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Abstract Consider the problem of partitioned scheduling of an implicit-deadline 

sporadic task set on heterogeneous multiprocessors to meet all deadlines. Each pro- 

cessor is either of type-1 or type-2. We present a new algorithm, FF-3C, for this 

problem. FF-3C offers low time-complexity and provably good performance. Specif- 

ically, FF-3C offers (i) a time-complexity of O(n · max(m, log n) + m · log m), where 
n is the number of tasks and m is the number of processors and (ii) the guarantee 

that if a task set can be scheduled by an optimal partitioned-scheduling algorithm to 

meet all deadlines then FF-3C meets all deadlines as well if given processors at most 

1−α times as fast (referred to as speed competitive ratio) and tasks are scheduled 
using EDF; where α is a property of the task set. The parameter α is in the range 

(0, 0.5] and for each task, it holds that its utilization is no greater than α or greater 

than 1 − α on each processor type. Thus, the speed competitive ratio of FF-3C can 
never exceed 2. 

We also present several extensions to FF-3C; these offer the same performance 

guarantee and time-complexity but with improved average-case performance. Via 

simulations, we compare the performance of our new algorithms and two state-of- 

the-art  algorithms (and  variations of  the  latter).  We  evaluate algorithms based on 

(i) running time and (ii) the necessary multiplication factor, i.e., the amount of extra 

speed of processors that the algorithm needs, for a given task set, so as to succeed, 

compared to an optimal task assignment algorithm. Overall, we observed that our new 

algorithms perform significantly better than the state-of-the-art. We also observed that 

our algorithms perform much better in practice, i.e., the necessary multiplication fac- 

tor of the algorithms is much smaller than their speed competitive ratio. Finally, we 

also present a clustered version of the new algorithm. 
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1 Introduction 

 
Designers have been achieving significant speedup of particular tasks by using spe- 

cialized processing units (e.g., graphics processors for computer graphics or DSPs 

for signal processing). The advent of heterogeneous multiprocessors on a single chip 

facilitates this even more. Virtually all major manufacturers offer some kind of het- 

erogeneous multiprocessor implemented on a single chip (AMD Inc 2011a; AMD 



 

Inc 2011b; Freescale Semiconductor 2007; Gschwind et al. 2006; IBM Inc. 2005; 

IEEE Spectrum 2011; Intel Corporation 2011; Maeda et al. 2005; NVIDIA 2011; 

Texas Instruments 2011). Their use in embedded systems is non-trivial however be- 

cause many embedded systems have real-time requirements, whose satisfaction at 

run-time has to be proven/guaranteed a priori; this is a significant challenge for the 

use of heterogeneous multicores. The way tasks are scheduled significantly influ- 

ences whether their timing requirements are met. Unfortunately, for heterogeneous 

multiprocessors, no comprehensive toolbox of real-time scheduling algorithms and 

analysis techniques exists (unlike e.g., what exists for a uniprocessor). 

An algorithm for deciding whether or not a task set can be scheduled on a 

heterogeneous platform exists (Baruah 2004a) but it assumes that tasks can mi- 

grate. This assumption, however, is often unrealistic in practice, since processors 

with different functionalities typically have different instruction sets, register for- 

mats, etc. Thus, the problem of assigning tasks to processors and then schedul- 

ing them with a uniprocessor scheduling algorithm (i.e., without migration) is of 

much greater practical significance. It requires solving two sub-problems: (i) assign- 

ing tasks to processors and (ii) once tasks are assigned to processors, performing 

uniprocessor scheduling on each processor. The latter problem is well-understood, 

e.g., one may use an optimal scheduling algorithm1 such as EDF (Dertouzos 1974; 

Liu and Layland 1973)—the difficult part is the task assignment. 

Among known task assignment schemes for multiprocessors in general (i.e., not 

necessarily heterogeneous), (i) bin-packing heuristics (e.g., first-fit), (ii) Integer Lin- 

ear Programming (ILP) modeling, (iii) Linear Programming (LP) relaxation ap- 

proaches for ILP and (iv) dynamic programming techniques perform provably well. 

The task assignment problem on identical multiprocessors can be transformed  into 

a bin-packing problem. Bin-packing heuristics (Coffman et al. 1997) are popular for 

 
 

1An optimal scheduling algorithm is one which always succeeds in finding a schedule in which all the 

deadlines are met, if such a schedule exists. 



 

 

 
 

 

task assignment but unfortunately, the proof techniques used on identical multipro- 

cessors do not easily translate to heterogeneous multiprocessors. Traditionally, the 

literature offered no bin-packing heuristic for assigning real-time tasks on heteroge- 

neous multiprocessors. Instead, task assignment was modeled (Baruah 2004b, 2004c) 

as Zero-One ILP. Such a formulation can be solved directly but has high computa- 

tional complexity. In particular, the decision problem ILP is NP-complete and even 

with knowledge of the structure of the constraints in the modeling of heterogeneous 

multiprocessor scheduling, no polynomial-time algorithm is known (Garey and John- 

son 1979, p. 245). Via relaxation of ILP formulation to LP and certain tricks (Potts 

1985), polynomial time-complexity can be attained (Baruah 2004b, 2004c) (provided 

that polynomial-time LP solver is used to solve the relaxed LP formulation). Neither 

of the above two algorithms, however, attains low-degree (linear or quadratic) poly- 

nomial time-complexity. It is a well-known fact that the problem under consideration 

is equivalent to the problem of minimizing the makespan on unrelated machines. 

