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Abstract Complex real-time systems must integrate physical processes with digital

control, human operation and organisational structures. New scientific foundations

are required for specifying, designing and implementing these systems. One key chal-

lenge is to cope with the wide range of time scales and dynamics inherent in such

systems. To exploit the unique properties of time, with the aim of producing more

dependable computer-based systems, it is desirable to explicitly identify distinct time

bands in which the system is situated. Such a framework enables the temporal prop-

erties and associated dynamic behaviour of existing systems to be described and the

requirements for new or modified systems to be specified. A system model based on

a finite set of distinct time bands is motivated and developed in this paper.

1 Introduction

The construction of large socio-technical real-time systems, such as those envisaged

in cyber-physical applications, imposes a number of significant challenges, both tech-

nical and organisational. Their complexity makes all stages of their development (re-

quirements analysis, specification, design, implementation, deployment and mainte-

nance/evolution) subject to failure and costly re-working. Even the production of an

unambiguous behavioural description of an existing system is far from straightfor-

ward.

One characteristic of these computer-based systems is that they are required to

function at many different time scales (from microseconds or less to days or more).

Time is clearly a crucial notion in the specification (or behavioural description) of

computer-based systems, but it is usually represented, in modelling schemes for ex-

ample, as a single flat physical phenomenon. Such an abstraction fails to support the
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structural properties of the system, forces different temporal notions on to the same

flat description, and fails to support the separation of concerns that the different time

scales of the system facilitate. Even with a single time scale, system architects seem

to have great difficulty in specifying temporal properties in anything other than very

concrete implementation-level terms. But just as the functional properties of a system

can be modelled at different levels of abstraction or detail, so too should its temporal

properties be representable in different, but provably consistent, time scales.

To make better use of ‘time’, with the aim of producing more dependable computer-

based systems, we propose a framework that explicitly identifies a number of distinct

time bands in which the system under study is situated. The framework enables the

temporal properties of existing systems to be described and the requirements for new

or modified systems to be specified.

In the following section we motivate the main notions and properties of the time-

band framework. Then, in Section 3, an abstract model of timebands is presented,

and in Section 4 is extended to describe state. Section 5 gives a brief summary of the

model. The model is, in itself, not intended to be a complete semantic description.

That is achieved by ‘embedding’ the model in a parent notation/logic. The focus of

this paper is, however, the timeband framework. Section 6 introduces some notation

to allow specification of properties in the timeband framework. A short example of

the use of the framework in presented in Section 7. Related and future work is dis-

cussed in Section 8 and conclusions are covered in Section 9.

2 Motivation

A large real-time system exhibits dynamic behaviour on many different levels. The

computational components have circuits that have nanosecond speeds, faster elec-

tronic subcomponents and slower functional units. Communication on a fast bus is

at the microsecond level but may be tens of milliseconds on slow or wide-area me-

dia. Human time scales move from the 1ms neuron firing time to simple cognitive

actions that range from 100ms to 10 seconds or more. Higher rational actions take

minutes and even hours. Indeed it takes on the order of 1000 hours to become an ex-

pert at a skilled task, such as flying a plane [45] and the development of highly skilful

behaviour may take many years. At the organisational and social level, time scales

range from a few minutes, through days, months and even years. Perhaps for some

environmentally sensitive systems, consequences of failure may endure for centuries.

To move from nanoseconds to centuries requires a framework with considerable de-

scriptive and analytical power.

The concept of timebands comes from a detailed study of existing computer-

based systems1 and their requirements (eg.[29]), ethnographical studies (eg. [7,2]),

the work of Newell [39] in his attempts to describe human cognition, work on system

structure such as that of Simon [47], reports on system failures (eg. Columbus [5]),

studies from areas such as the psychology and sociology of time [19,22,44,34,3],

formalisms such as the teleo-reactive programming model [40,41] and Statecharts

1 As part of the Dependability Interdisciplinary Research Collaboration – DIRC, see web.
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that require instantaneous state changes, and the few examples of modelling work

that do attempt to consider more than one time scale within a system (eg. Corsetti et

al [17,13]).

As the concept of ‘now’ (present moment) seems to be fundamental to our rea-

soning about time, it follows that notions such as ‘instantaneous’, ‘simultaneous’ and

‘immediate’ are natural ones to use in specifying temporal properties. As Bergadaà

[3] states in his work on a temporal framework:

The present time could be made of moments that enable the allocation of

time to different activities. They could also be made of duration in which the

activity will take the time necessary for its completion.

From such observations and the literature noted above we distil the following

properties that we identify as being of relevance to the modelling of complex real-

time systems.

– The dynamics of a system (how quickly things change) are central to understand-

ing its behaviour.

– Systems clearly operate at many different granularities (of time), ie. there are

different abstract views of the dynamics of the system.

– It is useful to consider certain actions (events) as atomic and instantaneous (whilst

allowing them to have internal state and behaviour at a more detailed level of

description).

– It is useful to consider two or more events as occurring simultaneously (instanta-

neously), or the response to some event being immediate (whilst allowing them

to be separated in time at a more detailed level of description).

– The order (but not necessarily the time) at which events occur is important; prece-

dence can give rise to causality.

– The durations of certain actions are important, but the measuring of time must not

be overly precise and must allow for tolerance (non-determinacy) in the temporal

domain.

– Abstract clocks are useful for relating and coordinating activities, but real clocks

are never perfectly reliable or accurate.

– At each level of temporal behaviour it is useful to have access to both continuous

and discrete notions of time – controlling actions are typically described using

discrete time, the controlled object due to its continuously changing nature often

requires dense time for its behavioural description.

– Hierarchical control (cascade control) and hierarchical scheduling (planning) are

often observed through the time levels of a system.

– At each level of temporal behaviour similar phenomena are observed (e.g., cyclic/

repetitive actions, deadline-driven actions, synchronous and asynchronous event

handling, agreement, coordination, etc.)

Engineers, even of real-time systems, seem to have great difficulty over the use

of precise values of time. Why choose an iteration rate of 20ms? – why not 19ms

or 21ms? What does a deadline of 15ms actually mean? – would a delay of 10µs be

significant? This difficulty with temporal quantities is not mirrored in the physical

domain where tolerances on lengths, weight etc. are commonly expressed.



4 A. Burns and I.J. Hayes

In the timebands framework, apparently more natural (and essentially atempo-

ral) notions are available such as ‘immediate’, ‘instantaneous’, ‘simultaneous’, ’defi-

nitely’ and ‘possible’. And durations are first expressed in general terms - for exam-

ple “this is a minute-level activity” (ie. it will last a few minutes, rather than hours

or seconds). Orders of magnitude between rates of change give an initial decomposi-

tion of the system. Indeed the framework uses time itself to separate concerns in any

architectural description or system specification.

The central notion in the framework is that of a time band that is defined by a

granularity (eg. 1 minute) and a precision (eg. 5 seconds). Granularity defines the

unit of time of the band; precision bounds the actual duration of an event that is

deemed to be instantaneous in this band.

A system is assumed to consist not of a single time dimension but a finite set of

bands. System activities are placed in some band B if they engage in significant events

at the time scale represented by B, ie. they have dynamics that give rise to changes

that are observable or meaningful in band B’s granularity. So, for example, at the

10 millisecond band, neural circuits are firing, significant computational functions

are completing, and an amount of data communication will occur. At the 5 minute

band, work shifts are changing, meetings are starting, etc. For any system there will

be a highest and lowest band that gives a temporal system boundary – although there

will always be the potential for larger and smaller bands. Note that at higher bands the

physical system boundary may well be extended to include wider (and slower) entities

such as legislative constraints or supply chain changes. To complete this short moti-

vation section the important topics of sampling and rates of change are addressed.

Sampling. Our focus is on embedded real-time systems and hence we cannot avoid

issues like sampling of inputs, and discretization of continuous quantities. For exam-

ple, assume two proximity conditions are represented by boolean variables top and

bottom, representing that a controlled gate is at the top or bottom, respectively, of its

travel. It is an error for the two proximity sensors to give simultaneous positive inputs.

By placing this requirement for error detection in the minute band (with precision of

5 seconds) the following constraints are derived

– If in any interval of duration five seconds, or more, top and bottom are perma-

nently true then the error condition must be identified.

– If in any interval of duration five seconds, or less, top and bottom are true for part

of the interval then the error condition can be identified. Note that the intervals

over which top and bottom, respectively, hold don’t have to be the same, or even

overlap.

This dual use of must and can cannot be eliminated. One may move the requirement

between time bands to decrease the value of the precision parameter, but even in

the lowest band in the system there is an inevitable non-determinacy because true

perfectly simultaneous polling of the two sensors is not possible.

Rate of change. Even though an environmental entity is subject to continuous change,

it does not mean that all such behaviour must be captured at the lowest possible band
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– and that this band must have a dense notion of time whilst the others can be dis-

crete. Rather, within any band, many (perhaps most) entities will be discrete, but

some may be continuous. So if the purpose of an automatic ‘plant watering’ system

in a greenhouse is to aid the growth of plants in some controlled environment, the

rate of growth of the crop per week or day may be significant (but not per second or

millisecond).

Consider, for example, the maximum rate of flow of water from a piston-style

pump. At a higher time band, this may be stated as r litres per time unit, but at a

lower time band, there are two phases of the piston: one filling the cylinder, in which

there is almost no flow of water out of the pump; and the other emptying the cylinder,

during which the rate of flow of water out of the pump is about twice r.

