
Globally Scheduled Real-Time
Multiprocessor Systems with GPUs∗

Glenn A. Elliott and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Graphics processing units, GPUs, are powerful pro-
cessors that can offer significant performance advantages
over traditional CPUs. The last decade has seen rapid
advancement in GPU computational power and general-
ity. Recent technologies make it possible to use GPUs
as co-processors to the CPU. The performance advan-
tages of GPUs can be great, often outperforming tradi-
tional CPUs by orders of magnitude. While the motiva-
tions for developing systems with GPUs are clear, little
research in the real-time systems field has been done to in-
tegrate GPUs into real-time multiprocessor systems. We
present two real-time analysis methods, addressing real-
world platform constraints, for such an integration into
a soft real-time multiprocessor system and show that a
GPU can be exploited to achieve greater levels of total
system performance.

1 Introduction

The computer hardware industry experienced a rapid
growth in the graphics hardware market during this past
decade, with fierce competition driving feature develop-
ment and increased hardware performance. One impor-
tant advancement during this time was the programmable
graphics pipeline. Such pipelines allow program code,
which is executed on graphics hardware, to interpret and
render graphics data. Soon after its release, the general-
ity of the programmable pipeline was quickly adapted to
solve non-graphics-related problems. However, in early
approaches, computations had to be transformed into
graphics-like problems that a graphics processing unit
(GPU) could understand. Recognizing the advantages of
general purpose computing on a GPU, language exten-
sions and runtime environments were released by major

∗Work supported by AT&T and IBM Corps.; NSF grants CNS
0834270 and CNS 0834132; ARO grant W911NF-09-1-0535; and
AFOSR grant FA 9550-09-1-0549.

graphics hardware vendors and software producers to al-
low general purpose programs to be run on graphics hard-
ware without transformation to graphics-like problems.1

Today, GPUs can be used to efficiently handle data-
parallel compute-intensive problems and have been uti-
lized in applications such as cryptology [19], supercom-
puting [3], finance [8], ray-tracing [10], medical imag-
ing [25], video processing [23], and many others.

There are strong motivations for utilizing GPUs in real-
time systems. Most importantly, their use can signif-
icantly increase computational performance. A review
of published research shows that performance increases
commonly range from 4x to 20x [4], though increases of
up to 1000x are possible in some problem domains [9].
Tasks accelerated by GPUs may execute at higher fre-
quencies or perform more computation per unit time, pos-
sibly improving system responsiveness or accuracy.

GPUs can also carry out computations at a fraction
of the power needed by traditional CPUs. This is an
ideal feature for embedded and cyber-physical systems.
Further power efficiency improvements can be expected
as processor manufacturers move to integrate GPUs in
on-chip designs [1]. On-chip designs may also signify a
fundamental architectural shift in commodity processors.
Like the shift to multicore, it appears that the availability
of a GPU may soon be as common as multicore is today.
This further motivates us to investigate the use of GPUs
in real-time systems.

A GPU that is used for computation is an additional
processor that is interfaced to the host system as an I/O
device, even in on-chip architectures. An I/O-interfaced
accelerator co-processor, like a GPU or digital signal pro-
cessor, when used in a real-time system, is unlike a non-
accelerator I/O device. In work on real-time systems, the
use of non-accelerator devices, such as disks or network
interfaces, has been researched extensively [20], with is-

1Notable platforms include the Compute Unified Device Architec-
ture (CUDA) from Nvidia [5], Stream from AMD/ATI [2], OpenCL
from Apple and the Khronos Group [7], and DirectCompute from Mi-
crosoft [6].

sues such as contention resolution and I/O response time
being the primary focus. While these are also concerns
for GPUs, the role of the device in the system is different.
A real-time system that reads a file from a disk or sends
a packet out on a network uses these devices to perform a
functional requirement of the system itself. Further, these
actions merely cause delays in execution on the CPU; the
operations themselves do not affect the actual amount of
CPU computation that must be performed. This is not the
case for a GPU co-processor as its use accelerates work
that could have been carried out by a CPU and does not
realize a new functional feature for the system. The per-
formance of a real-time system with a GPU co-processor
is dependent upon three inter-related design aspects: how
traditional device issues (such as contention) are resolved;
the extent to which the GPU is utilized; and the gains
in CPU availability achieved by offloading work onto the
GPU.

In this paper, we consider the use of GPUs in soft real-
time multiprocessor systems, where processing deadlines
may be missed but deadline tardiness must be bounded.
Our focus on soft real-time systems is partially moti-
vated by the prevalence of application domains where
soft real-time processing is adequate. Such a focus is
further motivated by fundamental limitations that neg-
atively impact hard real-time system design on multi-
processors. In the multiprocessor case, effective tim-
ing analysis tools to compute worst-case execution times
are lacking due to hardware complexities such as shared
caches. Also, in the hard real-time case, the use of non-
optimal scheduling algorithms can result in significant
utilization loss when checking schedulability, while op-
timal algorithms have high runtime overheads. In con-
trast, many global scheduling algorithms are capable of
ensuring bounded deadline tardiness in soft real-time sys-
tems with no utilization loss and with acceptable runtime
overheads. One such algorithm is the global earliest-
deadline-first (G-EDF) algorithm [17].

As G-EDF can be applied to ensure bounded tardiness
with no utilization loss in systems without a GPU, we
consider it as a candidate scheduler for GPU-enabled sys-
tems. We note however, that existing G-EDF analysis has
its limitations. Specifically, most analysis is what we call
suspension-oblivious in that it treats any self-suspension
(be it blocking to obtain a lock or waiting time to com-
plete an I/O transaction) as execution time on a CPU. This
implies that the interval of time a task suspends from a
CPU to execute on a GPU must also be charged as execu-
tion on a CPU. Under these conditions, it appears that a
GPU may be useless if work cannot be offloaded from the
CPUs. However, a GPU is an accelerator co-processor;

it can perform more work per unit time than can be done
by a CPU. Therefore, there may still be benefits to using
a GPU even if CPU execution charges must mask sus-
pensions. In this paper, we determine the usefulness of a
GPU in a soft real-time multiprocessor system by answer-
ing the following question: How much faster than a CPU
must a GPU be to overcome suspension-oblivious penal-
ties and schedule more work than a CPU-only system?

To date, little formal real-time analysis has been done
to integrate graphics hardware into real-time systems, and
this work, to our knowledge, is the first to investigate
the integration of a GPU into a soft real-time multipro-
cessor environment. The contributions of this paper are
as follows. We first profile common usage patterns for
GPUs and explore the constraints imposed by both the
graphics hardware architecture and the associated soft-
ware drivers. We then present a real-time task model that
is used to analyze the widely-available platform of a four-
CPU, single-GPU system. With this model in mind, we
propose two real-time analysis methods, which we call
the Shared Resource Method and the Container Method,
with the goal of providing predictable system behavior
while maximizing processing capabilities and address-
ing real-world platform constraints. We compare these
methods through schedulability experiments to determine
when benefits are realized from using a GPU. Addition-
ally, we present an implementation-oriented study that
was conducted to confirm the necessity of real-time con-
trols over a GPU in an actual real-time operating system
environment. The paper concludes with a discussion of
other avenues for possible real-time analysis methods and
considers other problems presented by the integration of
CPUs and GPUs.