For this problem, when the number of machines is fixed, a fully polynomial time 

approximation scheme (FPTAS)2  was proposed in Horowitz and Sahni (1976). This 

scheme required time O(nm(nm/E)m−1) and space O((nm/E)m−1) where m refers 

to number of machines, n refers to number of jobs. Later, for the same problem (i.e., 

when the number of machines is fixed), a polynomial time approximation scheme 

was proposed in Lenstra et al. (1990). However, the space requirement was signifi- 

cantly improved compared to the algorithm proposed in Horowitz and Sahni (1976) 

and was bounded by a polynomial which was a function of the input, m, and log(1/E). 

The running time of the procedure was bounded by a function that is the product  of 

(n + 1)m/E where n is number of jobs. As we can see, neither of the above two algo- 
rithms achieves low-degree polynomial time- and space-complexity. Recently, Wiese 

et al. (2012) proposed a PTAS for the problem of assigning tasks on a computing 

platform comprising two or more types of processors. However, as any other PTAS, 

this algorithm also has high degree polynomial time- and space-complexity. 

In practice, many heterogeneous multiprocessors only use two types of processors. 

For example, AMD (AMD Inc 2010), NVIDIA (IEEE Spectrum 2011), Intel (In- 

tel Corporation 2011), FreeScale (Freescale Semiconductor 2007), TI (Texas Instru- 

ments 2011) offer such chips. Traditionally, processors of the first type were meant 

for general purpose computations and processors of the second type were meant for 

special purpose computations (such as graphics or signal processing), hence task as- 

signment was trivial. Today though, designers (Geer 2005) use processors of the sec- 

ond kind for wide range of computations and this makes task assignment non-trivial. 

Unfortunately, the literature did not provide any scheduling algorithm that took ad- 

vantage of this special structure. 

Therefore, in Andersson et al. (2010) (the conference version of this paper), we 

considered the problem of non-migratively scheduling (also referred to as parti- 

tioned scheduling) a  set of  independent implicit-deadline sporadic tasks,  to   meet 

 
 

2A PTAS is an algorithm which produces a solution that is within a factor 1 + E of being optimal where 
E > 0 is a design parameter. The run time of a PTAS is polynomial in the input size (e.g., number of jobs) 

and may be exponential in 1/E. A FPTAS is a PTAS with a running time that is polynomial both in input 

size and 1/E. 



 

 

all deadlines, on a heterogeneous multiprocessor where each processor is either of 

type-1 or type-2 (with each task having different execution time on  each  proces- 

sor type). We presented a new algorithm, FF-3C, for this problem—this algorithm 

uses a bin-packing heuristic for assigning tasks. FF-3C offered low time-complexity 

and provably good performance. Specifically, FF-3C offered (i) a time-complexity of 

O(n · max(m, log n) + m · log m), where n denotes number of tasks and m denotes 
number of processors and (ii) the guarantee that if a task set can be scheduled by 

an optimal task assignment algorithm to meet deadlines then FF-3C meets deadlines 

as well if the given processors are twice as fast (referred to as the speed competitive 

ratio) and tasks are scheduled using preemptive EDF scheduling algorithm. We also 

presented several extensions to FF-3C; these offered the same time-complexity and 

performance guarantee but in addition, they offered improved average-case perfor- 

mance. Via experiments with randomly generated task sets, we compared the perfor- 

mance of our algorithms and two established state-of-the-art algorithms (and varia- 

tions of the latter) (Baruah 2004b, 2004c). We evaluated algorithms based on (i) av- 

erage running time and (ii) the necessary multiplication factor, i.e., the amount of 

extra speed of processors the algorithm needs, for a task set, in order to succeed as 

compared to an optimal task assignment algorithm. Overall our new algorithms com- 

pared favorably to the state-of-the-art.3 In particular, in our experimental evaluations, 

one of our new algorithms, FF-4C-COMB, ran 12000 to 160000 times faster and 

had significantly smaller necessary multiplication factor than state-of-the-art (Baruah 

2004b, 2004c). 

It is known in bin-packing that packing small items (i.e., tasks with small uti- 

lizations) allows better performance bounds. Our conference paper, however, did 

not exploit this. Hence, this article extends our conference paper (Andersson et al. 

2010) by incorporating this idea among other things. The additional contributions 

in this paper can be summarized as follows: (i) we improve the analysis of FF-3C 

by incorporating the task parameters into analysis. Consider a task set in which, for 

each task, it holds that its utilization is no greater than α or greater than 1-α on a 

processor of type-1 and its utilization is no greater than α or greater than 1-α on 

a processor of type-2. For such task sets, we show that FF-3C succeeds in meeting 

all deadlines if it is possible to meet all deadlines by an optimal task assignment on 

a computer platform where each processor has the speed 1-α of the corresponding 

processor that FF-3C uses; (ii) we also prove the performance guarantee as a func- 

tion of α for the algorithms with improved average-case performance (i.e., FF-4C, 

FF-4C-NTC and FF-4C-COMB); (iii) we perform additional experiments to show 

the performance of our algorithms with this new analysis. We have also (re-)run the 

experiments that were carried out in Andersson et al. (2010) for evaluating the per- 

formance of our algorithms with state-of-the-art (Baruah 2004b, 2004c) and (iv) we 

also present a version of the new algorithm targeted for two-type platform where pro- 

cessors are organized into clusters and task migration is allowed between processors 

of the same cluster. 