The maximum rate of change of a state variable may be uniform between some

pairs of time bands, but not between others. By uniform, we mean that the maximum

rates of change are the same (although they will be expressed with respect to the

granularity of their respective time bands). For example, with the piston pump the

rate of flow is not uniform at the time band that distinguishes the filling and emptying

phases of the cylinder, but between a pair of higher bands the rate of flow may be

uniform. At a still higher pair of bands, we may be switching the pump on and off

to control the rate of flow over a broader time base. Again the rate of flow won’t

be uniform, but between still higher bands, which don’t distinguish the on and off

phases, it may emerge to be uniform again.

The motivation for proposing this timeband framework is to simplify the spec-

ification of complex systems, improve the dependability of deployed systems and

reduce the cost of designing (and redesigning) such systems. It allows dynamic prop-

erties to be partitioned but not isolated from each other.

3 Definition of the Timeband Model

From the above considerations, a timeband model has been developed2 that is de-

scribed in this and the next section (with some illustrative small examples). The aim

of a timeband model is to be an essential part of any complete system description. It

enables the temporal properties of existing systems to be described and the require-

ments for new or modified systems to be specified. The informal description of the

framework is supported by a formal model expressed in the Z notation [48,25].

The framework is developed in a number of stages that build up the full model.

Some examples of how this model can be extended into a language for actual use in

specifying systems is then given. The list of topics discussed in this section are: time

bands, granularity and precision, events and classes of events, precedence, simultane-

ous and immediate, activities, mappings between bands, durations, and clocks. The

next section covers state-related aspects of the model: a less determined view of state,

change-of-state events, mapping states, accuracy and rates of change.

2 Initial developments of the framework are described in technical reports [8,7].
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3.1 Time bands

For our formal model, we take the set of time bands (B) as a primitive type. Both

“⊑” and “⊏” are relations between bands, with “⊑” forming a partial ordering3 on

time bands. The type of a relation between bands is given as B ↔ B. A relation is

equivalent to a set of pairs, ie. (B ↔ B) = P(B×B), where P X stands for power set

of X, (i.e., the set of all subsets of X).

⊑ : partial order[B]
⊏ : B ↔ B

∀ b1, b2 : B • (b1 ⊏ b2 ⇔ b1 ⊑ b2 ∧ b1 6= b2)

For example, we may have that

MinuteBand ⊏ DayBand ⊏ MonthBand

From a focus on some band B, adjacent bands A and C, where C ⊏ B ⊏ A, can

be identified. Slower (higher or coarser) bands (e.g. A) can be taken to be unchanging

(essentially constant) for issues of concern to B. At the other extreme, behaviours in

the faster (lower or finer) bands (e.g. C) are assumed to be instantaneous in B. The

actual differences in granularity between A, B and C are not precisely defined (and

indeed may depend on the bands themselves) but will typically be in the range 1/10th

to 1/100th. When bands map on to hierarchies (structural or control) then activities in

band A can be seen to constrain the dynamics of band B, whereas those in C enable B

to proceed in a timely fashion. The ability to relate behaviour at different time bands

is one of the main properties of the framework.

As an example, consider a university lecture course. Here there are immedi-

ately four bands to identify. The year band in which new courses and curriculum

are planned, the weekly band in which lectures are scheduled, the minute band that

allows each lecture to be structured, and the second band that can capture various in-

teractions with the available technical support (eg. laptop response). Whilst giving a

lecture, one can assume that the curriculum is stable (unchanging) and that the laptop

reacts instantaneously to slide change requests. Systems that don’t respect some form

of time band structure can become extremely complex and difficult to comprehend,

e.g., changing the course syllabus while lecturing is likely to lead to great confusion.

It is important to emphasise that the full behaviour of a system is not obtained by

refining down to the lowest band or by projecting emergent behaviours up to the high-

est band. Rather it is the amalgamation of all band descriptions – all have behaviours

that may be needed in any assertion about the system as a whole.

3 Although in most systems the bands will be totally ordered, there are applications, perhaps in the

domain of systems of systems, where this is not the case. For example a week band and a fortnight band

are too similar to seen as hierarchically related. They would however both be strictly ordered with respect

to a higher year band and a lower minute band. For a formal definition of partial order, see Appendix A.
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3.2 Granularity and precision

For each band its granularity, representing the unit of time in that band, and precision,

representing the measure of accuracy of events within that band. They must both be

expressed relative to a lower band. For example, the granularity of the MonthBand

with respect to the DayBand may have a granularity defined as follows:

Granularity(MonthBand, DayBand) = {28, 29, 30, 31}

and the granularity of the DayBand with respect to the MinuteBand is defined as

follows:

Granularity(DayBand, MinuteBand) = {1440},

because there are 24 ∗ 60 = 1440 minutes in a day. Hence the granularity of the

MonthBand with respect to the DayBand is

Granularity(MonthBand, MinuteBand) =
{28 ∗ 1440, 29 ∗ 1440, 30 ∗ 1440, 31 ∗ 1440}.

Note that this set is not contiguous. For ease of presentation we assume that standard

units such as minutes, milliseconds, etc, are well defined. However not all time scales

will give rise to time bands.

For a band b1, its granularity will be defined with respect to all lower bands; hence

the domain of the granularity function is all pairs of bands (b1, b2), such that b2 is

lower than b1. If b1 is related to a lower band b2, and b2 to b3, then the granularity

of b1 with respect to b3 is the composition of the granularities of b1 with respect to

b2 and b2 with respect to b3. The set N is the natural numbers and N1 is the non-zero

natural numbers. Granularity is a partial function ( 7→) from pairs of time bands to a

non-empty set (P
1
) of non-zero natural numbers.

Granularity : (B × B) 7→ P
1

N1

dom(Granularity) = {b1, b2 : B | b2 ⊏ b1}
∀ b1, b2, b3 : B; g : N1 • b3 ⊏ b2 ⊏ b1 ⇒

g ∈ Granularity(b1, b3) ⇔
(∃ g1, g2 : N1 • g = g1 ∗ g2 ∧

g1 ∈ Granularity(b1, b2) ∧ g2 ∈ Granularity(b2, b3))

Within a band, behaviour is defined using events (which are instantaneous), activ-

ities (that have duration) and state (both discrete and continuous). These are defined

in later sections, but important here is the property that events are defined to be in-

stantaneous. And two or more events may be defined to be simultaneous. A band’s

precision is a constraint on the duration of ‘instantaneous’ and ‘simultaneous’ when

measured in a finer band. For example, if the precision of the hour band is defined

to be one minute then two simultaneous events must occur within a minute of each

other.

Because precision can only be expressed using the granularity of a finer band, it

is defined on a pair of (upper and lower) time bands.
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Precision : (B × B) 7→ N1

dom(Precision) = {b1, b2 : B | b2 ⊏ b1}
∀ b1, b2, b3 : B • b3 ⊏ b2 ⊏ b1 ⇒

Precision(b1, b3) ≤ Precision(b1, b2) ∗ min(Granularity(b2, b3))

The definition of precision enables the framework to be used effectively for re-

quirements specification. A temporal requirement such as a deadline is band-specific;

similarly the definition of a timing failure. For example, being one second late may

be a crucial failure in a computing device, whereas on a human scale being one sec-

ond late for a meeting is meaningless. The duration of an activity is also ‘imprecise’

(within the band). Stating that a job will take three months is assumed to mean plus

or minus a couple of days. Of course the precision of a band can only be explored in

a lower band.

Again with the lecturing example, assume the precision of the minute band is one

second. The instantaneous ‘slide change’ event when mapped to a laptop activity in

a lower band must have a duration of not more than one second.

A key aspect of the timeband framework is that certain entities are considered to

be instantaneous, and that they are then mapped to actions that have duration in a

more detailed description of the system. One means of achieving this property would

be to give all such entities a distinct precision. However in constructing behaviours

from collections of entities, composition is much more straightforward if the same

notion of precision applies. Moreover, the property of being ‘instantaneous’ relates

to the level of the temporal abstraction not to the event itself. Hence the timeband

framework starts by defining the bands and then places entities into the bands. If

the entity is instantaneous it is represented by an event; if it has duration then it

is represented by an activity with a duration that is adequately expressed using the

granularity of the chosen band. Hence ‘adequately’ means with sufficient (but not

excessive) precision over the value of the defined duration.

As well as the system itself manifesting behaviour at many different time bands,

the environment will exhibit dynamic behaviour at different granularities. The bands

are therefore linked to the environment at the level determined by these dynamics. In

many system abstractions it is useful to assume the environment is in some form of

steady state. But this assumption is clearly false as the environment evolves, perhaps

as a result of the deployment of the embedded system under development. By map-

ping the rate of this evolutionary change to an appropriate (relatively slow) time band

one can gain the advantage of the steady-state abstraction whilst not ignoring slower

dynamics.

3.3 Classes of events/activities

In describing the behaviour of a system we often want to refer to repetitive activi-

ties/events. We say they are of a particular class, e.g., the event class corresponding

to a door opening, where the door will be opened many times during the life of the

system. Each class of events/activities has a unique time band and name that we use

to characterise the class.
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C
band : B
name : String

The above is a Z schema: it defines a record type C with two fields, band and name.

3.4 Events

By definition, all actions within a band have similar timing dynamics. Within a band,

events are instantaneous, while activities may have a non-zero duration. Events are

a natural way of expressing change within a system. By first defining behaviours to

be instantaneous, an abstract definition of their cause and effect can be given. Also,

seemingly impossible specifications can be given clear semantics. For example, the

change-of-state event to turn off a water pump (as used in the case study in Section 7)

is an event that ideally is instantaneous at some level of abstraction but clearly must

take time at a more detailed level of description (in a finer band).

