the target 
domain to better help models perform domain adaptation.  

In order to enhance the quality of pseudo labels, guiding 
feature is designed. In this paper, SRM [28] and maxSRMd2 
[41] are chosen to generate guiding features due to their good 
performance in steganalysis. SRM uses a variety of linear and 
nonlinear high-pass filters and calculates the four-dimensional 
co-occurrence matrix of the obtained features. Finally, a 
34,671-dimensional feature vector is obtained. The 
maxSRMd2 is a variant of the SRM that makes use of the 
selection channel.  

In the experimental results of [42], feature selection has 
been proved to be a good tool to deal with the CSM problem. 
It can remove irrelevant features which could disrupt the 
classification process. In our work, an FC layer is used to 
select features from the hand-crafted feature, such as SRM and 
maxSRMd2, and also reduce their dimension. The selected 
features are concatenated with the features extracted by the 
pre-trained feature extractor. Then, the concatenated features 
are sent to the classification layer for label prediction. 
Relevant experiments are performed to select the most 
appropriate dimension of guiding features. With the guidance 
of prior knowledge, we can avoid the misdirection of wrong 
labels to the model, and make the subdomain division more 
accurate. Hence, better aligns the subdomains and reduces the 
difference of feature distributions among the subdomains. 

4.5 Loss function  

In general, the loss function of a domain adaptation classifier 
is composed of two terms, classification loss and domain 
adaptation loss. 𝑚𝑖𝑛𝑓 1𝑛𝑠 ∑ 𝐽(𝑓(𝑥𝑖𝑠), 𝑦𝑖𝑠)𝑛𝑠

𝑖=1 + 𝜆𝑑̂(𝑝, 𝑞) (2) 

where the former is the cross-entropy loss function between 
the classifier 𝑓(𝑥𝑖𝑠)  and the labels 𝑦𝑖𝑠 . And 𝜆𝑑̂(𝑝, 𝑞)  is the 



domain adaptation loss which is often defined differently in 
different works. 𝜆 > 0  is the trade-off parameter of the 
domain adaptation loss and the classification loss. By 
minimizing Eq. (2) during the training phase of the network 
parameters, the difference between feature distributions is 
reduced. 

Assuming that each sample is classified according to 
weight 𝑤𝑐 . Then, the unbiased estimator of Eq. (1) can be 
written as 

𝑑̂𝐻(𝑝, 𝑞) = 1𝐶 ∑ ‖ ∑ 𝑤𝑖𝑠𝑐𝜑(𝑥𝑖𝑠)𝑥𝑖𝑠∈𝐷𝑠 − ∑ 𝑤𝑗𝑡𝑐𝜑(𝑥𝑗𝑡)𝑥𝑗𝑡∈𝐷𝑡 ‖
𝐻
2𝐶

𝑐=1 (3) 

where 𝑤𝑖𝑠𝑐  and 𝑤𝑗𝑡𝑐  denote the weights of 𝑥𝑖𝑠  and 𝑥𝑗𝑡 
belonging to class c. The weighted sample 𝑥𝑖 belongings to 
class c is 𝑤𝑖𝑐 = 𝑦𝑖𝑐∑ 𝑦𝑗𝑐(𝑥𝑗,𝑦𝑗)∈𝐷 (4) 

where 𝑦𝑖𝑐 is the 𝑐𝑡ℎ element of the vector 𝑦𝑖 . For the source 
domain, 𝑤𝑖𝑐 is a discrete value related to the true labels. For 
the target domain without labels, we use soft labels that 
predicted by the concatenated feature instead of hard labels. 
This is because soft labels contain more information than hard 
labels. The data that came from 𝐷𝑠 and 𝐷𝑡  will be activated 