 
 

3For a given problem instance, the necessary multiplication factor of an algorithm is upper bounded by 

its speed competitive ratio. If an algorithm has low necessary multiplication factor (compared to its speed 

competitive ratio) for the vast majority of task sets then it indicates that the algorithm performs well. 
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In the remainder of this paper, Sect. 2 offers necessary preliminaries. Section 3 

presents some previously known and some new results that we use in Sect. 4, where 

we formulate the new algorithm namely, FF-3C, and prove its performance. Sec- 

tion 5 considers time-complexity. Section 6 describes the enhancements to FF-3C to 

obtain better average-case performance and proves their performance. Section 7 of- 

fers experimental evaluation; Sect. 8 presents a clustered version of FF-3C and finally 

Sect. 9 concludes. 

 

 
2 Preliminaries 

 

In a computer platform with two unrelated types of processors, let P 1 be the set of 

type-1 processors and P 2 be the set of type-2 processors. The workload consists of τ , 

a set of implicit-deadline sporadic tasks (i.e., for each task, its deadline is equal to its 

minimum inter-arrival time) each of which releases a (potentially infinite) sequence 

of jobs. 

A task is assigned to a processor and all jobs released by this task must execute 
there. The utilization of task τi depends on the type of processor to which it is as- 

signed. The utilization of task τi is u1 if τi is assigned to a type-1 processor. Anal- 

ogously, the utilization of task τi  is u2 if τi  is assigned to a type-2 processor. Note 
that we allow u1 =∞ (resp., u2 = ∞) if task τi  cannot be assigned at all to a type-1 

i i 

(resp., type-2) processor. 

We assume that tasks are assigned unique identifiers. This allows two tasks  with 
the  same parameters to  be  in a  set.  For example, with  u1  = 0.2,  u2  = 0.4    and 

i i 
u1 2 

j = 0.2, uj = 0.4, we can form the set {τi, τj }. We also assume that  processors 

are assigned unique identifiers. This assumption is instrumental because if we sort 

processors in ascending order of their identifiers then we can be sure that, when ap- 

plying normal bin-packing schemes (e.g., first-fit) repeatedly on the same task set, 

with tasks ordered in the same way, the bin-packing scheme outputs the same task 

assignment for each run. 

Let τ [p] denote the set of tasks assigned to a processor p. Earliest-Deadline- 
First (EDF) is a very popular algorithm in uniprocessor scheduling (Liu and Layland 

1973). A slight adaptation of a previously known result (Liu and Layland 1973) gives 

us: 

 

Lemma 1 If all tasks in τ [p] are scheduled under EDF on a processor p (which is 

of type-z, where z ∈ {1, 2}) and 
J,

τ   τ p  u
z ≤ 1, then all deadlines are met. 

Then the necessary and sufficient set of conditions for schedulability on a parti- 

tioned heterogeneous multiprocessor with two types of processor is the following: 



 

 

Thus our problem of scheduling tasks on a heterogeneous multiprocessor with two 

types of processors is reduced to assigning tasks to processors such that the above 

constraints are satisfied. Yet, even in the special case of identical multiprocessors, 

this problem is intractable (Baruah 2004b). We therefore aim for a non-optimal algo- 

rithm of low-degree polynomial time-complexity which would still offer good per- 

formance. 

Commonly, the performance of an algorithm is characterized using the notion of 

the utilization bound (Liu and Layland 1973): an algorithm with a utilization bound 

of UB is always capable of scheduling any task set with a utilization up to UB so 

as to meet all deadlines. This definition has been used in uniprocessor scheduling 

(Liu and Layland 1973) and multiprocessors with identical processors (Andersson et 

al. 2001). However, it does not translate to heterogeneous multiprocessors, hence we 

rely on the resource augmentation framework to characterize the performance of the 

algorithm under design. 

The speed competitive ratio CPTA of a non-migrative algorithm A is defined as 

the lowest number such that for every task set τ and computing platform Π , it holds 

that if it is possible for a non-migrative algorithm to meet all deadlines of τ on Π , 

then algorithm A meets all deadlines of τ on a platform Π whose every processor is 

CPTA  times faster than the corresponding processor in Π ,.4 

A low speed competitive ratio indicates high performance; the best achievable is 1. 

If a scheduling algorithm has an infinite speed competitive ratio then a task set exists 

which could be scheduled (by another algorithm) to meet deadlines but would miss 

deadlines with the actually used algorithm even if processor speeds were multiplied 

by an “infinite” factor. Therefore, we aim for an algorithm with finite (ideally small) 

speed competitive ratio. 

We now introduce few notations that will be used later (from Sect. 4.3 onwards) 

while proving the speed competitive ratio of our algorithms. 

Let Π (|P 1|, |P 2|) denote a two-type heterogeneous platform comprising |P 1| 

processors of type-1 and |P 2| processors of type-2. Let Π (|P 1|, |P 2|) × (s1, s2) de- 
note a two-type heterogeneous platform in which the speed of every processor of 

type-1 is s1 times the speed of a type-1 processor in Π (|P 1|, |P 2|) and the speed of 

every processor of type-2 is s2 times the speed of a type-2 processor in Π (|P 1|, |P 2|) 
where s1  and s2  are positive real-numbers (i.e., s1 > 0 and s2 > 0). 

Let sched(A,τ,Π(|P 1|, |P 2|) × (s1, s2)) denote a predicate to signify that a task 
set τ meets all its deadlines when scheduled by an algorithm A on a two-type het- 

erogeneous multiprocessor platform—Π (|P 1|, |P 2|) × (s1, s2). The term meets all 
its deadlines in this and other predicates means ‘meets deadlines for every  possible 

arrival of tasks that is valid as per the given parameters of τ ’. 