2 Usage Patterns and Platform Constraints

It is worthwhile to first examine the usage patterns of
GPUs in general purpose applications as well as the con-
straints imposed by hardware and software architectures
before developing any real-time analysis approach. As
we shall see, these real-world characteristics cannot be
ignored in a holistic system point-of-view. We begin by
examining GPU execution environments.

The execution time of a GPU program, called a ker-
nel, varies from application to application and can be rel-
atively long. To determine likely execution-time ranges,
we profiled sample programs from Nvidia’s CUDA SDK
on a GTX-285 Nvidia graphics card. We found that n-
body simulations run on the order of 10–100µs per iter-
ation on average while problems involving large matrix
calculations (multiplication, eigenvalues, etc.) can take

Problem Type Average
Eigenvalue Computation

512x512 5.88ms
2048x2048 22.87ms
4096x4096 50.92ms

2D Convolution
512x512 1.61ms

2048x2048 58.17ms
4096x4096 141.64ms

2D Fluid Simulation
512x512 170µs

2048x2048 290µs
N-Body Simulation

1024 particles 210µs

Table 1: Observed GPU kernel execution times on a
GTX-285 Nvidia graphics card.

10–200ms on average. Table 1 contains a summary of ob-
served GPU execution times for several basic operations.

The results in Table 1 indicate that relatively long GPU
access times are common. Additionally, the I/O-based
interface to a GPU co-processor introduces several addi-
tional unique constraints that need to be considered. First,
a GPU cannot access main memory directly, thus mak-
ing the memory between the host and GPU non-coherent
between synchronization points. Memory is transferred
over the bus (PCIe) explicitly or through automated DMA
to explicitly-allocated blocks of main memory (in inte-
grated graphics solutions, the GPU uses a partitioned sec-
tion of main memory, but the architectural abstractions
remain). Second, kernel execution on a GPU is non-
preemptive: execution of the kernel must be run to com-
pletion before another kernel may begin. Third, kernels
may not execute concurrently on a GPU even if many of
the GPU’s parallel sub-processors are unused.2 Finally,
a GPU is not a system programmable device in the sense
that a general OS cannot schedule or otherwise control a
GPU. Instead, a driver in the OS manages the GPU. This
last constraint bears additional explanation.

At runtime, the host-side program sends data to the
GPU, invokes a GPU program, and then waits for results.
While this model looks much like a remote procedure
call, unlike a remote RPC-accessible system, the GPU is
unable to schedule its own workloads. Instead, the host-
side driver manages all data transfers to and from the de-
vice, triggers kernel invocations, and handles the associ-

2Nvidia’s new Fermi architecture allows limited simultaneous exe-
cution of kernels as long as these kernels are sourced from the same
host-side context/thread.

ated interrupts. Furthermore, this driver is closed-source
since the vendor is unwilling to disclose proprietary in-
formation regarding the internal operations of the GPU.
Also, driver properties may change from vendor to ven-
dor, GPU to GPU, and even from driver version to ver-
sion. Since even soft real-time systems require provable
analysis, the uncertain behaviors of the driver force inte-
gration solutions to treat it as a black box.

Unknown driver behaviors are not merely speculative
but are a real concern. For example, we found that a
recent Nvidia CUDA driver may induce uncontrollable
busy-waiting when the GPU is under contention, despite
all runtime environment controls to the contrary.3 Fur-
ther complicating matters, the driver does not provide pre-
dictable real-time synchronization, an issue that receives
more attention in Sec. 4.1. Serious behavioral deficien-
cies of the driver in real-time environments are further
investigated in Sec. 6.

3 Task Model and Scheduling Algorithms

Real-time analysis offers several methods for describ-
ing the workload of a real-time system. This paper
analyzes mixed task sets of CPU-only and GPU-using
tasks with the synchronous implicit-deadline periodic
task model as it adequately describes common workloads
and has well-understood analytical properties.

A synchronous implicit-deadline periodic task set, T ,
consists of as a set of recurrent tasks, Ti, some of which
may access a GPU. We let G(T) denote the set of GPU-
using tasks in T . Each task is described by three param-
eters: its period, pi, which measures the separation be-
tween task recurrences (known as jobs); its worst-case
CPU execution time, ei, which bounds the amount of CPU
processing time a job must receive before completing; and
its worst-case GPU execution time, si, which bounds the
amount of GPU processing time required by one of its
jobs. This last parameter captures the interval of time be-
tween a kernel invocation and the signaling of its com-
pletion to the driver. Like worst-case CPU execution, this
parameter is unique to each task and is dominated by the
GPU kernel execution time plus lesser communication la-
tencies. Preliminary work [24] has been done to upper-
bound GPU kernel execution time, though empirical tests
are sufficient for many soft real-time systems. For tasks
that do not use the GPU, si = 0. The utilization of task Ti
is given by ui = ei/pi and the system utilization is given
by U = ∑ui.

As stated, our goal is to maximize system utiliza-
tion while supporting soft real-time constraints. Unfortu-

3See Appendix A for details.

CPU
CPU:

Send

CPU:

Receive
CPUGPU

Request GPU Release GPU

Critical Section

Figure 1: Execution phases of a GPU-using job.

nately, due to a GPU’s I/O-based interface, techniques for
heterogeneous systems [11, 18, 12] do not immediately
apply. However, as noted earlier, previous work [17] has
shown that G-EDF can ensure bounded tardiness in or-
dinary multiprocessor systems (without a GPU) without
system utilization constraints (provided the system is not
overutilized). Thus, it is the primary scheduling algorithm
considered in this paper.4 G-EDF is a global scheduler,
meaning that jobs share a single ready queue and can mi-
grate between processors. G-EDF prioritizes work by job
deadline, scheduling jobs with the earliest deadlines first.

4 Analysis Methods

We consider two methods for analyzing mixed task sets
of CPU-only and GPU-using tasks on a multiprocessor
system with a single GPU: the Shared Resource Method
and the Container Method. Fundamental differences be-
tween these methods stem from how GPU execution time
is modeled and how potential graphics hardware driver
behaviors are managed.

4.1 Shared Resource Method
It is natural to view a GPU as a computational resource

shared by the CPUs of a multiprocessor system. This
is the approach taken by the Shared Resource Method
(SRM), which treats the GPU as a globally-shared re-
source protected by a real-time semaphore.

The execution of a GPU-using job goes through several
phases. In the first phase, the job executes purely on the
CPU. In the next phase, the job sends data to the GPU
for use by the GPU kernel. Next, the job suspends from
the CPU when the kernel is invoked on a GPU. The GPU
executes the kernel using many parallel threads, but ker-
nel execution does not complete until after the last GPU-
thread has completed. Finally, the job resumes execution
on the CPU and receives kernel execution results when
signaled by the GPU. Optionally, the job may continue

4Some have recently speculated [21] that the earliest-deadline-zero-
laxity (EDZL) algorithm may be better suited to accounting for self-
suspensions, though actionable results have yet to be presented, so better
suspension accounting remains an open problem.

executing on the CPU without using the GPU. Thus, a
GPU-using job has five execution phases as depicted in
Fig. 1.

We can remove the GPU driver from resource-
arbitration decisions and create a suitable model for real-
time analysis through the use of a real-time semaphore
protocol. Contention for a GPU may occur when a job at-
tempts to communicate with it. We resolve this contention
with a synchronization point between the first and second
phases to provide mutual exclusion through the end of the
fourth phase; this interval is called a critical section and
denoted for each task Ti by csi. This approach ensures
that the driver only services one job at a time, which elim-
inates the need for knowing how the driver (which, again,
is closed-source) manages concurrent GPU requests.