as {𝑧𝑖𝑠𝑙}𝑖=1𝑛𝑠  and {𝑧𝑗𝑡𝑙}𝑗=1𝑛𝑡  after layer l. Kernel trick is used to 

map indivisible data from low dimensional space to high 
dimensional space. The characteristic kernel 𝑘 is associated 
with the feature map 𝜑(∙) . The application of the 
kernel  𝑘(𝑥𝑠, 𝑥𝑡)  is equal to the inner product of vectors 𝜑(𝑥𝑠) and 𝜑(𝑥𝑡). Eq. (3) can be calculated in the following 
way. 𝑑̂𝑙(𝑝, 𝑞) = 1𝐶 ∑ [∑ ∑ 𝑤𝑖𝑠𝑐𝑤𝑗𝑠𝑐𝑘(𝑧𝑖𝑠𝑙 , 𝑧𝑗𝑠𝑙𝑛𝑠

𝑗=1
𝑛𝑠

𝑖=1 )𝐶
𝑐=1+ ∑ ∑ 𝑤𝑖𝑡𝑐𝑤𝑗𝑡𝑐𝑘(𝑧𝑖𝑡𝑙 , 𝑧𝑗𝑡𝑙𝑛𝑡

𝑗=1
𝑛𝑡

𝑖=1 )
−2 ∑ ∑ 𝑤𝑖𝑠𝑐𝑤𝑗𝑡𝑐𝑘(𝑧𝑖𝑠𝑙 , 𝑧𝑗𝑡𝑙𝑛𝑡

𝑗=1
𝑛𝑠

𝑖=1 )]
(5) 

Eq. (5) can be used as domain adaptation loss directly. 
The final loss function of the final classifier in layer l can be 
obtained by substituting Eq. (5) into Eq. (2) min𝑓 1𝑛𝑠 ∑ 𝐽(𝑓(𝑥𝑖𝑠), 𝑦𝑖𝑠)𝑛𝑠

𝑖=1 + 𝜆 ∑ 𝑑̂(𝑝, 𝑞)𝑙∈𝐿 (6) 

Through Eq. (6), we can reduce the difference in the 
distributions of related subdomains of activation layer. The 
labels of the target domain become more accurate during the 
iteration process.  

5 Experimental evaluation 

5.1 Dataset 

To evaluate the capability of models in dataset mismatch 
scenarios, we select four different widely-used image datasets. 
Here, we first give a brief introduction to these datasets. 

BOSSbase 1.01 [43] consists of 10,000 uncompressed 
grayscale images. Image size is 512 x 512 and images come 
from seven different digital cameras. It is the most commonly 
used dataset in steganography and steganalysis. 

UCID.v2 [44] is a dataset containing 1338 uncompressed 
TIFF images on a variety of topics, including indoor and 
outdoor natural scenes and man-made objects. The image size 
is 512×384 or 384×512, and all images were taken with a 
Dimage 5 color digital camera.  

DIV 2K [45] is a diverse dataset containing 1000 images 
in total. All 1000 images are 2K resolution, meaning they have 
at least 2K pixels on one axis. These images are all hand-
pulled color RGB images from dozens of websites. All images 
are processed using the same tools and are formatted as PNG. 

MIR FLICKR25K [46] contains 25000 JPEG images, 
these images are very diverse and close to the authentic images 
in real life.  

In the pre-training stage, images from BOSSbase 1.01 
were resized to 256×256 and used to train the pre-trained 
steganalysis models. In the subdomain adaptation stage, 500 
randomly selected image pairs from the BOSSbase 1.01 were 
used as source domain data. Meanwhile, 500 pairs of images 
were selected randomly from the other three datasets as the 
target domain data, respectively. Due to the difference in the 
number and size of images, we processed the other three 
datasets differently. For images from UCID, they were 
cropped in the four corners with size 256×256. Then they are 
converted to grayscale images and saved in PGM format. For 
images from DIV2K, are first resized to 512×512 and then 
cropped in four corners. For those from Flickr 25K, they are 
first converted into PGM grayscale images, resized to 
512×512, and then centered to 256×256. It is noted that most 
of the original image size is less than 512×512. Therefore, we 
believe that the quality of the processed MIR FLICKR25K 



image will be lower after down-sampling, (i.e. the texture 
complexity will be lower). 