In a particular behaviour, there may be any (countable) number of instances of

events of a particular class, including zero. The set of instances of an event class

within a behaviour are totally ordered by precedence (see below), and hence we can

also assign a unique index to an event instance. An event instance, “event” for short,

is characterised by its class (time band and name), and a natural number index, n,

indicating that it is occurrence n of events of that class within a behaviour.

E
class : C
index : N

We use the notation c# i to stand for the event of class c that has index number i. The

idea of indexing event instances comes from RTL [30]. We define a shorthand for the

time band of an event.

band : E → B

∀ e : E • band(e) = e.class.band

For a band, b, Events(b) defines the set of all events in that band.

Events : B → P E

∀ b : B • Events(b) = {e : E | band(e) = b}

3.5 Precedence

Although time is of central importance, there are contexts in which pure order is a

more natural way of describing behaviour [33,1,27] (X was before Y, e.g., “before

the end of the shift”, “after the plane took off”, “before the flood”, “after the thread
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has completed”, “before the gate has fired”). The framework must therefore represent

both precedence relations and temporal frames of reference.

There is a strong link between temporal order (i.e., time-stamped events and ac-

tivities) and precedence relations. However, in this framework, we do not impose an

equivalence between time and precedence. Due to issues of precision, time cannot be

used to infer precedence unless the time interval between two events is sufficiently

large in the band of interest.

Where bands are (at least partially) ordered by granularity, then order and hence

potential causality is preserved as one moves from the finer to the coarser bands.

However, order and hence causality are not necessarily maintained as one moves

down through the bands. Where order is important then proof must be obtained by

examining the inter-band relationships.

A precedence relation (¹) defines a partial ordering4 on the events. Only events

in the same time band are related by the precedence relation. We use the operator

≺ for strict precedence. A behaviour of a system will consist of a nonempty set of

events, ev, ordered by precedence. The notation ( ¹ ) stands for the precedence

relation taken as a whole.

BehaviourEvents

ev : P
1
E

¹ : partial order[E ]
≺ : E ↔ E

∀ e, f : E •
(e ¹ f ⇒ e ∈ ev ∧ f ∈ ev ∧ band(e) = band(f )) ∧
(e ≺ f ⇔ e ¹ f ∧ e 6= f )

∀ c : C; i, j : N • i < j ∧ c # j ∈ ev ⇒ c # i ∈ ev ∧ c # i ≺ c # j

The above Z schema declares a number of fields and constrains them to satisfy the

predicate below the line. Note that we don’t insist that all pairs of events are related

one way or the other, but if both e ¹ f and f ¹ e, because “¹” is a partial order we

insist that e = f . For each class of events, event instances are sequentially numbered

from zero. Hence, if there is an instance of an event with index j, then there must be

event instances of the same class for all indices less than j and these instances must

precede the jth instance.

3.6 Simultaneous and immediate

In the specification of a system, an event may cause a response immediately (instanta-

neously) – meaning that at this band the response is within the precision of the band.

This use of untimed notions helps eliminate the problem of over specifying require-

ments that is known to lead to implementation difficulties [29]. For example consider

the naturally specified requirement ‘when the fridge door opens the light must come

4 See Appendix A.
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on immediately’; this apparently gives no scope for an implementation to incorpo-

rate the necessary delays of switches, circuitry and the light’s own latency. Making

the term ‘immediate’ band specific, enables a finer-granularity band to include the

necessary delays, latencies and processing time that are needed to support the imme-

diate behaviour at the higher band. This separation of concerns removes the need to

add a precise deadline to the ‘light-on’ event. An explicit deadline (of say 8.5ms) is

too concrete – rather the deadline is ‘the definition of immediate in this band’. Ob-

viously being immediate in the hour band is not the same as being immediate in the

microsecond band.

Two events may have a precedence relationship (eg. slide X before slide Y) but

occur at the same time (same hour).

It follows from these observations that, in this framework, there is a difference

between two events being simultaneous and being ‘at the same time’. The former

is a much stronger statement. Here two simultaneous events (in band B say) must,

when viewed from a finer band, be within the precision of band B. Whereas ‘at the

same time’ only required the two events to occur within the granularity of band B.

As the precision is typically 1/10th to 1/100th of the granularity, clearly events being

simultaneous is a much tighter constraint.

Precedence gives rise to potential causality. If P is before Q then information

could flow between them, indeed P may be the cause of Q. In the use of the frame-

work for specification we will need to use the stronger notion of precedence to imply

causality. For example, “when the fridge door opens the light must come on”. Within

the band of human experience this can be taken to be immediate (simultaneous but

ordered). At a finer band a number of electro-mechanical activities will be needed to

be described that will sense when the door is open and enable power to flow to the

light. Importantly, no causality relationship can be inferred (without explicit prece-

dence) for two events occurring at the same time within their particular band. In effect

they are logically concurrent and may occur in sequence or overlapped in time when

viewed from a lower band.

We introduce a separate relation (≃) to denote that two events are simultaneous.

While ≃ is reflexive and symmetric, it isn’t transitive.5 One event, f , immediately

follows another, e, written e ✂ f , if f both follows e and is simultaneous with e. Be-

haviours are extended to include simultaneous events. This schema includes schema

BehaviourEvents, and hence includes all the fields of that schema as well as its con-

straints.

BehaviourSimultaneous

BehaviourEvents

≃ : symmetric rel[E ]
✂ : E ↔ E

(∀ e, f , g, h : E •
(e ≃ f ⇒ e ∈ ev ∧ f ∈ ev ∧ band(e) = band(f )) ∧
(e ¹ f ¹ h ∧ e ¹ g ¹ h ∧ e ≃ h ⇒ f ≃ g) ∧
(e ✂ f ⇔ e ¹ f ∧ e ≃ f ))

5 See Appendix A for the definition of symmetric rel.
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3.7 Activities

An activity has a class (time band and name) and an instance number.

A
class : C
instance : N

We also use the notation c # i to refer to the activity with class c and instance i. We

define a shorthand for the time band of an activity.

band : A → B

∀ a : A • band(a) = a.class.band

For a band, b, Activities(b) defines the set of all activities in that band.

Activities : B → PA

∀ b : B • Activities(b) = {a : A | band(a) = b}

An activity has associated with it a nonempty set of events (ie. P
1
E), all of which

are in the same time band. Every activity, a, has associated with it a start event, ↑ a,

and possibly an end event, ↓ a. An activity may not have an end event if it never

terminates, or if we are only considering a partial trace of behaviour. For an activity

of class c, the start events of such activities are of class ↑ c and the end events are of

class ↓ c; note that we have overloaded the up and down arrow symbols to function on

both classes and activities. The start event of an activity should precede all events in

the activity, which should themselves precede the activity’s end event. The instance

number of an activity is the same as the index number of its start event. Note that

if we allow two activities of the same class to overlap, the instance number of an

activity and the index number of its end event need not correspond.

BehaviourActivities

BehaviourSimultaneous

act : PA
events of : A 7→ P

1
E

↑ : A 7→ E
↓ : A 7→ E

events of ∈ act → P
1

ev

dom(↑) = act ∧ dom(↓) ⊆ act

∀ a : act •
events of (a) ⊆ Events(band(a)) ∧
↑ a ∈ events of (a) ∧ (↑ a).class = ↑(a.class) ∧
(a ∈ dom(↓) ⇒ ↓ a ∈ events of (a) ∧ (↓ a).class = ↓(a.class)) ∧
(↑ a).index = a.instance ∧
(∀ e : events of (a) • ↑ a ¹ e ∧ (a ∈ dom(↓) ⇒ e ¹ ↓ a)) ∧
(∀ i : N • i < a.instance ⇒ a.class # i ∈ act)
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For the lecturing example, viewed at the year time band there may be an activity

that corresponds to a course. The events of this activity include a set of lectures, all

of which are after the start of the course and before its end. The lecture events may

be related by precedence. At this level the precedence may just correspond to the

dependence of material in one lecture on that in another, and hence the ordering of

the lectures need not be total.

Many activities will have a repetitive cyclic behaviour with either a fixed peri-

odicity or slowly varying pace. Other activities will be event-triggered. Most will

have temporal constraints (deadlines). Activities are performed by agents (organi-

sational, human or technical). In some bands all agents will be artificial (physical,

computational or electrical), at others all human, and at others both will be evident.

In addition to agents, there will often be the need for resources to enable the agent to

make progress.

In this framework definition we will not include agents and resources; rather we

concentrate on behaviour (events, activities and state). The scheduling of agents and

resources so that activities meet their timing requirements is a natural extension to

this description and would make use of standard scheduling and planning techniques.

3.8 Mappings between bands

In the components of the framework so far considered, all behaviours have been con-

fined to a single band. In doing so, some notions such as ‘instantaneous’, ‘simulta-

neous’, and ‘immediate’ have been defined but their semantic properties have not yet

been fully defined. To do this, multiple-band behaviours need to be accommodated.

This is achieved by mapping events in one band to activities in finer bands.

�������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������

Band B

Band C

Band A

Event E in Band A

Activity X in Band B

Activity Z in Band C

Fig. 1 Time Band Example
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Events that are instantaneous in band A may map to activities that have duration at

some lower band B with a finer granularity. A key property of a band is the precision

it defines for its time scale. This requires the activity associated with event E (in band

A) to have a maximum duration of ρ (the precision of band A - as measured in band

B). An illustration of a three band system with the mapping of events to activities is

shown in Figure 1. As noted earlier, the start and end of an activity are themselves

represented as events.