We use sched(nmo-feasible,τ,Π(|P 1|, |P 2|) × (s1, s2)) to signify that there exists 
a non-migrative-offline-feasible preemptive schedule which meets all deadlines  for 

the specified system. Here, non-migrative schedule refers to a schedule in which all 

the jobs of a task execute on the same processor on which the task has been assigned 

 
 

4Our notion of speed competitive ratio in this paper is equivalent to that in previous work (Baruah 2004a). 

It differs from that used in Andersson and Tovar (2007b). Other authors refer to speed competitive ratio as 

resource augmentation bound. 



 

 

 

 

 

Fig. 1 The standard first-fit (or any other) bin-packing heuristics does not perform well for assigning tasks 

on two-type heterogeneous multiprocessor platform 

 

 

(also referred to as partitioned scheduling). In this predicate and other predicates, the 

term offline (also) encompasses the schedules generated by algorithms which (i) may 

use inserted idle times and/or (ii) are “clairvoyant” (i.e., use knowledge of future task 

arrival times). 

 

 
3 Useful results 

 
Bin-packing heuristics are popular for assigning tasks on identical (Grandpierre et 

al. 1999) and uniform (Andersson and Tovar 2007a; Hochbaum and Shmoys 1986) 

multiprocessors (where a processor x times faster executes all tasks x times faster) 

because they run fast and offer finite speed competitive ratio. Yet, straightforward ap- 

plication of bin-packing heuristics to heterogeneous multiprocessors with two types 

of processors performs poorly, as illustrated by Example 1. 

 

Example 1 Consider a set of 2k tasks and 2 processors (for an integer k ≥ 3). Pro- 
cessor P1  is of type-1 and processor P2  is of type-2. Tasks indexed 1 , .. .,k are char- 
acterized by  u1  = 1,  u2  = 1   and tasks indexed  k + 1 ,..., 2k  are characterized by 

i i k 
u1 1 2 

i  = k , ui  = 1. 
Tasks can be assigned such that the condition of Lemma 1 is met for both proces- 

sors, e.g., assigning tasks 1 , .. .,k  to P2 and the rest to P1 as shown in Fig. 1a. Yet, the 

application of a normal bin-packing algorithm (designed for identical multiprocessors 

such as First-Fit) causes failure. These algorithms consider tasks in a sequence and 
each time use the condition of Lemma 1 to decide if the task in consideration can be 

assigned to a processor. Under First-Fit, τ1 ends up on P1 (as processors are consid- 

ered by order of ascending index). Yet, at most one task of those indexed 1 ,. .. ,k  can 

be assigned there. Thus, the k − 1 ≥ 2 tasks indexed 2 , .. .,k  will have to be assigned 



 

 

i 

i 

to P2. Next, the bin-packing scheme tries to assign tasks k + 1 ,..., 2k to P2; none 
fits and the algorithm fails. 

Let us now provide the bin-packing algorithm with processors k − 1 times faster. 

Then, tasks indexed 1 , . . .,k − 1 will be assigned to P1 and the kth task to P2 before 

considering tasks indexed k + 1 ,...,  2k. Of the latter, many can be assigned to P 2 

but not all and, since none can be assigned to P 1, the bin-packing algorithm  would 
again fail as shown in Fig. 1b. 

This holds for any k ≥ 3. For k → ∞, we see that the speed competitive ratio of 
such bin-packing schemes is infinite. 

 

It can be seen that the cause of low performance of such a bin-packing scheme is 

that, by considering tasks one by one, it lacks a “global view” of the problem, hence 

may assign a task to a processor where it executes slowly. It seems a good idea to try 

to assign each task to the processor where it executes faster. We will use this idea; let 

us thus introduce the following definitions: 

P 1 is the set of type-1 processors and P 2 is the set of type-2 processors. The task 

set τ  is viewed as two disjoint subsets, τ 1  and τ 2. The set τ 1  consists of those tasks 

which run at least as fast on a type-1 processor as on a type-2 processor; τ 2 consists 

of all other tasks. In notation: 

 

 

 

 

 

We now list two useful observations along with their proofs. 
 

Lemma 2 If there is a task τi in τ 1 such that 1 < u1, it is then impossible to meet all 

deadlines with partitioning. Likewise for a task τi  in τ 2  with 1 < u2. 

Proof Intuitively, if the execution time of τi exceeds its deadline on processor type 

where it runs fastest, it cannot be assigned anywhere to meet deadlines. D 

 

Lemma 3  It is impossible to meet all deadlines if   

 

 
 

Proof  

 

The proof is by contradiction. Let τ be a task set for which Inequality (6) holds 

and for which a feasible partitioning exists. Given that τ is feasible, the set of 

constraints expressed by Inequalities (1) and (2) must hold. Then, respectively from 

those inequalities, we have: 

   



 

 

w ≥ wi   1   
∀i ∈ 

i   1 i=1 

 

 

However, from Inequalities (5) and (4) respectively: 

 

  

 

 
 

 

 

 

 

 

 

 

Then, respectively: 

 

 
 

 

 

 
  

 
 

We can combine Inequalities (11) and (12) into: 
 

 
 

 

  
 

 

Via summation of Inequality (13) over all p we obtain 
 

 
   

1
 

   

This contradicts Inequality 

(6). D 

 
We next highlight how the problem in consideration is related to fractional knap- 

sack problem, to help with proofs later. If you read this paper for the first time, you 

may want to skip this section now and revisit it later. 