Our experimental dataset is finally composed of 500 
pairs of BOSSbase images as the source domain, and 500 pairs 
of images from Flickr25K, UCID, and DIV 2K, respectively, 
as the target domain. It is worth mentioning that the data of the 
target domain is unlabeled, that is to say, the classifier cannot 
update the parameters of the network by using the labels of the 
target domain. 

5.2 Experiment setup 

In our experiment, three steganographic methods, S-
UNIWARD, WOW, and HUGO, are used to generate the stego 
images. And the deep learning-based model we used is SRNet. 
In the works of [4-7] and [13], the authors trained the model 
on the BOSSBase 1.01 dataset, and we will continue with this 
practice. The reason for choosing SRNet is that it is an end-to-
end deep learning network that does not introduce too many 
hand-designed elements. Therefore, the SRNet model trained 
on BOSSBase 1.01 dataset was chosen as the representative of 
steganalysis in the "laboratory environment". We conducted 
experiments at both 0.4bpp (bits per pixel) 0.2bpp and 0.1bpp 
to verify the effectiveness of our proposed steganalysis 
framework. 

Note that we did not use data augmentation in the pre-
training stage, and the rest of the settings followed the paper 
[13]. According to [13], the 0.2bpp model was obtained by 
fine-tuning the 0.4bpp model for 100 epochs. Similarly, the 
0.1bpp model was obtained by fine-tuning the 0.2bpp model. 
Finally, we obtained three trained SRNet models at the 
embedding rates of 0.1bpp, 0.2bpp and 0.4bpp, respectively.  

For all tasks, we use the small batch SGD with 
momentum 0.9 and the learning rate annealing strategy in [40]. 
During the subdomain adaptation stage, we set the batch size 
to 16. The learning rate is initialized to 0.01 and updated by 𝜂𝜃 = 𝜂0/(1 + 𝛼𝜃)𝛽, where 𝜃 is a linear change in the range 
of 0 to 1 during training, 𝜂0 = 0.01, 𝛼 = 10, and 𝛽 = 0.75. 
With this strategy, the learning rate will be reduced to 0.0017 
after the whole 200 epochs. Instead of fixing the adaptation 
factor 𝜆 , we gradually change it from 0 to 1 over an 
incremental schedule, 𝜆𝜃 = 2/𝑒𝑥𝑝(−𝛾𝜃) − 1. This is done in 
order to suppress unstable pseudo labels in the model output 
at the initial stage of training.  𝛾 = 10 is fixed throughout the 
experiment which is also compliant to [40]. All the 
experiments in this paper, including SRNet training, are 

implemented in PyTorch. The Gaussian kernel is used in our 
experiment, other kernels that is able to do spatial mapping can 
also be used. 

5.3 Experimental results 

The experiments mainly include six parts. In the first part, we 
conduct a comparative analysis on the selection of SRM 
feature dimension. In the second part, we compare with other 
state-of-the-art methods on three different datasets at 0.1bpp, 
0.2bpp and 0.4bpp payload. In the third part, we modify the 
network structure to verify whether our framework is still 
effective after the network structural changes. In the fourth 
part, an ablation experiment is provided to emphasize the 
importance of guiding feature. In the fifth part, we conduct 
parameter sensitivity experiments. In the last part, another 
guiding feature is applied to verify the universality of the 
feature-guided module. The detection performance is 

measured with the average total accuracy 𝑃𝐴 = 12 𝑎𝑣𝑒(𝑝𝑐 +𝑝𝑠) , which is also used in [20]. 𝑝𝑐  is the classification 
accuracy rate of cover images, and 𝑝𝑠  is the detection 
accuracy rate of stego images. We repeat all the domain 
adaptation experiments (J-Net, DSAN, ours) three times and 
take their average value as the final result. 