The link between any two bands is expressed in terms of each band’s granularity

and precision. Usually the finer of the two bands can be used to express these two

measures for the broader band. Where physical time units are used for both bands

these relations are straightforward. For example a band with a granularity of an hour

and a precision of two minutes is easily linked to a band with a granularity of ten

seconds and precision of half a second. The granularity relation is a link from one

time unit (1 hour) in the higher band to 360 units in the lower band. The precision of

one minute means that a time reference at the higher band (e.g., 3 o’clock) will map

down to the lower band to imply a time reference (interval) between 2.59 and 3.01.

In general, two bands are said to be ordered if the precision of one band is larger then

the granularity of the other.

If an event, e, maps to an activity, a, then that activity has a unique signature

event, sign(a), which corresponds to e in the lower band. Behaviours are extended

with activities. The mapping preserves the precedence relation between two higher

band events e1 and e2 by requiring that the signature events of their corresponding

activities a1 and a1 in the lower band are similarly related, ie. sign(a1) ¹ sign(a2).

BehaviourMapping

BehaviourActivities

Ã : E ↔ A
sign : A 7→ E

dom(sign) ⊆ act

∀ e : ev; a : act • e Ã a ⇒
e ∈ ev ∧ a ∈ act ∧ (band(a) ⊏ band(e) ∧ a ∈ dom(sign))

∀ e : ev; a1, a2 : act •
band(a1) = band(a2) ∧ e Ã a1 ∧ e Ã a2 ⇒ a1 = a2

∀ a : act • a ∈ dom(sign) ⇒ sign(a) ∈ events of (a)
∀ e1, e2 : ev; a1, a2 : act •

e1 Ã a1 ∧ e2 Ã a2 ∧ band(a1) = band(a2) ⇒
(e1 ¹ e2 ⇒ sign(a1) ¹ sign(a2))

3.9 Durations

The function duration gives the time between any two events. To allow for lack of

knowledge of the exact time between events and the granularity of the time base, the

result of duration is a time interval, i.e., a contiguous nonempty set of times, each of



A Timeband Framework 15

which is represented by a natural number.

Interval == {I : P
1

N | (∀ t1, t2 : I; t : N • t1 < t < t2 ⇒ t ∈ I)}

An activity that has not terminated (ie. is not in the domain of “↓”) cannot be given a

duration. The duration of a terminating activity is determined from its start and end

events.

BehaviourDurations

BehaviourMapping

duration : (E × E) 7→ Interval

act duration : A 7→ Interval

dom(duration) = {e, f : ev | e ¹ f}
∀ e, f , g, h : ev • e ¹ f ¹ g ¹ h ⇒

(∀ I1, I2 : Interval • duration(e, h) = I1 ∧ duration(f , g) = I2 ⇒
I2 ⊆ I1)

dom(act duration) = dom(↓)
∀ a : dom(act duration) • act duration(a) = duration(↑ a, ↓ a)

Any event in the upper band is mapped to an activity in the lower band whose

duration is within the precision of the upper band (with respect to the lower band).

Precision is not only important in defining the bounds on what it means for an

event to be instantaneous (in a band), it is also used to constrain what is meant by

two events to be simultaneous in some band. If e and f are simultaneous in band b

(with precision ρ with respect to the lower band c) then the signature events of the

mapped activities must occur within ρ in band c. Similarly, two events can be defined

to be ‘not simultaneous’ and may require some component of the system to test that

this erroneous situation does not occur. Again, by placing such a requirement in the

right band, the necessary tolerance on the implementation of the monitoring task is

precisely defined.

BehaviourPrecision

BehaviourDurations

∀ e : ev; a : act •
e Ã a ⇒ max(act duration(a)) ≤ Precision(band(e), band(a))

∀ e1, e2 : ev; a1, a2 : act • e1 ≃ e2 ∧
e1 Ã a1 ∧ e2 Ã a2 ∧ band(a1) = band(a2) ⇒
max(duration(sign(a1), sign(a2))) ≤ Precision(band(e1), band(a1))

3.10 Clocks

For the time bands associated with computational activity, there is usually a strong

notion of time and (adequately accurate) physical clocks that will aid scheduling and

coordination. This is also increasingly the case with the bands of human experience
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as external sources of time and temporal triggers abound [34]. So measures such as

second, minute, hour, day, week, month, year, decade and century are now universal.

But other time scales such as ‘generation’, ‘era’ and ‘age’ are also used in specific

domains. In a different context the granularity of a band may relate to a physical

property of the system, such as the rotation of the crank shaft for an engine control

unit.

A frame of reference defines an abstract clock that counts ticks of the band’s

granularity and can be used to give a time stamp to events and activities. A band

may have more than one such abstract clock but they progress at the same rate. For

example the day band will have a different abstract clock in each distinct geographical

time zone.

We develop a consistent model of time by representing certain moments in the

dynamics of a band as “clock tick” events, which are modeled just like any other

event. When necessary, an event can be situated in absolute time (within the context

of a defined band and clock) by stating a precedence relationship between the event

and one or more clock ticks. So an event occurred between 2.00 and 3.00 (in the hour

band) if the event occurred after the start of hour from 2.00 to 3.00 but before the

end of that hour. Note this is different to saying the event occurred ‘at 2.00’. Here the

implication is that it is simultaneous with the 2.00 event. So ‘I will arrive at 2.00’ is

satisfied by arriving sufficiently close to the 2.00 event (within the precision of the

hour band). However ‘I’ll will arrive by 3.00’ is quite different and allows the arrival

event to occur anytime up to the 3.00 event.

A clock can be modeled as a sequence of clock-tick events of a given class, and

hence a given time band. Successive clock-tick events are separated by one time unit

in the granularity of the band. They are therefore never simultaneous.

4 State

In modelling state within the timeband framework there are a number of issues we

need to take into account:

observations: within a particular time band, only a subset of the state variables (ob-

servations) will be relevant,

nondeterminism: at the time interval corresponding to an event within a band, there

may be a set of possible values of a state variable,

change-of-state events: for discrete state observations, changes in value correspond

to change-of-state events,

accuracy: for a continuous state observation, there will be a maximum change over

a time interval corresponding to the precision of the band, and

rate-of-change: for continuous observations, there will be a maximum rate of change

over an interval of size the granularity of the time band.

The observation variables of different time bands may be different. Typically, the

representation becomes richer as one moves down to a lower time band with a finer

granularity. We say that the state of the system is projected onto a band; in some

bands not all possible observation variables will be accessible (as the time spent in

that state is too short). To illustrate, consider an automatic door:
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– at a high time band one can view the door as either open or closed, with “instan-

taneous” events to open or close it;

– at a lower time band the open and close events take time, and there are new

activities opening and closing

– at a lower level still one may model how far open the door is by a percentage

between 0% open (i.e., closed) and 100% open; this numeric measurement may

either be discrete, with some granularity, or continuous; if it is discrete then, at a

still lower time band, it may be discrete with a finer granularity.

This can be modeled by having different observation variables at different time bands.

4.1 States

The state space can be represented by a mapping from variable names, taken from

the set V , to values, taken from the set X.

State[V, X] == V 7→ X

The above definition of State is generic in the sets of variables and values, for exam-

ple, the instantiation State[{x, y}, {0, 1}] represents states with variable names from

the set {x, y} and values from the set {0, 1}. A state, σ ∈ V 7→ X, maps each variable

name in its domain to its value in that state. For simplicity we use the universal set X

for all values, rather than each variable having values of a particular type. The set of

observation variables in a particular time band is fixed, and hence it is useful to refer

to sets of states, all of which have the same variables (i.e., domain).

StateSet[V, X] == {ss : P State[V, X] | (∀σ1, σ2 : ss • dom(σ1) = dom(σ2))}

For example, if x and y are variables and integers are values then s is a state and ss is

a state set.

s = {x 7→ 0, y 7→ 1}
ss = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 0}, {x 7→ 1, y 7→ 1}}

The “sets of states” view is adequate for a single sequential process controlling all the

variables in the state, but if there are concurrent processes or an externally evolving

environment, observation of the state at a particular time precision may observe one

variable at one instant and another at a slightly different instant. Hence, if we don’t

determine the order of observation of the variables, there is a set of values that we

can observe for each variable at that time “instant”. This leads to a less determined

representation of the states, in which each variable is mapped to a set of possible

values.

4.2 Values views of the state

Over the time interval corresponding to an event, e, within a particular time band,

one can extract the set, ss, of actual states that occur in that interval. Unfortunately,
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the set of states view doesn’t reflect the reality of observing multiple variables, all of

which are evolving over time. For example, if we have two variables x and y which

are both initially zero, and if in quick succession x changes to one and then y changes

to one, then there is no point at which the state has x with value zero and y with value

one. The set of states for this transition is ss, above. However, a program sampling

the two variables may first sample x and get zero and then sample y and get one, ie.

obtain a state {x 7→ 0, y 7→ 1}, which is not in ss.

To address this issue we introduce a less determined representation of a set of

states, which for each variable records the nonempty6 set of values it has accumulated

over all the states. This has less information than the equivalent set of states.

VState[V, X] == V 7→ P
1

X

Note that a sets of values view, or values view for short, is a form of state with values

replaced by sets of values:

VState[V, X] = State[V, P
1

X]

As with states, we define the sets of values views, all of which have the same vari-

ables.