We may consider several real-time multiprocessor
locking protocols to protect the GPU critical section.
Such a protocol should have several properties. First, it
must allow blocked jobs to suspend since critical-section
lengths may be very long (recall Table 1). A spin lock
would consume far too much CPU time. Second, the
protocol must support priority inheritance so blocking
times can be bounded. Finally, the protocol need not sup-
port critical-section nesting or deadlock prevention since
GPU-using tasks only access one GPU. Both the “long”
variant of the Flexible Multiprocessor Locking Proto-
col (FMLP-Long) [13] and the more recent global O(m)
Locking Protocol (OMLP) [14] fit these requirements.
Neither protocol is strictly better than the other for all task
sets since priority-inversion-based blocking (per lock ac-
cess), denoted by bi, is O(n) under FMLP-Long and O(m)
under the OMLP, where n is the number of tasks and m
is the number of CPUs. Thus, we allow the SRM to use
whichever protocol yields a schedulable task set.

The FMLP-Long uses a single FIFO job queue for each
semaphore, and GPU requests are serviced in a first-come
first-serve order. The job at the head of the FIFO queue
is the lock holder. A job, Ji, of task Ti ∈ G(T) may be
blocked by one job from the remaining GPU-using tasks.
Formally,

bi = ∑
G(T)\{Ti}

csk. (1)

The global OMLP uses two job queues for each
semaphore: FQ, a FIFO queue of length at most m; and
PQ, a priority queue (ordered by job priority). The lock
holder is at the head of FQ. Blocked jobs enqueue on FQ
if FQ is not full and on PQ, otherwise. Jobs are dequeued
from PQ onto FQ as jobs leave FQ. Any job acquiring an
OMLP lock may be blocked by at most 2(m− 1) lower-
priority jobs. Let A be the set of jobs generated by any

Tk ∈ G(T) \ {Ti} that may contend with Ji for the GPU.
Let Amax be the 2(m−1) jobs in A with the longest critical
sections. The blocking time for task Ti ∈G(T) is given by
the formula

bi = ∑
Jk∈Amax

csk. (2)

Soft schedulability under the SRM is determined by the
following two conditions. First,

ei + si +bi ≤ pi (3)

is required by the tardiness analysis for G-EDF [17]. Sec-
ond, the condition

U = ∑(ei + si +bi)/pi ≤ m (4)

must hold. This is the soft G-EDF schedulability condi-
tion required by [17] to ensure bounded tardiness. Like
all suspension-oblivious tests, we must analytically treat
suspension due to both blocking and GPU execution as
execution on the CPU. Note that no schedulability test is
required for the GPU co-processor since a job’s mutually
exclusive GPU execution is masked by fictitious CPU ex-
ecution. Still, the suspension-oblivious nature of this test
is a limiting characteristic as is seen in Sec. 5.

Example. Consider a mixed task set with two CPU-
only tasks with task parameters (pi = 30,ei = 5,si = 0)
and five GPU-using tasks with parameters (pi = 30,ei =
3,si = 2,csi = 4) to be scheduled on a four-CPU system
with a single GPU. The CPU-only tasks trivially satisfy
Ineqs. (3). The FMLP-Long is best suited for this task set
and the blocking term for every GPU-using task is ∑csk =
16 as computed by Eq. (1). Tasks in G(T) satisfy Ineq. (3)
since 3+2+16= 21≤ 30. Ineq. (4) also holds since U =
2 · (5/30)+ 5 · ((3+ 2+ 16)/30) ≈ 3.83 ≤ 4. Therefore,
the task set is schedulable under the SRM.

A schedule for this task set is depicted in Fig. 2. T1 and
T2 are the CPU-only tasks. Observe that the final job com-
pletes at time t = 21, well before its deadline. The com-
puted system utilization of approximately 3.83 is quite
close to the upper bound of 4.0 used in Ineq. (4), which
suggests a heavily-utilized system. However, the sched-
ule in Fig. 2 shows that the suspension-oblivious analysis
is quite pessimistic (mostly due to blocking-term account-
ing) given that the system is idle for much of the time.
In fact, only one CPU is utilized after t = 5. The per-
formance of the GPU must overcome these suspension-
oblivious penalties if it is to be a worthwhile addition to a
real-time multiprocessor system.

T
1

T
2

T
3

T
4

T
5

T
6

T
7

5 10 15 20 25 300

Job Scheduled

Job Holds GPU Lock

GPU Execution

Job Suspended on FIFO

Figure 2: Schedule for the example task set under the
SRM on a four-processor single-GPU system.

4.2 Container Method
The SRM may be overly pessimistic from a schedula-

bility perspective due to heavy utilization penalties aris-
ing from the blocking terms introduced by the use of
a multiprocessor locking protocol. Methods that lessen
such penalties may offer tighter analysis. The Container
Method (CM) is one such approach.

In many cases, a single GPU will limit the total actual
CPU utilization (where suspension effects are ignored) of
tasks in G(T). For example, if all of the tasks in G(T)
perform most of their processing on the GPU, then the
total actual CPU utilization of these tasks will be much
less than 1.0 when the GPU is fully utilized. In this case,
if we inflate each task’s CPU execution time by its GPU
execution time, as we do for suspension-oblivious analy-
sis, then the actual GPU utilization and total suspension-
oblivious CPU utilization will both be close to 1.0. This
fact inspires the CM, which avoids heavy suspension-
oblivious penalties by removing contention for the GPU
resource through the isolation of G(T) to a single (logi-
cal) processor.

It was shown in [22] that bandwidth reservations, or
containers, may be used to support soft real-time guar-
antees in multiprocessor systems. In a container-based
system, a task set is organized into a hierarchical collec-
tion of containers. Each container may hold tasks or child
containers. A container C is assigned an execution band-
width, w(C), equal to the sum of the utilizations and band-
widths of its child tasks and containers, respectively.

For our GPU-enabled multiprocessor system, we place
all CPU-only tasks in a root container, H, and all tasks
of G(T) in a child container G of H. As before, suspen-
sions are treated as execution time and contribute to task
utilizations. A container decomposition of the example
task set given in Sec. 4.1 is shown in Fig. 3. Observe that

H, w(H)=7/6

T
1
(30,5,0)

T
2
(30,5,0)

T
3
(30,3,2)

T
4
(30,3,2)

T
5
(30,3,2)

T
6
(30,3,2)

T
7
(30,3,2)

G, w(G)=5/6

Figure 3: Container decomposition of an example mixed
task set.

the tasks in G(T) are isolated in container G with a band-
width of 5/6, the total suspension-oblivious utilization of
the tasks in G(T). Container G and the CPU-only tasks
are contained within H, which has a bandwidth of 7/6.

Containers provide temporal isolation by hierarchi-
cally allocating execution time to contained tasks and
containers. If each container schedules its contained tasks
and containers using a window-constrained scheduling al-
gorithm,5 such as the G-EDF, then bounded tardiness can
be ensured with no utilization loss [22]. The CM exploits
both this and the ability to apply different schedulers to
subsets of jobs.