 
Fractional Knapsack Problem:   A vector x has n elements. The problem instance is 
represented by vectors v and w of real numbers, arranged such that    

vi
 
i 

vi+1  

+ 

{1, 2,...,n−1}. (Intuitively, vi and wi may be thought of as, respectively, the “value” 
and “weight” of an element.) Consider the problem of assigning values to the ele- 
ments in vector x so as to maximize   

J,n
 
= xi  · vi  subject to 

J,n
 xi  · wi  ≤ CAP 

where xi is a real number such that 0 ≤ xi ≤ 1 and CAP is a given upper bound. 
(Intuitively, determine how much of each item to use such that cumulative value 

is maximized, subject to cumulative weight not exceeding some bound.) 



 

 

 
Lemma 4 An optimal solution to the Fractional Knapsack Problem is obtained by 

Algorithm 1. 

 
Proof  This is found in textbooks (Chap. 16.2 (Cormen et al. 2001)). D 
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u1 u1 

 
 

Algorithm 1: For fractional knapsack problem 
 

 

1 re-index tuples {vi, wi } by order of descending vi /wi 

2 for i=1 to n do xi := 0 end 

3 i := 1; SUMWEIGHT := 0; SUMVALUE := 0 

4 while (SUMWEIGHT + wi ≤ CAP) ∧ (i ≤ n) do 
5 

6 

7 

8 

9 end 

xi  := 1 

SUMWEIGHT := SUMWEIGHT + wi 

SUMVALUE := SUMVALUE + vi 

i:=i+1 

10 if i ≤ n then 
11 

12 

13 

14  end 

xi := (CAP − SUMWEIGHT)/wi 

SUMWEIGHT := SUMWEIGHT + wi · xi 

SUMVALUE := SUMVALUE + vi · xi 

 
 

 
 

For a given problem instance in our scheduling problem, we can create an instance 

of a fractional knapsack problem as follows: (i) for each task in our scheduling prob- 

lem, create a corresponding item in the fractional knapsack problem, (ii) the weight of 

an item in the fractional knapsack problem is the utilization of the corresponding task 

where the utilization here is taken for the processor on which the task executes fast 

and (iii) the value of an item in the fractional knapsack problem is how much lower 

the utilization of its corresponding task is when the task is assigned to the processor 

on which it executes fast as compared to its utilization if assigned to the processor 

on which it executes slowly. Informally speaking, we can see that if tasks could be 

split, then solving the fractional knapsack problem is equivalent to assigning tasks to 

processors so that the cumulative utilization of tasks is minimized. Again, informally 

speaking, we can then show that a task assignment minimizes the cumulative utiliza- 

tion of tasks assuming that (i) the cumulative utilization of tasks that are assigned to 

the processors on which they execute fast is sufficiently high and (ii) the tasks   that 
are assigned to the processors where they execute fast has a higher ratio (u2/u1) than 

i i 

the ones that are not. Lemmas 5 and 6 expresses this formally and proves it. 
 

Lemma 5 Consider n tasks and a heterogeneous multiprocessor conforming to the 

system model (and notation) of Sect. 2. Let x denote a number such that 0 ≤ x ≤ 
|P 1 |· (1 − y) where 0 <y ≤ 1 . Let A1 denote a subset of τ 1 such that 

 

 

    
1  · (1 − y) − x (15)  

 
2 u2 

and for every pair of tasks τi  ∈ A1 and τj  ∈ τ 1 \ A1 it holds that  
ui

 

i 

− 1 ≥  j  − 1. 
j 

Let A2 denote τ 1 \ A1. 

Let B1 denote a subset of τ 1 such that 
 



  
 
τi ∈B1 

    
u1  1 

P (1 − y) − x (16) ≤     · i 
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Let B2 denote τ \ B1. It then holds that: 

 

 

     
1

 

  
 

 

 

Proof Let us arbitrarily choose A1, B1 as defined. We will prove that this implies 

Inequality (17). Using Inequalities (15) and (16) we clearly get: 

 

 
 

With this choice of A1 and B1, let us consider different instances of the fractional 

knapsack problem: 

Instance1: CAP = left-hand side of Inequality (18). 
For each τi ∈ τ , create an item i with vi = u2 − u1 and wi = u1

 
i i i 

SUMVALUE1 = value of variable SUMVALUE when Algorithm 1 terminates with 
Instance1 as input. 

Instance2: CAP = left-hand side of Inequality (18). 
For each τi ∈ A1, create an item i with vi = u2 − u1 and wi = u1

 
i i i 

SUMVALUE2 = value of variable SUMVALUE when Algorithm 1 terminates with 
Instance2 as input. 

Instance3: CAP = right-hand side of Inequality (18). 
For each τi ∈ B1, create an item i with vi = u2 − u1  and wi = u1

 
i i i 

SUMVALUE3 = value of variable SUMVALUE when Algorithm 1 terminates with 
Instance3 as input. 

Instance4: CAP = right-hand side of Inequality (18). 
For each τi ∈ τ , create an item i with vi = u2 − u1 and wi = u1

 
i i i 

SUMVALUE4 = value of variable SUMVALUE when Algorithm 1 terminates with 
Instance4 as input. 

Observe that: 

O1:  In all four instances, it holds for each element that 
vi

 

wi 

O2: Instance1 and Instance2 have the same capacity. 

u2 

=  1  − 1. 
i 

O3: Although Instance2 has a subset of the elements of Instance1, this subset is the 

subset of those elements with the largest vi /wi —follows from definition of A1. 

O4:  CAP in Instance2 is exactly the sum of the weights of the elements in A1. 

O5:  From O1,O2,O3 and O4: SUMVALUE2 = SUMVALUE1. 
O6: Instance3 and Instance4 have the same capacity. 

O7:  Instance3 has a subset of the elements of Instance4. 

O8:  From O6 and O7: SUMVALUE3 ≤ SUMVALUE4. 