VStateSet[V, X] == StateSet[V, P
1

X]

4.3 Relating a set of states to a values view

The set of states ss above corresponds to the values view sv.

sv = {x 7→ {0, 1}, y 7→ {0, 1}}

We define a function values to represent this relationship so that values(ss) = sv,

where the notation {σ : ss • σ(v)} stands for the set of all values of σ(v) for σ in ss.7

[V, X]
values : StateSet[V, X] → VState[V, X]

∀ ss : StateSet[V, X] •
let vars == {v : V | (∃σ : ss • v ∈ dom(σ))} •

values(ss) = (λ v : vars • {σ : ss • σ(v)})

In the opposite direction, the set of states that may be apparent in a values view

of the state can be extracted by considering all possible states such that each vari-

able maps to an element of its set of possible values. For the values view sv, the

corresponding set of apparent states is

apparent(sv) = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1},
{x 7→ 0, y 7→ 1}, {x 7→ 1, y 7→ 0}}.

6 Hence P
1

rather than P.
7 This is more commonly written {σ(v) | σ ∈ ss} but Z notation makes the fact that σ is a bound

variable explicit, and hence avoids the possible ambiguity in the commonly used syntax.
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The function apparent is defined as follows.

[V, X]
apparent : VState[V, X] → StateSet[V, X]

∀ sv : VState[V, X] •
apparent(sv) = {σ : dom(sv) → X | (∀ v : dom(sv) • σ(v) ∈ sv(v))}

We have two properties that relate apparent and values.

Theorem 1 For all values views, sv,

sv = values(apparent(sv)) (1)

and for all sets of states, ss,

ss ⊆ apparent(values(ss)) (2)

For example,

ss = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 0}, {x 7→ 1, y 7→ 1}}

sv = values(ss)

= {x 7→ {0, 1}, y 7→ {0, 1}}

apparent(sv) = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1},

{x 7→ 0, y 7→ 1}, {x 7→ 1, y 7→ 0}}

⊃ ss

values(apparent(sv)) = {x 7→ {0, 1}, y 7→ {0, 1}}

= sv

Hence a set of states has potentially finer information than the corresponding values

view.

4.4 Behaviour with state

Each time band has associated with it a set of variables that are observable in that

band. Within a behaviour, ev val(e), returns the values view (over the observables

of its band) that coincides with event e. For a discrete state variable, there is often a

unique value, but if the event occurs close in time to a change of state then multiple

values are possible to reflect our lack of knowledge of the actual value. For example,

if an event is simultaneous with an hour band clock clk striking 12 then ev val will

return {clk 7→ {11, 12}}. If the value of a continuous state variable is changing at the

time of the event, then there is a range of values of the variable.

The set of values views over an interval between (but not including) two events,

e1 and e2, in the same time band is given by interval val(e1, e2). Behaviours are

extended with state.
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BehaviourState

BehaviourPrecision

observables : B → P V

ev val : E 7→ VState[V, X]
interval val : E × E 7→ VStateSet[V, X]

dom(ev val) = ev

dom(interval val) = {e1, e2 : ev | band(e1) = band(e2)}
∀ e : ev • dom(ev val(e)) = observables(band(e))
∀ e1, e2 : ev • (e1, e2) ∈ dom(interval val) ⇒

(∀σ : interval val(e1, e2) • dom(σ) = observables(band(e1)))
∀ e1, e2, e3 : ev • e1 ≺ e2 ≺ e3 ⇒ ev val(e2) ∈ interval val(e1, e3)
∀ e1, e2 : ev • e1 ¹ e2 ⇒ interval val(e2, e1) = {}
∀ e1, e2, e3, e4 : ev • e1 ¹ e2 ¹ e3 ¹ e4 ⇒

interval val(e2, e3) ⊆ interval val(e1, e4)
∀ e1, e2 : ev • e1 ≺ e2 ⇒

(∀ e : {e1, e2} •
(∃σ : interval val(e1, e2) •

(∀ v : dom(σ) • ev val(e)(v) ∩ σ(v) 6= {})))

The values view associated with any event occurring within an interval must be in the

values views of the interval. If two events e2 and e3 are surrounded by events e1 and

e4, the values views of the interval between e2 and e3 must be contained in those of

the interval between e1 and e4. For a nonempty interval the states corresponding to

the end-point events “overlap” in values with some state within the interval.

The set of values views over an activity, a, is given by act val(a), which includes

all the states between the start and end events of the activity, including at the start and

end events.

BehaviourStateActivities

BehaviourState

act val : A 7→ VStateSet[V, X]

dom(act val) = act

∀ a : act •
(∀σ : act val(a) • dom(σ) = observables(band(a))) ∧
(∀ e1, e2 : events of (a) •

ev val(e1) ∈ act val(a) ∧
interval val(e1, e2) ⊆ act val(a))

4.5 Change of state events

For discrete state, changes in value can be modeled by events. We can represent a

change of state event in which variable v takes on the new value x, by the syntax

(v := x) for this class of event. A variable, v is constant between state change events

for v.
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BehaviourStateChange

BehaviourStateActivities

∀ e1 : ev; v : V; x : X • e1.class = (v := x) ⇒
x ∈ ev val(e1)(v) ∧
(∀ e2 : ev • e1 ≺ e2 ∧

¬ (∃ e : ev; y : X • e1 ≺ e ≺ e2 ∧ e.class = (v := y)) ⇒
(∀σ : interval val(e1, e2) • σ(v) = {x}))

4.6 Mapping states

If an event e is mapped to an activity a in a lower band, then the values view at the

event in the higher band corresponds to the union of the state values for the activity

in the lower band.

BehaviourStateMapping

BehaviourStateChange

∀ e : ev; a : act • e Ã a ⇒
(∀ v : observables(band(e)) ∩ observables(band(a)) •

ev val(e)(v) = {x : X | (∃ sv : act val(a) • x ∈ sv(v))})

4.7 Accuracy and rates of change

As discussed above, within a single band a numeric-valued variable may have an

accuracy and a maximum rate of change. Its accuracy is the maximum amount it

can change over a period of size the precision of the band, and its maximum rate of

change is the maximum amount it can change over a period of size the granularity of

the band.

Within a particular time band, the rate of change of a state variable can be viewed

as the change in its value over a time unit within the band. We’ll illustrate this by

discussing the maximum rate of change of a state variable, v.

– Within a given time band the maximum rate of change of v may be r, i.e., v can

change by at most r over one time unit in that band.

– For a lower time band to be consistent with the upper band, the sum of the changes

over a sequence of time units within the lower time band, with length correspond-

ing to the granularity of the upper band with respect to the lower band, must be at

most r.
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BehaviourRates

BehaviourStateMapping

accuracy : B → (V 7→ R)
rate : B → (V 7→ R)

∀ b : B • let vars == dom(accuracy(b)) •
vars = dom(rate(b)) ∧ vars ⊆ observables(b) ∧
(∀ e : ev; v : vars • band(e) = b ⇒

(∀ x, y : ev val(e)(v) • abs(x − y) ≤ accuracy(b)(v))) ∧
(∀ e1, e2 : ev; v : vars • e1 ≺ e2 ∧ band(e1) = b ∧ band(e2) = b ⇒

(∀σ1, σ2 : interval val(e1, e2) • (∀ x : σ1(v); y : σ2(v) •
abs(x − y) ≤ rate(b)(v) ∗ max(duration(e1, e2)))))

∀ e : ev; a : act • e Ã a ⇒
(∀ v : dom(accuracy(band(e))) ∩ dom(rate(band(a))) •

rate(band(a))(v) ∗ max(act duration(a)) ≤ accuracy(band(e))(v))

Satisfying the consistency condition has a special case if we consider the state vari-

able to be uniform between two levels, or uniform for short. If the granularity of the

upper time band with respect to the lower time band is n, then for a uniform state

variable the maximum rate of change in the lower time band will be at most r/n. At

a still lower time band with granularity m with respect to the above lower band (and

hence granularity m ∗ n with respect to the upper time band) the maximum rate of

change in this still lower time band will be at most r/(m ∗ n). With a uniform state

variable, as the size of the time unit of the band approaches zero the rate of change

approaches the derivative of the state variable with respect to time.

5 Summary

Rather than have a single notion of time, the proposed framework allows a number of

distinct time bands to be used in the specification or description of a system. System

behaviours are always relative to (defined within) a band.

The above discussion has defined the timeband framework and introduced a num-

ber of key notions that are central to the framework. Here we summarize these ideas:

– band – a subset of system behaviours (discrete and continuous) with similar tem-

poral properties;

– system – a partially ordered set of bands;

– separation – the property of being able to assume that activities in lower (quicker)

bands are instantaneous and the state of higher (slower) bands is unchanging;

– granularity – the unit of time defined by a band;

– precision – the constraint on instantaneous behaviour within a band;

– event – an instantaneous action within a band;

– activity – an action with duration within a band;

– duration – a time interval between events;

– clock – an abstract band-specific clock that produces ticks (events) at the granu-

larity of the band;
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– precedence – one event happening after another event;

– simultaneous – two events occurring at the same instant;

– immediate – a precedence relation between two simultaneous events;

– mapping – a link between an event in one band to an activity in a lower band;

– state – the observations available within a time band;

– set of values view – the observations over the period of an event;

– change-of-state events – for discrete observations;

– accuracy – maximum “instantaneous” change in a continuous variable;

– rate-of-change – maximum rate of change of a continuous variable over a unit of

time.