We schedule the children of H with G-EDF and sched-
ule the children of G with uniprocessor FIFO, which is
a window-constrained algorithm that prioritizes jobs by
release time. All GPU contention is avoided through the
use of the FIFO scheduler, which eliminates preemptions,
assuming jobs do not self-suspend or self-suspensions are
analytically treated as CPU execution. This ensures that
the GPU is always available to the highest-priority GPU-
using job. Note, in implementation it is not necessary
for G to suspend or idly consume CPU resources while
the GPU is in use. Instead, G may schedule other con-
tained jobs, provided that the GPU critical sections are
protected by a simple release-ordered semaphore. This
ensures that the highest-priority job may be scheduled im-
mediately, without conflict, when it is ready to run. This
work-conserving approach would reduce observed tardi-
ness, though this is not captured by our analysis here.

Soft schedulability of a task set under the CM is deter-
mined by the following conditions. First,

w(G)≤ 1 (5)

is required to ensure that G is schedulable with bounded

5A window-constrained scheduling algorithm prioritizes a job by an
arbitrary time point contained within an interval window that also con-
tains the job’s release and deadline.

T
1

T
2

T
3

T
4

T
5

T
6

T
7

5 10 15 20 25 300

Job Scheduled GPU Execution

Figure 4: Schedule for the example task set under the CM
on a four-processor single-GPU system.

tardiness on a uniprocessor. Second,

w(G)+ ∑
Ti /∈G(T)

ui ≤ m (6)

must also hold. This condition ensures that the root
container can be scheduled by G-EDF on m CPUs with
bounded tardiness.

Example. Consider the same mixed task set from
Sec. 4.1. Ineq. (5) is satisfied since the container band-
width is w(G) = 5 · (5/30) ≈ 0.83 ≤ 1. Ineq. (6) also
holds as U = 2 · (5/30)+ 5 · (5/30) ≈ 1.16 ≤ 4. There-
fore, the task set is schedulable under the CM. A schedule
for this task set is depicted in Fig. 4. T1 and T2 are the
CPU-only tasks. Note that the final job completes at time
t = 25.

The SRM enforces more permissive constraints on the
GPU while the CM enforces more permissive constraints
on the CPUs. This trade-off is reflected in both the
schedulability tests and example schedules of these meth-
ods. Due to the mutually exclusive ownership of the GPU,
there may exist only one job within its critical section
ready to be scheduled on any CPU at any given time. This
implies that system GPU utilization under the SRM can
be bounded by the formula

∑
Ti∈G(T)

csi/pi ≤ 1 (7)

for schedulable task sets. This measure includes CPU
execution time within critical sections since entire crit-
ical sections must execute in sequence. Comparing the
SRM’s and the CM’s measures of GPU utilization for
the previous example, we find the SRM’s GPU utiliza-
tion (Ineq. (7)) is approximately 0.67 while the CM’s
(Ineq. (5)) is approximately 0.83; the SRM’s CPU con-
straint (Ineq. (4)) is approximately 3.83 while the CM’s

(Ineq. (6)) is approximately 1.16. Such trade-offs are not
merely limited to the tightness of analytical bounds, but
are actually reflected in task set schedules, as can be ob-
served in Figs. 2 and 4. While the CM enforces more per-
missive CPU utilization constraints, the GPU-using jobs
complete later under the CM. This corresponds directly to
the CM’s higher measure of GPU utilization.

5 Evaluation

We carried out SRM- and CM-related schedulability
experiments to answer the question raised at the begin-
ning of this paper: How much faster than a CPU must a
GPU be to overcome suspension-oblivious penalties and
schedule more work than a CPU-only system?

5.1 Experimental Setup
To better understand the schedulability of mixed task

sets, we randomly generated task sets using three task uti-
lization intervals, three period intervals, three GPU usage
patterns, and ten GPU task percentages. Utilization in-
tervals determine the range of utilization for individual
tasks and were [0.01,0.1] (light), [0.1,0.4] (medium), and
[0.5,0.9] (heavy). Period intervals determine the range
of task periods for individual tasks and were [3ms,33ms],
[15ms,60ms], and [50ms,250ms]. The GPU usage pattern
determines how much of the execution time of each GPU-
using task is GPU execution time; 25%, 50%, and 75%
were used, in line with common CPU/GPU workload dis-
tributions.6 Finally, the GPU task percentage is the ratio
of GPU-using tasks to the total number of tasks; incre-
ments of 10% were used to test GPU task percentages
from 0% to 100%. A schedulability experiment scenario
was defined by any permutation of these four parameters,
yielding a total of 270 scenarios.

We generated random task sets for each scenario in the
following manner. First, we selected a total system uti-
lization cap uniformly in the interval (0,4], capturing the
possible system utilizations of a platform with four CPUs
and a single GPU when suspension-oblivious analysis is
used. We then generated tasks by making selections uni-
formly from the utilization interval and period interval
according to the given scenario. We derived execution
times from these selections. We added these tasks to a
task set until the set’s total utilization exceeded the uti-
lization cap, at which point the last-generated task was
discarded. Next, we selected tasks for G(T) from the task
set; we determined the number of GPU-using tasks by the

6Common workload profiles were solicited from research groups at
UNC that frequently make use of CUDA. A poll was also informally
taken at the Nvidia CUDA online forums.

GPU task percentage of the scenario. We then assigned
the same GPU usage pattern to each task in G(T) accord-
ing to the scenario. Additionally, we assumed that time
spent communicating with the GPU increases with exe-
cution time and assessed a GPU communication cost, ε ,
of 5% of task execution. Thus, a GPU-using task Ti’s
critical-section length is (x+ ε) · ei where x denotes the
GPU usage pattern. We made cursory tests of CPU and
GPU utilization to ensure that the CPUs and GPU were
not implicitly overutilized. Finally, we discarded task sets
with only one GPU-using task since this case is uninter-
esting as the GPU does not require resource arbitration.
We tested a total of 1,000,000 task sets for each scenario.

We also generated equivalent CPU-only task sets to
help answer the question of when a multiprocessor system
can benefit from a GPU co-processor. We transformed the
mixed task sets into CPU-only equivalents by modifying
the execution time of the tasks in G(T) with the formula
e′i = ei + c · si− ε where c is a positive constant scaling
factor denoting the GPU speed-up over the CPU. Each
task set was tested with c equal to two, four, eight, and
16. A transformed CPU-only task set is schedulable (has
bounded tardiness) if e′i ≤ pi for all tasks and U ′ ≤ m,
where U ′ is the system utilization of the modified task
set.

We tested the SRM and the CM according to the
schedulability conditions already described in Sec. 4.

5.2 Results

A representative subset of graphs resulting from our
schedulability experiments is presented in this section to
show the schedulability properties of the SRM and the
CM and to demonstrate their advantages over pure CPU-
only systems.7 We are limited by page constraints from
presenting results for all 270 scenarios, though additional
graphs are available in Appendix B. The presented sub-
set of scenarios was selected because they best utilized
both the GPU and the CPUs, illustrating seen trends more
broadly.

Schedulability results for task sets with a GPU task per-
centage ranging from 30% to 40% are shown in Fig. 5.
The graphs are organized to show trends as functions of
per-task utilization (down the columns) and GPU usage
pattern (across the rows). The rows correspond to light,
medium, and heavy per-task utilization intervals. Like-
wise, the columns correspond to GPU usage patterns of

7Please note that some graphs appear to be missing data points at
lower and upper system utilization ranges. This is caused by the oc-
casional inability to generate task sets meeting particular scenario con-
straints.