O9:  Instance4 has smaller capacity than Instance1. 
O10:  Instance4 has the same elements as Instance1. 



  
 
τi ∈B1 

    
u1  1 

P (1 − y) − x (16) ≤     · i 

 

 

O11: From O9 and O10: SUMVALUE4 ≤ SUMVALUE1. 

O12: From O8 and O11: SUMVALUE3 ≤ SUMVALUE1. 

13:  From O12 and O5: SUMVALUE3 ≤ SUMVALUE2. 



 

 

2 

Using O13 and the definitions of the instances of A1 and B1 and observing that the 

capacity of Instance2 and Instance3 are set such that all elements in either instance 

will fit into the respective “knapsack”, we obtain: 

 
  
 

 

 

Now, observing that τ = τ 1 ∪ τ 2 = B1 ∪ B2 gives us: 
 

    
2
  

  

  

  

 

 

Combining Expression (19) and (20) gives us: 
 

 

 

 

Rearranging terms and exploiting A2 = τ 1\A1 yields: 
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This is the statement of the lemma. D 

 
Lemma 5 considers τ . We can however apply this on only a subset of τ . Let us 

assume that H 1  and  H 2  are two disjoint subsets of  τ . By applying Lemma 5 on 

τ \ (H 1 ∪ H 2) and then adding the same sum to both sides of Inequality (17), we get: 

 
Lemma 6 Consider n tasks and a heterogeneous multiprocessor conforming to the 

system model (and notation) of Sect. 2. Let x denote a number such that 0 ≤ x ≤ 

|P 1|· (1 − y) where 0 <y ≤ 1 . Let A1 denote a subset of (τ 1 \ (H 1 ∪ H 2)) such that 
 



  
 
τi ∈B1 

    
u1  1 

P (1 − y) − x (23) ≤     · i 
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and for every pair of tasks τi  ∈ A1 and τj  ∈ (τ 1  \ (H 1 ∪ H 2)) \ A1 it holds  that 

 u
2 

u2
 1 

u1  − 1 ≥ 
u1   − 1. Let A2 denote (τ \ (H 1 ∪ H 2))\A1. 

i j 

Let B1 denote a subset of τ 1 \ (H 1 ∪ H 2) such that 
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Let B2 denote (τ \ (H 1 ∪ H 2))\B1. It then holds that: 

  
   

 

 

 

Lemma 6 is used while proving the performance of our new algorithm. 

 

 
4 The FF-3C algorithm and its speed competitive ratio 

 
4.1 The FF-3C algorithm 

 
The new algorithm, FF-3C, is based on two ideas. 

Idea1: A task should ideally be assigned to the processor type where it runs faster 

(termed “favorite” type). 

Idea2: A task with utilization above 1  on its non-favorite type of processor must 

be assigned to its favorite type of processor. This special case of Idea1 is stated 

separately because this facilitates creating an algorithm with the desired speed com- 

petitive ratio (which is upper bounded by 2): Since we will compare the performance 

of our new algorithm versus every other algorithm that uses processors of at most 1
 

the speed, following Idea2 ensures that each of those tasks is assigned to the same 

corresponding processor type as under every other successful assignment algorithm. 

Based on these ideas and the concepts of τ 1 and τ 2 (defined in Sect. 2), we also 

define the following disjoint sets: 

 
 

 

 

 

 

A task is termed to be heavy on type-1 processors (resp., type-2 processors) if its 

utilization on that processor type strictly exceeds 1 . Intuitively, H 1 and H 2 identify 

those tasks which should be assigned based on Idea2. H 1 stands for “Set of tasks with 

type-1 processors as favorite and are heavy if they are assigned to their non-favorite 

processor type (type-2)”. Analogous for H 2. (Obviously, a task in H 1 or H 2 might 

also be heavy on its favorite processor type.) Also, intuitively, F 1 and F 2 identify 

those tasks which should be assigned based on Idea1. F 1 stands for “Set of tasks that 

have type-1 processors as their favorite and are not heavy on either processor type”. 

 
 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analogous for F 2. From the definitions of H 1, H 2, F 1, F 2 (and Inequalities (4) 

and (5)), we have: 

 

 

 

 

 

 

 

 

Algorithm 2 shows the pseudo-code of the new algorithm FF-3C. The intuition be- 

hind the design of FF-3C is that first we assign tasks to their favorite processors which 

would be heavy on other processor type (Lines 4–5). Then we assign the non-heavy 

tasks to their favorite processors (Lines 6–7). Then, if there are remaining non-heavy 

tasks, these have to be assigned to processors that are not their favorite (Lines 12 

and 20). 



 

 

Table 1  An example task set to illustrate the working of FF-3C algorithm 
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FF-3C is named after the fact that each task has three chances to be assigned using 

first-fit: (i) according to Idea2 (to avoid making a task heavy), (ii) assignment to its 

favorite and (iii) assignment to its non-favorite processor type. 

As already mentioned, the FF-3C algorithm performs several passes with first-fit 

bin-packing. It uses the subroutine first-fit (see Algorithm 3 for pseudo-code) 

which takes two parameters, a set of tasks to be assigned using first-fit bin-packing 

and a set of processors to assign these tasks, and it returns the set of successfully 

assigned tasks. FF-3C keeps track of processor utilizations in a global vector U, ini- 

tialized to zero (Line 2). 