6 Towards a Language for Timebands

Having presented a model for the timeband framework it is then necessary to define

a language that can be used to specify system requirements and behaviour. Such

a language is derived from the abstract model. In this paper we do not attempt to

provide a single, or even a complete, timeband language. Rather we illustrate features

that such a language could usefully contain. These are used in a short example of the

use of time bands in the Section 7.

6.1 Predicates

We represent a predicate over a state space, Σ, via the subset of states in Σ that satisfy

the predicate.

Definition 1 (Predicate) For a state space Σ, a predicate is represented by a set of

states.

Pred[Σ] == P Σ

We use the conventional notations, “∧”, “∨”, and “¬ ” instead of intersection, union,

and complement of sets (with respect to the state space Σ), respectively, when deal-

ing with predicates. As usual, the unary operators have higher precedence than the

binary operators. Point-wise implication, denoted p ⇒ q, is defined as ¬ p ∨ q, and

point-wise equivalence is denoted by p ⇔ q. Universal implication, denoted p ⇛ q,

is defined as (∀σ • σ ∈ p ⇒ σ ∈ q), or more succinctly as p ⊆ q. Universal

equivalence is denoted p ≡ q.

6.2 Predicates on sets of states

Given a state predicate, p, there are two obvious ways to promote it to a set of states

(as in modal logics [28]). If p holds for all states in the set, we write ¤* p, and if p

holds for some state in the set, we write ⊡ p.
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Definition 2 (All states and some states)

[Σ]
¤* : Pred[Σ] → Pred[P

1
Σ]

⊡ : Pred[Σ] → Pred[P
1
Σ]

∀ p : Pred[Σ]; ss : P
1
Σ •

(ss ∈ (¤* p) ⇔ (∀σ : ss • σ ∈ p)) ∧
(ss ∈ (⊡ p) ⇔ (∃σ : ss • σ ∈ p))

We promote the boolean operators to predicates on sets of states in the obvious way

(because they are defined as predicates, but over sets of states rather than states). We

have the following properties of “all states” and “some state” when combined with

logical operators.

¬ ¤* p ≡ ⊡(¬ p) (3)

¤* p ⇛ ⊡ p (4)

¤* p ∧ ¤* q ≡ ¤* (p ∧ q) (5)

⊡ p ∨ ⊡ q ≡ ⊡(p ∨ q) (6)

¤* p ∨ ¤* q ⇛ ¤* (p ∨ q) (7)

⊡(p ∧ q) ⇛ ⊡ p ∧ ⊡ q (8)

Note that property (4) is valid because the sets of states must be non-empty.

Theorem 2 Given state predicates p and q,

(⊡ p ⇒ ¤* q) ⇛ (¤* (p ⇒ q)) (9)

Proof.

⊡ p ⇒ ¤* q

≡ by the definition of implication

¬ ⊡ p ∨ ¤* q

≡ by (3)

¤* ¬ p ∨ ¤* q

⇛ by (7)

¤* (¬ p ∨ q)
≡ by the definition of implication

¤* (p ⇒ q)

✷
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6.3 Predicates on values views

We refer to a predicate on a values view of the state as a values predicate.

Definition 3 (Values predicate)

VPred[V, X] == Pred[VState[V, X]]

We promote a predicate, p, on a single state, to a predicate on a values view in two

ways. If p holds for all apparent states (see Section 4.3) derivable from the values

view, sv, we say p definitely holds for sv, written sv ∈ ⊛ p, and if p holds for at least

one apparent state derivable from sv, we say p possibly holds for sv, written sv ∈ ⊙ p.

Definition 4 (Definitely and possibly)

[V, X]
⊛ : Pred[State[V, X]] → VPred[V, X]
⊙ : Pred[State[V, X]] → VPred[V, X]

∀ p : Pred[State[V, X]]; sv : VState[V, X] •
(sv ∈ (⊛ p) ⇔ (∀σ : apparent(sv) • σ ∈ p)) ∧
(sv ∈ (⊙ p) ⇔ (∃σ : apparent(sv) • σ ∈ p))

We promote the boolean operators to values predicates in the obvious way because

values predicates are predicates, but over values views rather than states.

In the example considered in Section 7, if the methane in a coal mine shaft is ever

over a critical level, then to avoid causing an explosion, the pump extracting water

from the mine must be off. We can formalise this property by the following values

predicate.

⊙(methane ≥ Critical) ⇒ ⊛(pump = Off )

If the methane is possibly critical at some instant (i.e., the values view includes an

apparent state in which the methane is critical), then the pump is definitely off (i.e., it

is off for all apparent states).

From Definitions 2 and 4, the “definitely” and “possibly” operators are related to

“all states” and “some state” as follows for all values views, sv.

sv ∈ ⊛ p ⇔ apparent(sv) ∈ ¤* p (10)

sv ∈ ⊙ p ⇔ apparent(sv) ∈ ⊡ p (11)

Hence, we have the following properties directly derivable from the properties of

predicates on sets of states (3)–(8).

¬ ⊛ p ≡ ⊙(¬ p) (12)

⊛ p ⇛ ⊙ p (13)

⊛ p ∧ ⊛ q ≡ ⊛(p ∧ q) (14)

⊙ p ∨ ⊙ q ≡ ⊙(p ∨ q) (15)

⊛ p ∨ ⊛ q ⇛ ⊛(p ∨ q) (16)

⊙(p ∧ q) ⇛ ⊙ p ∧ ⊙ q (17)
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There are two interesting properties of definitely (⊛) and possibly (⊙) that don’t

hold for “all states” (¤* ) and “some states” (⊡).

Theorem 3 If the free variables occurring in the predicates p and q are disjoint, then

⊙ p ∧ ⊙ q ≡ ⊙(p ∧ q) (18)

⊛(p ∨ q) ≡ ⊛ p ∨ ⊛ q (19)

If the set of free variables occurring in the predicate p is w, and σ1 and σ2 are two

states that agree on all the variables in w, (i.e., w ⊳ σ1 = w ⊳ σ2, where w ⊳ σ is the

state σ restricted to just those variables in the set w), then σ1 ∈ p ⇔ σ2 ∈ p.

Proof. We focus on property (18) because (19) can be derived from it using ⊛ p =
¬ ⊙¬ p. The reverse implication is property (17) above. In the forward direction,

if we assume sv ∈ ⊙ p and sv ∈ ⊙ q, then (∃σ : apparent(sv) • σ ∈ p) and (∃σ :
apparent(sv) • σ ∈ q). Hence let σ1 ∈ p∩ apparent(sv), and σ2 ∈ q∩ apparent(sv).
If w is the set of free variables occurring in p, we let σ = (w ⊳σ1)∪ (w−⊳σ2), where

w ⊳σ is the state σ restricted to just the variables in w and w−⊳σ is σ restricted to the

variables not in w. Because p depends only on variables in w and w ⊳ σ = w ⊳ σ1, it

follows that σ ∈ p. Similarly, because q only depends on variables not in w, σ ∈ q.

Finally, because both σ1 and σ2 are in apparent(sv), σ ∈ apparent(sv). Hence (∃σ :
apparent(sv) • σ ∈ p ∧ q), i.e., sv ∈ ⊙(p ∧ q). ✷

Note that (18) holds for ⊙ but not ⊡. For example, if

ss = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 0}, {x 7→ 1, y 7→ 1}}

we have ss ∈ ⊡(x = 0) ∧ ⊡(y = 1) but not ss ∈ ⊡(x = 0 ∧ y = 1).

Using Theorem 3 we can show the following theorem.

Theorem 4 Provided the free variables of p and q are disjoint,

⊛(p ⇒ q) ≡ (⊙ p ⇒ ⊛ q)

Proof.

⊛(p ⇒ q)
≡ ⊛(¬ p ∨ q)
≡ Theorem 3; free variables in the two disjuncts are disjoint

⊛(¬ p) ∨ ⊛ q

≡ ¬ ⊙ p ∨ ⊛ q

≡ ⊙ p ⇒ ⊛ q

✷
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6.4 On the relationship between reality and observation

For each event there is an interval over which the event occurs and a set of actual

states, ss, over that interval. The corresponding values view is values(ss). From prop-

erty (2), i.e., ss ⊆ apparent(values(ss)), if we want to show a property, p, holds for

all actual states in ss, it is sufficient to show the stronger property that p holds for all

states in apparent(values(ss)), i.e., ⊛ p holds for values(ss). Similarly, if we know a

property p holds for some actual state in ss, we can deduce ⊙ p for values(ss). These

relationships are captured by the following theorem.

Theorem 5 For any set of actual states, ss,

values(ss) ∈ ⊛ p ⇒ ss ∈ ¤* p (20)

ss ∈ ⊡ p ⇒ values(ss) ∈ ⊙ p (21)

Consider the simple case in which we are only dealing with one free variable, x,

in a predicate, e.g., the predicate is of the form ⊛(x ∈ S) or ⊙(x ∈ S), where S is

constant over the observation interval, then ⊛(x ∈ S) in the values view is equivalent

to ¤* (x ∈ S) in reality, and ⊙(x ∈ S) in the values view is equivalent to ⊡(x ∈ S)
in reality. Special cases of these predicates are comparisons of a variable with an

expression, C, that is constant over the observation interval, e.g., x = C or x < C.