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[6
]

[5
]

[2
]

[4
]

[3
]

(a
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[5
]

[6
]

[2
]

[4
]

[3
]

(b
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[5
]

[4
]

[2
]

[3
]

[6
]

(c
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[5
]

[6
]

[2
]

[1
]

[4
]

[3
]

(d
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4
ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[2
]

[4
]

[3
]

[5
]

[6
]

(e
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[4
]

[6
]

[5
]

[1
]

[2
]

[3
]

(f
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[3
]

[4
]

[2
, 5

, 6
]

(g
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[3
]

[2
, 4

, 5
, 6

]

(h
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

3
0

%
, 4

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[3
]

[1
]

[2
, 4

, 5
, 6

]

(i
)

Fi
gu

re
5:

Pe
r-

ta
sk

ut
ili

za
tio

n
in

cr
ea

se
fr

om
to

p
to

bo
tto

m
.G

PU
ex

ec
ut

io
n

pe
rc

en
ta

ge
in

cr
ea

se
s

fr
om

le
ft

to
ri

gh
t.

25%, 50%, and 75%.

Observation 1. A GPU usually allows a four-CPU sys-
tem to schedule more work than CPU equivalents if the
GPU is four times faster than the CPU. Both the SRM
and the CM outperform the CPU equivalents when c≥ 8
in all cases. A speed-up of four is all that is necessary
in many cases as seen in insets (b), (c), (e), and (f) of
Fig. 5. This suggests that the practical use of a GPU in
a four-CPU real-time system is possible since speed-ups
greater than eight are common. Indeed, this answers (in
the context of this experimental framework) our original
question of how fast a GPU must be to overcome penalties
from suspension-oblivious analysis.

Observation 2. The Container Method frequently offers
better schedulability than the Shared Resource Method.
The CM can often schedule task sets the SRM cannot as
illustrated by the large differences in the schedulability
curves seen in insets (a), (b), (c), (e), and (f) of Fig. 5. In
the SRM, each task in G(T) incurs an execution penalty
up to the length of six critical sections (recall that Eq. (2)
includes up to 2(m−1) terms). If the constraint given by
Ineq. (3) is not violated, then there is still a good chance
that the constraint of Ineq. (4) will be, especially at higher
system utilizations. The CM clearly benefits from avoid-
ing the inclusion of blocking terms in its schedulability
analysis, despite the fact that its GPU utilization condi-
tion (Ineq. (5)) includes more CPU execution time.

Observation 3. The Shared Resource Method improves
as per-task utilization increases. Observe how the
schedulability curve for the SRM improves from inset (a)
to (d) to (g) in Fig. 5. For example, roughly 50% of task
sets are schedulable at system utilizations 2.0, 3.0, and
3.5 in insets (a), (d), and (g), respectively. The SRM
benefits from increased per-task utilization since it re-
duces the total number of tasks in a given task set and
hence also reduces the number of tasks in G(T). This im-
proves schedulability since fewer GPU-using tasks result
in smaller cumulative blocking-term penalties.

Observation 4. The Container Method is largely unaf-
fected by either GPU utilization or per-task utilization.
The schedulability curves for the CM in Fig. 5 are all very
similar. This is due to two aspects of the CM. First, con-
tainer bandwidth is a function of the cumulative execu-
tion time of each task in G(T), or ei + si. As si increases
across the rows of Fig. 5, ei decreases by an equal amount,
so container bandwidth remains constant. The CM is also
resistive to changes in per-task utilization as its schedula-
bility, unlike the SRM, is not dependent on the number of
tasks in G(T), but only on the total suspension-oblivious
utilization of G(T).

Observation 5. The Container Method cannot schedule
task sets with per-task utilizations greater than 0.5. The
CM cannot schedule any heavy task set due to its strict
container bandwidth constraints as seen in the insets (g),
(h), and (i) of Fig. 5. Recall that the condition given by
Ineq. (5) must be met for a task set to be schedulable un-
der the CM. A heavy task set is schedulable under the CM
only if G(T) contains two tasks with utilizations equal to
0.5. However, the occurrence of this case is highly im-
probable since utilizations are chosen at random.

Observation 6. The Container Method is best suited for
systems with medium or light per-task utilizations. While
schedulability may vary across the CM’s gradually slop-
ing curves, it frequently offers better schedulability than
the SRM (Obs. 2). Further, in medium and light cases
where the SRM offers better schedulability than the CM
(Fig. 5 (inset (d))), the CM is still competitive.

6 Implementation

We implemented the SRM with the OMLP in LITMUSRT

(described in detail in [15]), a UNC-produced Linux-
based testbed for real-time schedulers. We did this to both
evaluate the practical performance characteristics of our
solution and, more importantly, to show that unguarded
GPU device driver access is not viable for a real-time
system—some real-time control is necessary.

We generated synthetic workloads in the same fash-
ion as in Sec. 5.1 and ran them on our test platform, an
Intel Core i7 quad-core system with a Nvidia GTX-295
graphics card.8 The system CPUs operated at 2.67GHz
with an 8MB shared cache. The Nvidia 190.53 64-bit
Linux proprietary driver was used on the platform with-
out modification. Nvidia’s CUDA 2.3 SDK provided the
CUDA runtime environment. In all tests, no display of
any kind was used. Thus, the GPU was used exclusively
for CUDA computations without interference from other
applications.

We executed synthetic task sets withG-EDF scheduling
for a duration of 2.5 minutes under two scenarios: one
with the SRM and one without. We made measurements
for response time and tardiness. A total of 400 task sets
were tested under each scenario.

A summary of our findings for medium-utilization task
sets is shown in Table 2. A large amount of data was
generated in these tests and cannot be presented in de-
tail due to page constraints, so only high-level statistics
are shown. We use the ratios response time/task period

8The GTX-295 actually provides two independent GPUs on a single
card, though only one GPU was used in this work.

Avg. Resp. Time Avg. Tardiness
Category SRM Driver SRM Driver

Easy 25.00% 24.95% 0.02% 0.00%
Difficult 29.33% 34.89% 0.17% 4.64%
Unable 92.79% 134.50% 91.97% 133.50%

Table 2: Response time and tardiness statistics for the
SRM and unguarded driver. Smaller values are better.

and tardiness/task period to interpret our data as this al-
lows measurements involving task sets with different pe-
riod ranges to be compared.

The executed task sets are organized into easy-, dif-
ficult-, and unable-to-schedule categories. Easy-to-
schedule task sets are those that are deemed schedula-
ble by the theoretical analysis of Sec. 4.1. Difficult-to-
schedule task sets are those for which theoretical anal-
ysis was unable to determine schedulability, but the ob-
served tardiness of any job of task Ti never exceeded pi.
While 2.5 minutes of execution cannot prove schedulabil-
ity, it indicates that the task set may be schedulable. We
make this assumption here. Unable-to-schedule task sets
are those that could not be successfully scheduled (tardi-
ness exceeded pi) by the implementation—no unable-to-
schedule task sets were ever deemed schedulable by the
theoretical analysis.

Observation 1. The Shared Resource Method offers real-
time guarantees with little or no observed cost. The SRM
allows GPU-using tasks to be scheduled with real-time
guarantees through the use of predictable locking mecha-
nisms, though performance is slightly hindered for easy-
to-schedule task sets (as seen in Table 2, average response
time and average tardiness are slightly better for the driver
in this case). The marginally better performance of the
unguarded driver for easy-to-schedule task sets comes
at the expense of significantly increased CPU utilization
since the driver reduces latency through busy-wait spin-
ning. It is likely that the CPUs could potentially han-
dle additional processing in such cases. Nevertheless, the
driver’s spinning and lack of priority inheritance becomes
a liability in task sets where resources are more taxed as
seen in the greater ratios of the difficult- and unable-to-
schedule categories.