 
4.2 An example to illustrate the working of FF-3C 

 
In this section, we illustrate the working of FF-3C with an example. 

u 

u 

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 

0.60 0.70 0.14 0.35 0.98 0.10 0.25 0.60 0.15 

0.80 0.06 0.48 0.25 0.75 0.15 0.85 0.20 0.10 

 



 

 

Example 2 Consider a two-type heterogeneous multiprocessor platform with one 

processor of type-1 (namely, P1) and two processors of type-2 (namely, P2 and P3) 

and a task set as shown in Table 1. Let us see how FF-3C assigns the task set 

to  processors.  The  task  set  τ   is  partitioned  as  follows:  τ 1  = {τ1, τ3, τ6, τ7} and 

τ 2 = {τ2, τ4, τ5, τ8, τ9}—see Inequalities (4). On Line 1, FF-3C (pseudo-code shown 
in Algorithm 2) forms sets H 1, H 2, F 1 and F 2 (as defined by Inequalities (24)–(27)) 

as follows: H 1 = {τ1, τ7}, H 2 = {τ2, τ5, τ8}, F 1 = {τ3, τ6} and F 2 = {τ4, τ9}. 
On Line 4, FF-3C calls first-fit sub-routine (shown in Algorithm 3) to assign tasks 

in H 1 = {τ1, τ7} on processor P1  (of type-1). The first-fit sub-routine (on Line 2  in 
Algorithm 3) sorts the tasks in H 1 in descending order of u2/u1, i.e., (τ7, τ1). The 

i i 

sub-routine successfully assigns both the tasks in H 1 to processor P1. After assigning 
H 1 tasks, the remaining utilization of processor P1 is 0.15. 

On Line 5, FF-3C calls first-fit sub-routine to assign tasks in H 2 = {τ2, τ5, τ8} 
on processor P2  and P3  (of type-2). The first-fit sub-routine sorts the tasks in H 2 in 
ascending order of u2/u1, i.e., (τ2, τ8, τ5). The sub-routine successfully assigns τ2 

i i 

and τ8  to processor P2  (but fails to assign τ5  to P2) and τ5  to processor P3. After as- 
signing H 2 tasks, the remaining utilization of processor P2 is 0.74 and the remaining 

utilization of processor P3  is 0.25. 

On Line 6, FF-3C calls first-fit sub-routine to assign tasks in F 1 = {τ3, τ6} on 
processor P1 (of type-1). The first-fit sub-routine sorts the tasks in F 1 in descending 
order of u2/u1, i.e., (τ3, τ6). The sub-routine successfully assigns the task τ3 to P1 but 

i i 

fails to assign τ6  to P1  as there is not enough capacity left in P1. After assigning τ3, 
the remaining utilization of processor P1 is 0.01. Hence, when first-fit returns on 

Line 6, we have: F 11 = {τ3}. 
On Line 7, FF-3C calls first-fit sub-routine to assign tasks in F 2 = {τ4, τ9} on pro- 

cessors P2  and P3  (of type-2). The first-fit sub-routine (on Line 2 in Algorithm 3) 
sorts the tasks in F 2 in ascending order of u2/u1, i.e., (τ9, τ4). The sub-routine   suc- 

i i 

cessfully assigns both the tasks in F 2 to processor P2. After assigning τ9  and τ4, the 
remaining utilization of processor P2 is 0.39. Hence, when first-fit returns on Line 7, 

we have: F 22 = {τ4, τ9}. 

The condition on Line 10, i.e., (F 11 /= F 1) ∧ (F 22 = F 2) is TRUE and hence, 

new task set F 12 is formed on Line 11, i.e., F 12 = {τ6}. FF-3C on Line 12 calls 
first-fit sub-routine to assign tasks in F 12 to processors P2 and P3 (of type-2). The 

first-fit sub-routine successfully assigns the single task τ6 of F 12 to processors P2. 

The remaining utilization of processor P2 is 0.24. Since the sub-routine managed to 

assign all tasks in F 12 to type-2 processors, FF-3C declares SUCCESS on Line 13. 

So, the final assignment of tasks to processors looks as follows: τ1, τ3 and τ7 are 

assigned to processor P1 (of type-1), τ2, τ4, τ6, τ8 and τ9 are assigned to processor 

P2 (of type-2) and τ5 is assigned to processor P3 (of  type-2). 

 
4.3 The speed competitive ratio of FF-3C 

 
In this section, we will prove the speed competitive ratio of FF-3C. We will derive its 

speed competitive ratio in terms of a task set parameter, namely α. The parameter α 

is a property of the task set on which FF-3C is applied and it reflects the values that 



 

 

the task utilizations on either processor types range over. Specifically, 0 < α ≤ 0.5 
is the smallest number such that, for each task (in the task set on which FF-3C is 

applied), it holds that its utilization is no greater than α or greater than 1 − α on a 

processor of type-1 and its utilization is no greater than α or greater than 1 − α on a 
processor of type-2. 

 

Lemma 7  Let α denote a real number: 

 

 

 

 

Let us derive a new task set τ , from the task set τ as follows: 
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If for τ , it holds that: 

 
 

 
 

 
 

  
 

  
 

 

 

 

then 
 

 

 

 

 

 

Proof An equivalent claim is that if a task set τ is not schedulable under FF-3C over 

a computing platform Π then the task set τ , would likewise be unschedulable, using 

any algorithm, over platform Π . We will prove this by contradiction. 