If one samples a variable, x, in the environment, and gets the value C, one can

deduce ⊡(x = C), which is equivalent to ⊙(x = C). Similarly, by sampling y we may

deduce ⊡(y = D), which is equivalent to ⊙(y = D). By Theorem 3 these samples

allow one to deduce ⊙(x = C ∧ y = D) but not the stronger condition ⊡(x =
C ∧ y = D). This formalises the property that sampling two boolean variables, top

and bottom, introduced in Section 2. Getting two sample values, e.g., true and true,

does not allow one to deduce that the two variables simultaneously have those values

(i.e., we can’t deduce ⊡(top ∧ bottom)), but we can deduce the weaker property

⊙(top ∧ bottom). That is

ss ∈ ⊡(top ∧ bottom) ⇒ values(ss) ∈ ⊙(top ∧ bottom)

but not the other way around, in general. Note that ⊙(top ∧ bottom) ≡ ⊙ top ∧
⊙ bottom, but we only have ⊡(top ∧ bottom) ⇛ ⊡ top ∧ ⊡ bottom, in general.

6.5 Application to state model

In this section we develop some notation for using values predicates with the values

view model. Given a behaviour and an event e, ev val(e) gives the values view corre-

sponding to event e. For a values predicate, p, we introduce the notation p @ e to state

that p holds for the values view corresponding to e, i.e.,

p @ e ⇔ ev val(e) ∈ p

For events e1 and e2, interval val(e1, e2) gives the set of values views occurring

(strictly) between the two events. We introduce the notation p during (e1, e2) to
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stand for p holding for all values views between e1 and e2, and p within (e1, e2) to

state that p holds for some values view between e1 and e2, i.e.,

p during (e1, e2) ⇔ interval val(e1, e2) ∈ ¤* p

p within (e1, e2) ⇔ interval val(e1, e2) ∈ ⊡ p

We also overload these operators so that we can use an activity instead of a pair of

events, e.g., p during a, with the understanding that the pair of events are the start

and end of the activity, e.g., p during (↑ a, ↓ a).
The properties of behaviours on state allow one to deduce properties expressed

in terms of these relations. For example, if a property definitely holds at an end point

event of a nonempty closed interval then, because the state of the end point “overlaps”

with those in the interval, we get the following property for all pairs of events e1 and

e2 where e1 precedes e2,

(⊛ p) @ e1 ⇒ (⊙ p) within (e1, e2) (22)

For example, if ⊛(m ≥ C) @ e1 holds, i.e., for all values of m in the values view

corresponding to e1 we have m ≥ C holding, then because the end of event e1 corre-

sponds to the start of the interval between e1 and e2, we have that m ≥ C at the very

start of the interval, but note that we don’t have any guarantee that m stays above C

for any given period—not even the precision of the band—during the interval, and

hence we can only deduce ⊙(m ≥ C) holds within the interval.

We introduce two further shorthand forms to state that a values predicate holds

just before and after an event, respectively.

p before e ⇔ (∃ e′ : ev • e′ ¹ e ∧ p during (e′, e))
p after e ⇔ (∃ e′ : ev • e ¹ e′ ∧ p during (e, e′))

We assume all these relations have higher precedence than logical operators, but

lower precedence than the other operators.

From the properties for predicates on sets of states we can deduce properties for

during and within, e.g., the following property.

(p within (e1, e2)) ⇒ (q during (e1, e2)) ⇛

(p ⇒ q) during (e1, e2)
(23)

This holds because

(p within (e1, e2)) ⇒ (q during (e1, e2))
≡ letting ssv = interval val(e1, e2)

ssv ∈ ⊡ p ⇒ ssv ∈ ¤* q

≡
ssv ∈ (⊡ p ⇒ ¤* q)

⇛ by Theorem 2

ssv ∈ ¤* (p ⇒ q)
≡

(p ⇒ q) during (e1, e2)
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7 Example: Mine pump

The mine pump case study has been used by a number of formal frameworks to in-

vestigate and illustrate different specification approaches (see [9,35,32] for a number

of examples). In its briefest form, the case study involves two subsystems: a methane

monitoring subsystem that sounds an alarm if the sensed level of methane is above

a threshold, and a pump control subsystem that pumps water from the mine sump

if the water level reaches a High water level sensor (the pump then operates until a

Low water level sensor is reached). The two subsystems are coupled by the safety

requirement not to operate the pump if the methane is high (due to risk of gas ex-

plosion). There is also a performance requirement that limits the number of days lost

due to flooding to be two or less. In the following partial treatment we concentrate on

the methane control subsystem.

We specify the mine pump in terms of rely and guarantee conditions [31], which

are similar to preconditions and postconditions, except that rely and guarantee condi-

tions are specified over the interval during which the system is running, rather than in

terms of the before and after states for pre-/post-conditions. A guarantee condition is

a condition that the system should maintain over its operating interval, provided the

rely conditions hold for that interval.

Mine pump guarantee. A pump is used to extract water from a mine shaft. However,

if there is a critical level of methane in the mine shaft, an explosion could result if the

mine pump is operated. Hence, one requirement is that at all times while the system

is running, it should guarantee that the pump is off at any time the methane level is

critical.8 This is represented by the following predicate which must hold for all states

of the system while it is operating.

¤* (methane ≥ Critical ⇒ pump = Off ) (24)

For a guarantee about a system’s behaviour, by (20), if one can show the system

guarantees ⊛ p holds for the sampled view of the state, then ¤* p holds for the corre-

sponding real states. Hence, (24) holds provided the following values predicate holds

while the system is operating,

⊛(methane ≥ Critical ⇒ pump = Off ) during Operation (25)

where Operation stands for the activity representing the period the system is oper-

ating. The “during” operator is interpreted with respect to a particular time band (in

particular, its precision ρ). Interestingly, from the point of view of this guarantee, all

we require is that there is some time band in which this is satisfied (and this can be de-

termined by the implementation). If we added a requirement ensuring that the pump

is on whenever the methane level is safe (i.e., it is below critical by some bound),

then this would constrain the choice of implementation time band by limiting the size

of its precision.

From Theorem 4 we have that (25) is equivalent to the following.

(⊙(methane ≥ Critical) ⇒ ⊛(pump = Off )) during Operation (26)

8 In a more detailed analysis, one may want to distinguish between the pump being turned off and it

actually having come to a stop.
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Mine pump rely. In order to implement the requirement, one may rely on a number

of properties of the environment. We’ll assume that the implementation will be oper-

ating within a particular time band, but the properties we rely on can be adapted to a

range of possible choices of time bands. Assume the accuracy of the methane level

within the band is Acc meth. This represents the maximum amount the methane level

can vary over a period of size the precision of the time band. Hence for any trace of

the system and any value Z

(⊙(methane = Z) ⇒ ⊛(methane ∈ Z ± Acc meth)) during Operation (27)

where x ± acc is the set of values {v | x − acc ≤ v ≤ x + acc}. Note that this trace

predicate is implicitly using the precision, ρ, of the time band to split up the interval

into subintervals of size no more than ρ, and the predicate has to hold on each of

these. From (27) one can deduce

(⊙(methane ≥ Z) ⇒ ⊛(methane ≥ Z − Acc meth)) during Operation (28)

Note that this accuracy is only concerned with the timing precision of the band. We

should separately consider the accuracy of the methane sampling sensor itself, but for

the purposes of this example we assume there is no sampling error.

Assume the maximum rate of change of methane level in the band is Rate meth.

This represents the maximum change in the methane over a period of size the granu-

larity of the time band. For an interval of duration n, the level of methane can change

by at most n times Rate meth over that interval. Hence, for some value, Z, if the

methane is ever at least Z + n ∗ Rate meth within the interval, then it must have been

at least Z at the start of the interval. For all pairs of events e1 and e2 within a behaviour

such that max(duration(e1, e2)) ≤ n, and for any value Z,

(⊙(methane ≥ Z + n ∗ Rate meth) within (e1, e2)) ⇒
(⊙(methane ≥ Z) @ e1)

(29)

Mine pump implementation. The implementation samples the methane level at regu-

lar intervals. The ith sampling event is denoted by s # i. It is assumed that the pump

is off from the start of operation until the first sample.

⊛(pump = Off ) during (↑Operation, s # 0) (30)

We require that the maximum time between samples is n time units in the granularity

of the implementation band, i.e., max(duration(s # i, s # i + 1)) ≤ n. A sample

event, s # i, corresponds to an activity at a lower time band, which takes place within

the precision of the upper time band; the activity contains events to set up analog-

to-digital converters to read the methane and water levels, wait until the conversions

are complete and read the levels, and turn the pump off if the methane is above a

threshold value. In addition, if the methane is below the threshold it turns the pump

on or off depending upon the current water level. Here we focus on the properties

we need of the sampling events, rather than giving an actual implementation. It is a

separate (more straightforward) problem to show an implementation of the sampling

events has these properties.
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If the methane is definitely above the threshold for sample i, the pump must be

off from immediately after the sample until the start of the next sample:

(⊛(methane ≥ Threshold) @ s # i) ⇒
(⊛(pump = Off ) during (s # i, s # i + 1))

(31)

If the pump was already off before sample i then at sample i, if the methane is

definitely at least the threshold, the pump remains off for the sample.

(⊛(pump = Off ) before s # i) ∧ (⊛(methane ≥ Threshold) @ s # i)
⇒ (⊛(pump = Off ) @ s # i)

(32)

To allow for the maximum rate of change of the methane level (Rate meth) between

the sampling events (which are at most n time units apart) and the inaccuracies of

the sampling events (Acc meth) at each end of the interval, we require the following

constraint between Critical and Threshold.

Critical ≥ Threshold + n ∗ Rate meth + 2 ∗ Acc meth (33)

Theorem 6 An implementation that satisfies properties (30), (31), (32), and (33) ful-

fils the guarantee (26) provided the rely conditions (27) and (29) hold.