Observation 2. The Shared Resource Method is supe-
rior at controlling job tardiness. G-EDF scheduling dis-
tributes tardiness relatively equally across all tasks in both
the SRM and unguarded driver scenarios. However, tardi-
ness growth is much better controlled under the SRM as
can be observed in Fig. 6, which depicts the growth in tar-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20000 40000 60000 80000 100000 120000 140000

T
a

rd
in

e
s
s
 (

m
s
)

Time (ms)

Tardiness Growth

[1]

[2]

[1] SRM [2] Unprotected Driver

Figure 6: Growth of tardiness growth of a task from an
unable-to-schedule task set. The SRM exhibits superior
control over tardiness.

diness for a task from an unable-to-schedule task set. This
control over tardiness is also exhibited in nine difficult-to-
schedule task sets the SRM was able to schedule (keeping
tardiness close to zero) that the unprotected driver could
not. A real-time mechanism such as the SRM is necessary
in a GPU-enabled real-time system that may occasionally
become overutilized.

7 Future Work

In future work, we intend to investigate how the SRM
may be improved to support the exploitation of asyn-
chronous memory transfers. Discrete graphics cards sup-
port the ability for graphics hardware to send and receive
data to one task while the GPU itself performs computa-
tions for another. This allows for the masking of com-
munication latencies in a pipelined manner. The current
treatment of critical sections precludes the use of such a
mechanism.

Another direction we may pursue is support for multi-
GPU platforms. Platforms with many GPUs (sometimes
heterogeneous) are already available at consumer prices.
It is feasible to design a system that could dynamically
choose to execute a particular task or job on one of mul-
tiple CPUs or on a variety of GPUs. If a SRM-like ap-
proach is taken, not only could the locks protecting GPUs
become k-exclusion locks,9 thus adding an extra dimen-
sion of complexity, but execution times of tasks could
vary depending upon where it is scheduled if GPUs with
varying capabilities are used.

9k-exclusion locks protect a resource or resource pool, allowing up
to k simultaneous accesses.

Finally, we plan to perform in-depth empirical analysis
to determine the gap between the theoretical schedulabil-
ity results presented in this paper and apparent schedula-
bility in a real system. Rigorous empirical tests should
further clarify when a GPU is beneficial in “real world”
real-time systems.

8 Conclusion

Recent advances in graphics hardware are enabling the
acceleration of computations traditionally carried out on
CPUs. The use of such hardware in a real-time system
may allow workloads to be supported that are too com-
putationally intensive for CPU-only systems, while also
benefiting from reduced power consumption. Through
the consideration of current architectural constraints, this
paper has presented two methods for integrating GPUs
into soft real-time multiprocessor systems: the Shared
Resource Method, and the Container Method. Schedula-
bility experiments were presented that assess the schedu-
lability characteristics of each. Both solutions were able
to schedule greater computational workloads than pure
CPU systems in common cases. The Shared Resource
Method was also evaluated through implementation and
exhibited superior runtime characteristics in terms of
schedulability and efficient resource utilization in com-
parison to a similar system that is oblivious to GPU hard-
ware and device driver behaviors.

References

[1] AMD Fusion Family of APUs. Available from:
http://sites.amd.com/us/Documents/48423B_

fusion_whitepaper_WEB.pdf [cited September 28,
2010].

[2] ATI Stream Technology. Available from: http:

//www.amd.com/US/PRODUCTS/TECHNOLOGIES/

STREAM-TECHNOLOGY/Pages/stream-technology.

aspx [cited September 28, 2010].

[3] China’s new nebulae supercomputer is no. 2. Avail-
able from: http://www.top500.org/lists/2010/

06/press-release [cited September 28, 2010].

[4] CUDA community showcase. Available from:
http://www.nvidia.com/object/cuda_apps_

flash_new.html [cited September 28, 2010].

[5] CUDA Zone. Available from: http://www.nvidia.

com/object/cuda_home_new.html [cited September
28, 2010].

[6] Microsoft DirectX. Available from: http:

//www.microsoft.com/games/en-US/aboutGFW/

pages/directx.aspx [cited September 28, 2010].

[7] OpenCL. Available from: http://www.khronos.org/

opencl/ [cited September 28, 2010].

[8] Parallel computing with SciFinance. Available from:
http://www.scicomp.com/parallel_computing/

SciComp_NVIDIA_CUDA_OpenMP.pdf [cited September
28, 2010].

[9] G. Abhijeet and T. Ioane Muni. GPU based sparse grid
technique for solving multidimensional options pricing
PDEs. In Proceedings of the 2nd Workshop on High Per-
formance Computational Finance, pages 1–9, November
2009.

[10] Timo Aila and Samuli Laine. Understanding the efficiency
of ray traversal on GPUs. In Proceedings of the Confer-
ence on High Performance Graphics, pages 145–149, Au-
gust 2009.

[11] S. Baruah. Scheduling periodic tasks on uniform pro-
cessors. In Proceedings of the EuroMicro Conference on
Real-time Systems, pages 7–14, June 2000.

[12] S. Baruah. Feasibility analysis of preemptive real-time
systems upon heterogeneous multiprocessor platforms. In
Proceedings of the 25th IEEE Real-Time Systems Sympo-
sium, pages 37–46, December 2004.

[13] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors.
In Proceedings of the 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Ap-
plications, pages 47–57, August 2007.

[14] B. Brandenburg and J. Anderson. Optimality results
for multiprocessor real-time locking. In Proceedings of
the 31st IEEE Real-Time Systems Symposium, December
2010. To appear.

[15] B. Brandenburg, A. Block, J. Calandrino, U. Devi,
H. Leontyev, and J. Anderson. LITMUSRT: A status re-
port. In Proceedings of the 9th Real-Time Linux Workshop,
pages 107–123, November 2007.

[16] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev,
and J. Anderson. Real-time synchronization on multipro-
cessors: To block or not to block, to suspend or spin? In
Proceedings of the 14th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 342–353,
April 2008.

[17] U. Devi and J. Anderson. Tardiness bounds under global
EDF scheduling on a multiprocessor. In Real-Time Sys-
tems, volume 38, pages 133–189, February 2008.

[18] S. Funk, J. Goossens, and S. Baruah. On-line scheduling
on uniform multiprocessors. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium, December 2001.

[19] O. Harrison and J. Waldron. Practical symmetric key cryp-
tography on modern graphics hardware. In Proceedings of
the 17th Conference on Security Symposium, pages 195–
209, July 2008.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.top500.org/lists/2010/06/press-release
http://www.top500.org/lists/2010/06/press-release
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_apps_flash_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.microsoft.com/games/en-US/aboutGFW/pages/directx.aspx
http://www.microsoft.com/games/en-US/aboutGFW/pages/directx.aspx
http://www.microsoft.com/games/en-US/aboutGFW/pages/directx.aspx
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.scicomp.com/parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf
http://www.scicomp.com/parallel_computing/SciComp_NVIDIA_CUDA_OpenMP.pdf

[20] W. Kang, S. H. Son, J. A. Stankovic, and M. Amirijoo.
I/O-aware deadline miss ratio management in real-time
embedded databases. In Proceedings of the 28th IEEE
Real-Time Systems Symposium, pages 277–287, Decem-
ber 2007.