5.3.1 Selection of the SRM features dimension 

As we mentioned in Section 4.4, the extracted hand-crafted 
features should be selected and dimensionally reduced to form 
guiding feature by a FC layer. The accuracy when reducing the 
SRM feature to different dimensions is tested, and the results 
are shown in Fig. 4. The experiment is completed by using 
UCID.v2 images as the target domain because it is on this  

 

Fig. 4 Detection accuracy of our framework when selecting 

different SRM feature dimensions (%) 



dataset that the accuracy drops the most. And the 
steganographic method used is S-UNIWARD. It can be 
observed that there is a sharp drop when fusing SRM features 
directly which proves the importance of feature selection. The 
performances of other feature dimensions are similar, and the 
accuracy of fusing 256-dimensional features has the highest 
increase which is about 2% higher than the one without 
guiding features at 0.4bpp and 0.5% at 0.2bpp. Introducing 
guiding features improves accuracy more significantly at 
0.4bpp than 0.2bpp. In the end, we chose to retain 256-
dimensional guiding features. 

5.3.2 Comparison with other state-of-the-art methods 

Through experiments, we found that when the model trained 
on BOSSbase detects the data from other datasets, the 
accuracy of the model will decrease by about 3%-7%. 
Exceptions occur when detecting the S-UNIWARD and 
HUGO pairs from Flickr 25K. In these cases, the accuracy of 
the model actually increased. This is probably because of the 
processing we did with Flickr 25K data which resulted in the 
lower texture complexity of the images (see Section 5.1). 
Therefore, the model trained on BOSSbase with high texture 
complexity without format conversion, down-sampling, and 
other processing can still effectively detect stego images with 
low texture complexity under the condition of dataset 
mismatch.  

Table 1, Table 2 and Table 3 present the experimental 
results in the case of dataset mismatch at the payload of 
0.4bpp, 0.2bpp and 0.1bpp, respectively. The SRNet 
column represents the accuracy of the model in the case of 
dataset mismatch. It can be seen that our framework can 
significantly reduce the impact of dataset mismatch while 
improving the average accuracy by 6.0% at 0.4bpp, 8.5% 
at 0.2bpp and 8.0%at 0.1bpp. The accuracy of our proposed 
steganalysis framework is higher than that of J-Net [21] at 
various embedding rates. 

Table 1 Detection accuracy under dataset mismatch at 0.4bpp (%) 
Dataset Steganography SRNet J-Net Ours 

UCIDv.2 

SUNI 81.6 83.0 87.0 

WOW 81.0 82.3 87.0 

HUGO 78.8 81.7 85.4 

DIV2K 

SUNI 83.5 84.5 87.6 

WOW 80.5 81.4 88.0 

HUGO 80.1 81.7 88.1 

Flickr 25K 

SUNI 87.4 87.9 92.3 

WOW 84.3 86.5 90.5 

HUGO 88.4 91.0 92.3 

Average 82.8 84.4 88.2 

Table 2 Detection accuracy under dataset mismatch at 0.2bpp (%) 
Dataset Steganography SRNet J-Net Ours 

UCIDv.2 

SUNI 70.3 74.8 77.5 

WOW 68.2 67.8 79.1 

HUGO 70.6 70.7 75.8 

DIV2K 

SUNI 71.6 75.9 79.5 

WOW 69.9 70.4 81.4 

HUGO 70.2 70.9 79.9 

Flickr 25K 

SUNI 76.8 79.6 84.4 

WOW 71.0 74.4 80.3 

HUGO 78.3 81.0 85.6 

Average 71.9 73.9 80.4 

Table 3 Detection accuracy under dataset mismatch at 0.1bpp (%) 
Dataset Steganography SRNet J-Net Ours 