Proof. We assume the rely conditions and the conditions specified for the implemen-

tation and show that the guarantee condition (26) holds over the operating interval,

by showing it holds before the first sample, at every sampling event, and for every

interval between one sample and the next. That the guarantee holds before the first

sample event follows directly from (30). For the rest we have to show that for all

natural numbers i

(⊙(methane ≥ Critical) ⇒ ⊛(pump = Off )) @ s # i (34)

(⊙(methane ≥ Critical) ⇒ ⊛(pump = Off )) during (s # i, s # i + 1) (35)

First we show

⊙(methane ≥ Critical − Acc meth) within (s # i, s # i + 1) ⇛

⊛(pump = Off ) during (s # i, s # i + 1)
(36)

as follows

⊙(methane ≥ Critical − Acc meth) within (s # i, s # i + 1)
⇛ from the constraint on the threshold (33)

⊙(methane ≥ Threshold + n ∗ Rate meth + Acc meth) within (s # i, s # i + 1)
⇛ from the maximum rate-of-change of methane (29)

⊙(methane ≥ Threshold + Acc meth) @ s # i

⇛ from methane accuracy (28)

⊛(methane ≥ Threshold) @ s # i

⇛ as the pump is turned off if methane is high (31)

⊛(pump = Off ) during (s # i, s # i + 1)
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To show (34) we first consider the case for sampling events other than sample zero.

⊙(methane ≥ Critical) @ s # i + 1
⇛ from methane accuracy (28)

⊛(methane ≥ Critical − Acc meth) @ s # i + 1
⇛ by (22)

⊙(methane ≥ Critical − Acc meth) within (s # i, s # i + 1)
⇛ from (36)

⊛(pump = Off ) during (s # i, s # i + 1)
⇛ by the definition of before

⊛(pump = Off ) before s # i + 1
⇛ by (32) and Critical − Acc meth ≥ Threshold

⊛(pump = Off ) @ s # i + 1

For sample zero we have ⊛(pump = Off ) before s # 0 from (30), and hence it is

sufficient to apply the equivalent of the last step of the above proof.

To show (35), we first note that, using (23), it is implied by

⊙(methane ≥ Critical) within (s # i, s # i + 1) ⇛

⊛(pump = Off ) during (s # i, s # i + 1)

which we show as follows.

⊙(methane ≥ Critical) within (s # i, s # i + 1)
⇛ from methane accuracy (28)

⊛(methane ≥ Critical − Acc meth) within (s # i, s # i + 1)
⇛ as ⊛ p ⇒ ⊙ p

⊙(methane ≥ Critical − Acc meth) within (s # i, s # i + 1)
⇛ using (36)

⊛(pump = Off ) during (s # i, s # i + 1)

✷

The above reasoning has been generic with respect to the choice of time band,

in particular, the precision and granularity of the time band and the choice of the

sampling interval n. From (33) we have

Critical − Threshold ≥ n ∗ Rate meth + 2 ∗ Acc meth.

The larger the gap between Critical and Threshold the less time the pump will be ac-

tive when it is safe to be active. The predominant factor is the choice of the sampling

interval, here represented by n times the granularity of the band. If we add a further

requirement that the pump should be active whenever the methane level is below a

level of Safe, then this will put an upper bound on n ∗ Rate meth + 2 ∗ Acc meth.

This mine pump example does not need time bands in order to specify its be-

haviour. But the brief outline here does have a much simpler form than other de-

scriptions. This clarity comes from being able to initially specify all behaviours as

instantaneous events and all actions as immediate. This very real-time system did not

need time in its initial specification, but it does allow time to play its full role in more

detailed levels of description.
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8 Related and Future Work

The concept of time granularity has been previously discussed in the literature [26,

15] and many projects have focused on time granularity within different areas of

computer science, such as temporal databases, data mining, formal specification, etc.

Generally, the basic idea of time granularity is to partition a universal time domain

into differently-grained granules, and that a granularity is a set of indexed granules,

any one of which is a set of time instants.

So far, most of this work have focused on embedding time granularity in tem-

poral logic languages. For example, early exploration [18,36] consists of translation

mechanisms that map a formula associated with different time constraints to the finest

granularity. They later [17,13,14] revise the simple approach by extending the basic

logic language with contextual and projection operators, so that the enhanced se-

mantics can express more general and complete properties. Additional work [16,20]

aimed at reasoning about time granularity is also proposed.

Interval temporal logic (ITL) was originally designed for reasoning about hard-

ware circuits [24,37]. When modelling hardware, it is natural to look at a circuit’s

behaviour at different granularities of time. For example, the units of time might

correspond to regularly spaced clock ticks or to nanoseconds. ITL has a temporal

projection operator to denote the process of mapping from one level of time to an-

other: w1 proj w2, where w1 and w2 both denote ITL formulas. This operator has been

implemented in the Tempura programming language [38].

Bettini introduces a glossary of time granularity concepts [4]. Their work is not

committed to a particular model of time, which could be discrete (such as the natural

numbers), dense (such as the rationals), or continuous (such as the reals). The time

domain is discretised into countable granules of time, and an interpretation function

relates the index of each granule to an interval in the time domain.

Broy [6] takes a highly abstract view of real-time interactive systems, where the

system is described by a set of timed events that represent possible observations.

This set is represented by a function time : E → TIME, that maps each event to

the time of its occurrence. Broy considers time transformers to change the timing

of systems. Suppose that trans : TIME → TIME, then it can be used to transform

the system using function composition: time′ = trans ◦ time. As a result of a time

transformation, the new timing may be coarser. Two events e1 and e2, with the tim-

ing property time(e1) < time(e2) may become simultaneous events under time′: we

may get time′(e1) = time′(e2). Broy goes on to introduce a pair of complementary

functions COA(n) and FINE(n), which make a system’s timing coarser or finer by

a factor of n. These functions permit the scaling of a timed system by any rational

amount.

Furia et al [23] is their extensive survey of how time is represented in models

of computing, note that in most systems “the dynamics of the components range

over widely different time scales and time granularities (in particular, continuous

and discrete components) are integrated.” Nevertheless they note that few languages

approach the granularity problem in a formal way.

All of this work, however, focuses only on incorporating different time scales,

rather than the more expressive idea of bands as defined in this paper. Although they
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address granularity they do not consider precision and the other properties summa-

rized in Section 5.

The representation, within the timeband model, of repetitive events and activities

(e.g. E # i) is taken from the notion of occurrences in RTL [30]. The property that a

set of events can be ordered but occur at the same time instance has some resonance

with the notion of super-dense chop [11] in Duration Calculus [12].

Current and future work with the timeband framework is focused on the appli-

cation of the ideas to industrial case studies – including system of systems. These

studies are addressing the issues of extracting the right bands for a particular appli-

cation, and the assignment of events and activities to these bands. Initial work [50]

has indicated the value of first assigning events, as they are more abstract, and then

considering activities as a refinement of these events.

Work has also involved9 modelling timebands with a hierarchy of descriptions.

The top-level description uses CircusTime [46], a compact time-based notation that

is an extension of the Circus notation [51]. Reasoning at this level is done using an

interactive theorem prover [42,43]. CircusTime is a powerful language, with sup-

port for imperative programming with concurrency operators similar to those found

in CSP. It is also possible to write abstract specifications to specify all or part of a

process, and a notion of refinement connects abstract specifications with their imple-

mentations [10].

Concrete descriptions in CircusTime can be translated into CSP_M, the language

for the FDR theorem prover. CSP_M has no built-in notion of time, so CircusTime de-

scriptions can be refined into an untimed description that uses a number of timers. The

untimed description can then be analysed using the FDR refinement model-checker

and the ProB animator. This translation uses the framework in [46] and the transla-

tion worked out in [21]. The CSP_M descriptions are then implemented in Java using

JCSP [49], which is a pure Java class library providing a base range of CSP primi-

tives plus a rich set of extensions. It also includes a package providing CSP process

wrappers giving a channel interface to all Java AWT widgets and graphics operations.

9 Conclusion

In this paper we have argued that complex real-time systems exhibit behaviour at

many different time levels and that a useful aid in describing and specifying such be-

haviour is to use time bands. Viewing a system as a collection of event and activities

within a finite set of bands is an effective means of separating concerns and iden-

tifying inconsistencies between different ‘layers’ of the system. Time bands are not

mapped on to a single notion of physical time. Within a system, there will always be

a relationship between bands, but the bands need not be tightly synchronised. There

is always some level of imprecision between any two adjacent bands.

The use of the timeband framework is intended to help develop a comprehensive

foundation to the study and development of future systems. Of course an adequately

expressive model of time is just one element of such a foundation, but it is perhaps

the most important to define if dependable systems are to be engineered.

9 Within the Indeed project – http://www.indeedproject.ac.uk/.
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A Notation

A partial order “¹” on some set X is reflexive, transitive, and anti-symmetric.
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[X]

partial order : P(X ↔ X)

partial order = { ¹ : X ↔ X | ∀ x1, x2, x3 : X •

x1 ¹ x1 ∧

(x1 ¹ x2 ∧ x2 ¹ x3 ⇒ x1 ¹ x3) ∧

(x1 ¹ x2 ∧ x2 ¹ x1 ⇒ x1 = x2)}

[X]

symmetric rel : P(X ↔ X)

symmetric rel = { ≃ : X ↔ X | (∀ e, f : X •

e ≃ e ∧ (e ≃ f ⇔ f ≃ e))}