[21] K. Lakshmanan, S. Kato, and R. Rajkumar. Open prob-
lems in scheduling self-suspending tasks. In Proceedings
of the 1st International Real-Time Scheduling Open Prob-
lems Seminar, pages 12–13, July 2010.

[22] H. Leontyev and J. Anderson. A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees.
Real-Time Systems, 43(1):60–92, September 2009.

[23] B. Pieters, C. F. Hollemeersch, P. Lambert, and R. Van
de Walle. Motion estimation for H.264/AVC on multi-
ple GPUs using Nvidia CUDA. In Applications of Dig-
ital Image Processing XXII, volume 7443, page 74430X,
September 2009.

[24] G. Raravi and B. Andersson. Calculating an upper bound
on the finishing time of a group of threads executing on a
GPU: A preliminary case study. In Work-in-progress ses-
sion of the 16th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications,
pages 5–8, August 2010.

[25] Y. Watanabe and T. Itagaki. Real-time display on Fourier
domain optical coherence tomography system using a
graphics processing unit. In Journal of Biomedical Optics,
volume 14, page 060506, December 2009.

A CUDA Driver Evaluation

The CUDA runtime environment offers several mech-
anisms for how operations, such as memory transfers and
kernel invocations, are executed and synchronized with
the host-side application. The runtime allows for the con-
trol of how often synchronization occurs and how syn-
chronization is performed.

Concerning synchronization, operations may be per-
formed synchronously or asynchronously. In syn-
chronous mode, the host-side application must block
waiting for an acknowledgment from the GPU for each
operation before continuing to the next. In asynchronous
mode, the host-side application may dispatch several op-
erations, guaranteed to execute in order, and synchronize
with the GPU explicitly once at a later time. Synchro-
nized mode can lead to an excessive number of thread
context switches and self-suspensions. Asynchronous
mode is preferable when overall system utilization is
more important than communication latency as it reduces
the number of synchronizations with the GPU to once per
GPU-using job.

CUDA offers two methods for delivering acknowledg-
ments10: polling or interrupts. In polling mode, the host-
side application spins on the CPU, waiting for the oper-
ation acknowledgment. In interrupt mode, the host-side
application suspends from execution and sleeps until it is
woken up by the GPU (by way of the driver) with the
acknowledgment. The suspending interrupt mode best
maximizes processor availability as the execution times
of GPU kernels are relatively long. Spinning has been
shown to only improve schedulability on modern multi-
core hardware only if critical section lengths are on the
order of microseconds [16].

Experiment. In order to evaluate the CUDA GPU
driver in a real-time environment, we ran an experiment
to exercise the driver’s resource arbitration mechanisms.
A task set was created consisting of ten GPU-using tasks,
each with a period of 60ms and execution time of 5ms.
Each task performed the same FFT operation on a random
1024x1024 matrix on the GPU. Executing alone, each job
invocation took 2ms to complete on average. Each task
performed 100 job invocations before terminating.

This task set was run in LITMUSRT [15], UNC’s real-
time Linux testbed, under G-EDF scheduling on the same
test system described in Sec. 6. Two versions of the task
set were tested. The first task set ran without explicit ac-
cess controls and relied upon the GPU driver to arbitrate

10The CUDA runtime actually offers two additional modes: “auto-
matic” mode and spinning-suspension mode, but are not considered by
this paper as they are not suited to real-time analysis.

Driver Arbitrated FMLP

Avg. Resp. Time 13.5ms 13.528ms
Max Resp. Time 25ms 25ms
Min Resp. Time 2ms 2ms

Std. Dev. 7.232ms 7.253ms
CPU Util. 1.368 0.42

Table 3: Execution profiles of driver and FMLP arbitrated
resource access control.

access. The second task set ran with GPU access treated
as a critical section, protected with a suspending FMLP-

Long semaphore. Both task sets ran in asynchronous in-
terrupt mode as described.

Results. The execution timing properties for the task
sets were nearly identical as is shown in Table 3. The
worst-case response times for both task sets were alike.
Furthermore, the worst-case response time measurements
are consistent with those that would be expected from
a FIFO-order lock prioritization. This suggests that the
Nvidia driver uses a FIFO-ordered queue itself to prior-
itize GPU access requests. However, there are several
critical limitations to the Nvidia driver’s solution. Firstly,
the Nvidia driver does not implement priority inheritance.
This is clear since LITMUSRT has its own unique no-
tions of priority and the Nvidia driver is clearly unaware
of LITMUSRT. It is difficult to guarantee timing con-
straints without priority inheritance. Secondly, though the
task set ran in asynchronous interrupt mode, the average
CPU usage as reported by the UNIX command top of the
task set without FMLP was far higher at 1.368 versus the
FMLP’s 0.42. This indicates that some jobs were likely
busy-waiting in the GPU driver to either trigger kernel ex-
ecution or send/receive data. Indeed, LITMUSRT detected
jobs in the unprotected task set exceeding their execution
budgets of 5ms, confirming that the GPU driver added ad-
ditional execution time to the tasks. It appears that CPU
utilization cannot be maximized with driver resource ar-
bitration.

B Additional Schedulability Results

Sec. 5.2 presented only a portion of the schedulability
results obtained from in our experimental comparison of
the Shared Resource Method and the Container Method.
Additional results are presented here.

Trends in GPU task percentage are illustrated in Fig. 7
where period range, per-task utilization range, and GPU
execution percentage are fixed but GPU task percentage
varies from 0% to 100% in intervals of 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

ra
ti

o
 o

f
sc

h
e

d
u

la
b

le
 t

a
sk

 s
e

ts
 (

so
ft

)

task set utilization cap (prior to in!ation)

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

[10] [9] [8] [7] [6] [5] [4] [3] [2] [1]

(a) SRM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

ra
ti

o
 o

f
sc

h
e

d
u

la
b

le
 t

a
sk

 s
e

ts
 (

so
ft

)

task set utilization cap (prior to in!ation)

GPU Exe 75%; Util [0.1,0.4]; Period [15,60ms]

[1] 0 - 10%
[2] 10 - 20%
[3] 20 - 30%
[4] 30 - 40%

[5] 40 - 50%
[6] 50 - 60%
[7] 60 - 70%
[8] 70 - 80%

[9] 80 - 90%
[10] 90 - 100%

[10] [9] [8] [7] [6] [5] [4]

[3]

[1,2]

(b) CM

Figure 7: Side-by-side schedulability comparison of GPU-using task set percentage. The CM is less affected by the
increased share of GPU-using tasks than the SRM.

Figs. 8, 9, and 10 mirror Fig. 5 from Sec. 5.2, which
showed trends in per-task utilization and GPU usage pat-
tern with the GPU task percentage fixed at [30%,40%].
Figs. 8, 9, and 10 show the same trends with GPU task
percentages of [10%,20%], [50%,60%], and [70%,80%],
respectively. As before, the graphs are organized to
show trends as functions of per-task utilization (down the
columns) and GPU usage pattern (across the rows). The
rows correspond to light, medium, and heavy per-task uti-
lization intervals. Likewise, the columns correspond to
GPU usage patterns of 25%, 50%, and 75%. Note that we
were unable to generate task sets meeting scenario con-
straints in some cases.

New trends may be observed from this additional data.