UCIDv.2 

SUNI 61.0 60.9 69.7 

WOW 60.3 60.2 66.2 

HUGO 61.0 61.2 63.8 

DIV2K 

SUNI 63.2 63.5 74.7 

WOW 59.9 60.5 68.1 

HUGO 61.9 62.9 68.3 

Flickr 25K 

SUNI 65.0 67.0 76.2 

WOW 61.7 63.6 69.3 

HUGO 67.5 68.0 77.0 

Average 62.4 63.1 70.4 

5.3.3 Effect to transfer due to changes in structure 

To verify whether our framework is still effective after the 
network structure changes, we modified the network 
structure by cutting layer 4 to layer 7 of the SRNet model,  

Table 4  Detection accuracy under dataset mismatch when the 

model structure changes at 0.4bpp (%) 
Dataset Steganography Clipped 

SRNet 

Ours 

UCIDv.2 

SUNI 71.5 85.4 

WOW 74.0 85.6 

HUGO 76.4 83.0 

DIV2K 

SUNI 81.2 86.4 

WOW 77.1 86.8 

HUGO 77.6 84.0 

Flickr 25K 

SUNI 86.6 93.4 

WOW 85.0 92.2 

HUGO 82.2 91.2 

Average 79.1 87.6 

Table 5  Detection accuracy under dataset mismatch when the 

model structure changes at 0.2bpp (%) 
Dataset Steganography Clipped 

SRNet 

Ours 

UCIDv.2 

SUNI 67.3 74.5 

WOW 65.8 79.5 

HUGO 63.8 74.1 

DIV2K 

SUNI 69.1 78.1 

WOW 66.7 81.2 

HUGO 62.9 70.9 

Flickr 25K 

SUNI 71.8 84.8 

WOW 69.4 82.3 

HUGO 65.2 80.6 

Average 66.9 78.4 



Table 6  Detection accuracy of ablation experiments (%) 
Payload 0.4bpp 0.2bpp 0.1bpp 

Dataset Steganography DSAN FG-SAS DSAN FG-SAS DSAN FG-SAS 

UCID v.2 

SUNI 85.1 87.0 76.9 77.5 60.4 69.7 

WOW 86.0 87.0 77.3 79.1 58.5 66.2 

HUGO 84.6 85.4 76.4 75.8 59.2 63.8 

DIV 

2K 

SUNI 86.7 87.6 80.7 79.5 58.6 74.7 

WOW 85.6 88.0 79.5 81.4 53.9 68.1 

HUGO 84.9 88.1 77.0 79.9 58.3 68.3 

Flickr  

25K 

SUNI 92.7 92.3 84.9 84.4 72.8 76.2 

WOW 89.9 90.5 78.5 80.3 65.0 69.3 

HUGO 93.8 92.3 85.4 85.6 74.5 77.0 

Average 87.7 88.2 79.6 80.4 62.4 70.4 

and re-train the clipped model to obtain new pre-trained 
models. We found that the accuracy of the clipped model is 
close to the original model when there is no mismatch. 
However, the accuracy of the clipped one drops more when 
mismatch happened compared with the original models. We 
transferred the new models as we did in Section 5.3.2 and the 
results are shown in Table 4 and Table 5. It can be observed 
that the average accuracy of the original model can be 
increased by about 8% in our framework at 0.4bpp and 11% at 
0.2bpp. Our framework is still effective when the structure of 
the model changes. 

5.3.4 Ablation experiments 

To verify the importance of our feature guiding strategy, 
ablation experiments are provided in this part. The results are 
shown in Table 6, DSAN denotes the method only applying 
subdomain adaptation and FG-SAS denotes the proposed 
feature-guided subdomain adaptation steganalysis framework. 
FG-SAS achieves higher accuracy in most cases than DSAN. 
Note that when the pre-trained model performs poorly in the 
target domain, such as 0.1bpp, it is not reliable to divide the 
subdomains correctly according to the prediction result, which 
may make the model transfer in a negative direction. However, 
by selecting and dimensionally reducing the hand-crafted 
feature, guiding features can help with the stability of adapting, 
and higher accuracy can be achieved, which verifies the 
significance of feature guiding strategy for steganalysis with 
cover source mismatch. 