Observation 1. Schedulability decreases as the percent-
age of GPU-using tasks in a task set increases; the GPU
becomes a bottleneck. This observation may be obvi-
ous, but it is important to keep in mind when develop-
ing a real-time system with a GPU co-processor. This
is because GPUs are rarely viewed as system bottlenecks
due to their role as an accelerator. However, the GPU
can become overutilized like any other resource, leaving
the CPUs relatively idle. The bottleneck effect can be
observed in Fig. 7 where schedulability decreases as the
GPU task percentage increases.

Observation 2. The GPU must become faster to remain
competitive against CPU-only equivalents as GPU task
percentage increases. This is a direct result of the bottle-
neck behavior from Obs. 1. The CPUs have an increased

availability as more work is offloaded onto the GPU. This
extra availability is used to accommodate more work in
the CPU-only equivalent cases, resulting in more com-
petitive schedulability behavior against the mixed task
sets of the SRM and the CM. This trend can be most
clearly seen in the comparison of the relative competitive-
ness of the SRM in insets (g) of Figs. 9 and 10. Observe
that the schedulability curves of the CPU-only equivalents
are relatively unchanged between the two insets. How-
ever, schedulability of the SRM significantly degrades
as the GPU task percentage changes from [50%,60%] to
[70%,80%].

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

1
0

%
, 2

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[1
]

[5
]

[4
]

[3
][2

]

(a
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

1
0

%
, 2

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[1
]

[5
]

[4
]

[3
]

[2
]

(b
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

1
0

%
, 2

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[5
]

[1
][4

]
[3

]
[2

]

(c
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

1
0

%
, 2

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[5
]

[4
]

[1
]

[3
]

[2
]

(d
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4
ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

1
0

%
, 2

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[5
] [6

]

[4
]

[1
]

[3
]

[2
]

(e
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

1
0

%
, 2

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[2
]

[3
]

[1
]

[4
]

[5
]

[6
]

(f
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets [soft]

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

xe
 2

5
%

; G
P

U
 T

a
sk

 S
h

a
re

 [
1

0
%

, 2
0

%
];

 U
ti

l [
0

.5
, 0

.9
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

U
n

a
b

le
 t

o
 g

e
n

e
ra

te
 t

a
sk

 s
e

ts
 f

o
r

th
is

 s
ce

n
a

ri
o

.

(g
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets [soft]

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

xe
 5

0
%

; G
P

U
 T

a
sk

 S
h

a
re

 [
1

0
%

, 2
0

%
];

 U
ti

l [
0

.5
, 0

.9
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

U
n

a
b

le
 t

o
 g

e
n

e
ra

te
 t

a
sk

 s
e

ts
 f

o
r

th
is

 s
ce

n
a

ri
o

.

(h
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets [soft]

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

xe
 7

5
%

; G
P

U
 T

a
sk

 S
h

a
re

 [
1

0
%

, 2
0

%
];

 U
ti

l [
0

.5
, 0

.9
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

U
n

a
b

le
 t

o
 g

e
n

e
ra

te
 t

a
sk

 s
e

ts
 f

o
r

th
is

 s
ce

n
a

ri
o

.

(i
)

Fi
gu

re
8:

G
PU

Ta
sk

Pe
rc

en
ta

ge
[1

0%
,2

0%
].

Pe
r-

ta
sk

ut
ili

za
tio

n
in

cr
ea

se
fr

om
to

p
to

bo
tto

m
.G

PU
ex

ec
ut

io
n

pe
rc

en
ta

ge
in

cr
ea

se
s

fr
om

le
ft

to
ri

gh
t.

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[6
]

[2
]

[5
]

[4
]

[3
]

(a
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[1
]

[5
]

[2
]

[4
]

[3
]

(b
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[1
]

[5
]

[2
]

[4
]

[3
]

(c
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[5
]

[2
]

[1
]

[4
]

[3
]

(d
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4
ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[5
]

[1
]

[2
]

[4
]

[3
]

(e
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
][5

]
[4

]
[1

]
[2

]
[3

]

(f
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[4
]

[1
]

[3
]

[2
, 5

, 6
]

(g
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[3
]

[1
]

[2
, 4

, 5
, 6

]

(h
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

5
0

%
, 6

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[3
]

[1
]

[2
, 4

, 5
, 6

]

(i
)

Fi
gu

re
9:

G
PU

Ta
sk

Pe
rc

en
ta

ge
[5

0%
,6

0%
].

Pe
r-

ta
sk

ut
ili

za
tio

n
in

cr
ea

se
fr

om
to

p
to

bo
tto

m
.G

PU
ex

ec
ut

io
n

pe
rc

en
ta

ge
in

cr
ea

se
s

fr
om

le
ft

to
ri

gh
t.

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[1
]

[6
]

[2
]

[5
]

[4
]

[3
]

(a
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[1
]

[5
]

[2
]

[4
]

[3
]

(b
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.0

1
, 0

.1
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[1
]

[5
]

[2
]

[4
]

[3
]

(c
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[5
]

[2
]

[1
]

[4
]

[3
]

(d
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4
ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
]

[5
]

[1
]

[2
]

[4
]

[3
]

(e
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 7
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.1

, 0
.4

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[6
][5

]

[4
]

[1
]

[2
]

[3
]

(f
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 2
5

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[2
, 5

, 6
]

[1
]

[4
]

[3
]

(g
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets (soft)

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

x
e

 5
0

%
; G

P
U

 T
a

sk
 S

h
a

re
 [

7
0

%
, 8

0
%

];
 U

ti
l [

0
.5

, 0
.9

];
 P

e
ri

o
d

 [
1

5
m

s,
 6

0
m

s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

[3
]

[1
, 2

, 4
, 5

, 6
]

(h
)

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

 3
.5

 4

ratio of schedulable task sets [soft]

ta
sk

 s
e

t
u

ti
li

za
ti

o
n

 c
a

p
 (

p
ri

o
r

to
 in

!
a

ti
o

n
)

G
P

U
 E

xe
 7

5
%

; G
P

U
 T

a
sk

 S
h

a
re

 [
7

0
%

, 8
0

%
];

 U
ti

l [
0

.5
, 0

.9
];

 P
e

ri
o

d
 [

1
5

m
s,

 6
0

m
s]

[1
]

S
R

M
[2

]
C

M
[3

]
C

P
U

, c
 =

 2
[4

]
C

P
U

, c
 =

 4
[5

]
C

P
U

, c
 =

 8
[6

]
C

P
U

, c
 =

 1
6

U
n

a
b

le
 t

o
 g

e
n

e
ra

te
 t

a
sk

 s
e

ts
 f

o
r

th
is

 s
ce

n
a

ri
o

.

(i
)U

na
bl

e
to

ge
ne

ra
te

ta
sk

se
ts

fo
rt

hi
s

sc
en

ar
io

.

Fi
gu

re
10

:
G

PU
Ta

sk
Pe

rc
en

ta
ge

[7
0%

,8
0%

].
Pe

r-
ta

sk
ut

ili
za

tio
n

in
cr

ea
se

fr
om

to
p

to
bo

tto
m

.G
PU

ex
ec

ut
io

n
pe

rc
en

ta
ge

in
cr

ea
se

s
fr

om
le

ft
to

ri
gh

t.

	Introduction
	Usage Patterns and Platform Constraints
	Task Model and Scheduling Algorithms
	Analysis Methods
	Shared Resource Method
	Container Method

	Evaluation
	Experimental Setup
	Results

	Implementation
	Future Work
	Conclusion
	CUDA Driver Evaluation
	Additional Schedulability Results