5.3.5 Sensitivity analysis of parameter 

In this part, we conduct sensitivity experiments on the trade-
off parameter 𝜆  in Eq. (6) between domain adaptation loss 

and classification loss. When different trade-off parameters 
were selected, the detection accuracy of the model is shown in 
Fig. 5. The experiment is completed by using UCID.v2 images 
as the target domain and the S-UNIWARD steganographic 
method. 

 

Fig. 5 Detection accuracy under different trade-off parameter 

values. 

 It can be seen that the improved model is not very 
sensitive to the change of trade-off parameters, while the 
DSAN that has not integrated guiding features is more 
sensitive to the setting of the trade-off parameter 𝜆. When 𝜆 
is 0.4 and 0.5, the performance of DSAN is equivalent to a 
random guess, which means that the model did not work at all. 
This did not happen until the model has been transferring for 
a while. It is probably because the weight of adaptation loss is 
higher and the predictions of models in the target domain are 
given a higher level of confidence. As a result, the model tends 
to transfer in the wrong direction. However, the model guided 
with the select set of SRM features can correct this error to 
some extent. Therefore, our steganalysis framework is more 
stable than DSAN. 



5.3.6 Discussion on guiding features 

In order to demonstrate the universality of the feature-guided 
module, we also complete our experiment by using 
maxSRMd2 as the guiding feature extractor. The experimental 
results are shown in Table 7 and Table 8. The steganographic 

method we used in this part is S-UNIWARD. The model 
transferred with maxSRMd2 will be denoted as “Ours_max” 
to distinguish it from the one with SRM (denoted as “Ours”). 
It can be seen that the results are similar while transferring 
with the guidance of the select set of SRM or maxSRMd2. Our 
framework is still effective for other well-behaved guiding 
features. 

Table 7 Detection accuracy using different guiding features at 

0.4bpp (%) 
Dataset SRNet Ours Ours_max 

UCIDv.2 81.6 87.0 86.3 

DIV2K 83.5 87.6 88.6 

Flickr 25K 87.4 92.3 91.4 

Table 8 Detection accuracy using different guiding features at 

0.2bpp (%) 
Dataset SRNet Ours Ours_max 

UCIDv.2 70.3 77.5 75.9 

DIV2K 71.6 79.5 77.8 

Flickr 25K 76.8 84.4 86.3 

6 Conclusion and future work 

In this paper, a feature-guided subdomain adaptation 
framework is proposed to overcome the challenge of dataset 
mismatch in deep learning-based steganalysis. In practical 
communication application scenarios, we are inevitably faced 
with a variety of cover source mismatch problems, which 
makes the deployment of steganalysis tools very difficult. 
Because once there is a difference in the feature distribution 
between the training set and the test set, the performance of 
the steganalysis will be effected. Different from the previous 
steganalysis methods of subspace transfer learning and global 
alignment, we adopted the subdomain alignment method to 
make full use of fine-grained information, better mine the 
relationship between the source domain and target domain 
data, and reduce the differences between domains. To divide 
the subdomains more accurately, guiding features were 
responsible for resisting the influence of the wrong prediction 
on domain adaptation. Our experimental results on multiple 
datasets, against a variety of steganographic methods and 
different payloads, showed that our framework can effectively 
help the steganalysis models adapt to the new data distribution 

and make better classification. Even though the structure of 
the network has changed, our approach is still effective. The 
purpose of this paper is to bring steganalysis from the 
laboratory to the real-world communication application, so as 
to reduce the difficulties brought by the real scene to the deep 
learning-based steganalysis networks. 

Our proposed framework is currently suitable for dataset 
mismatch in spatial steganalysis. Dataset mismatch is a 
scenario of cover source mismatch and we expect that our 
framework can be used for steganographic methods mismatch 
and payload mismatch. Moreover, the performance of our 
framework in the JPEG domain is also worth studying due to 
the widespread use of JPEG images. 
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