Combining the definitions of H1-F2 (Inequalities (28)–(31)), the definition of α 

(Inequality (32) in Lemma 7)  and the  assumptions of task  set  τ  (Inequality  (34) 

in Lemma 7), we obtain: 



 

 

 
 

 
 

Assume that FF-3C failed to assign τ on Π but it is possible (using an algorithm 

OPT) to assign τ , on Π . Since FF-3C failed to assign τ on Π , it must have declared 

FAILURE. We explore all possibilities for the failure of FF-3C to occur: 



 

 

i 

i 

Failure on Line 4 in FF-3C: It has been shown (López et al. 2004) that if first-fit (or 

any other reasonable allocation algorithm5) is used and 

  
 

 

 

 

then the task set is successfully assigned on an identical multiprocessor platform; 

where m is the number of processors and umax is the maximum utilization of any 

task in the given task set. 

Clearly, from trivial arithmetic, we have m(1 − umax) ≤ m − (m − 1)umax and 
this gives us the following: if first-fit (or any other reasonable allocation algorithm) 

is used and 

 

 

 

 

then the task set is successfully assigned on an identical multiprocessor platform. 

Applying the above expression to the tasks in H 1 for which it holds that ∀τi  ∈ 

H 1 : u1 ≤ α (shown later in the proof, immediately after Expression (54)) and to the 
type-1 processors, we obtain: 

  
 

 

 

 

Since FF-3C failed (because first-fit failed), it must hold that 
 

 

 

Therefore, OPT cannot assign all tasks in H 1 to P 1. Hence, it assigns at least one 

task τi ∈ H 1 to P 2. From Expression (33) and (35) we get u2, 
> 1, hence (from 

Lemma 2) OPT produces an infeasible assignment—a contradiction. 
 

Failure on Line 5 in FF-3C: This results in contradiction (symmetric to the case 

above). 
 

Failure on Line  9  in  FF-3C:  From  the  case,  we  obtain  that  F 11 ⊂ F 1  and 

F 22 ⊂ F 2. Therefore, when executing Line 6 in FF-3C, there was a task τfailed1 ∈ F 1 
which could not be assigned on any processor in P 1 and when executing Line 7 in 

FF-3C there was a task τfailed2 ∈ F 2 which could not be assigned on any processor 
in P 2. Hence: 



 

 

  

 

 

 

where U [p] is the current utilization of a processor p. 
 

 

5A reasonable allocation algorithm is an algorithm that fails to assign a task only when there is no processor 

in the system that can hold the task (López et al. 2004). Allocation algorithms such as first-fit and best-fit 

are two examples of reasonable allocation algorithms. 



 

 

failed1 
We  know from Expression (37) that  u1

 

u2 
≤ α  and from Expression (38) that 

failed2 ≤ α. Using these on Inequalities (39) and (40) gives: 

  

  

 

 

Observing that tasks assigned on processors in P 1 are a subset of τ 1 and using In- 

equality (41) gives us: 
 

  
u1

   

  

With analogous reasoning, Inequality (42) gives us: 
 

  
u2

 

   

Applying Expression (33) on Inequalities (43) and (44), we obtain: 
 

  
u1,   
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Observing these two inequalities and Lemma 3 gives us that OPT fails to  assign 

τ , on Π . This is a contradiction. 

 
Failure on Line 15 in FF-3C: From the case, we obtain that F 11 ⊂ F 1 and 

F 22 = F 2. Therefore, when executing Line 12 there was a task τfailed ∈ (F 1 \ F 11) 
for which an assignment attempt was made on each of the processors in P 2. But all 

of these attempts failed. Therefore: 
 

    
 

 

We can add these inequalities together and get: 

 

 

 (48) 
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We know that the tasks assigned to processors in P 2 are H 2 ∪ F 22 ∪ τ F 12assigned 

where τ F 12assigned is the set of tasks that were assigned when executing Line 12 of 

FF-3C. We also know that τ F 12assigned ⊂ F 12. Hence, Inequality (48) becomes: 
 



 

 

u2 
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failed 

τi ∈(H 2∪F 22∪F 12) 
i  >  P 2 · 1 − u2

 



 

 

failed 

failed1 
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From Expression (37), we obtain u2
 ≤ α. Thus, the above inequality becomes: 

 

   

 

We also know that FF-3C has executed Line 6 and when it performed first-fit bin- 

packing, there must have been a task τfailed1 ∈ (F 1 \ F 11) which was attempted to 

each of the processors in P 1. But all of them failed. Note that this task τfailed1 may be 
the same as τfailed or it may be different. Because it was not possible to assign τfailed1 

on any of the processors in P 1, we have: 
 

  
 

 

Adding these inequalities together gives us: 

 

 

 (51) 

 
 

 

 

We know that the tasks assigned to processors in P 1 just after executing Line 6 in FF- 

3C are H 1 ∪ F 11. Also, we know from Expression (37) that u1
 ≤ α. Therefore, 

we have: 
  

  
 

Let us now discuss OPT, the algorithm which succeeds in assigning the task set τ , on 

platform Π . Let us discuss tasks in H 1. From Expression (35), we know that: 
 

 

Using Expression (33) gives us: 

  

 

If ∃τi ∈ H 1 : u1 > 1 − α, then ∃τi ∈ H 1 : u1, 
> 1 and using τi ∈ H 1 and  Inequal- 

i i 

ity (4) gives us ∃τi  ∈ H 1 ⊆ τ 1  :  u2,  
> 1. Hence such a task cannot be assigned by 

OPT on any processor of Π  (of any type) and this is a contradiction. Hence we  can 
assume that ∀τi ∈ H 1 : u1 ≤ 1 − α, to be precise, ∀τi ∈ H 1 : u1 ≤ α—see Expres- 

i i 

sion (34). Combining this and Expression (33), we get: 
 

  

 

Using Inequalities (54) and (55) yields that every task in H1 is assigned to 

processors in P 1  by  OPT.  With  analogous  reasoning,  we  have  that  every task 



 

 

in H 2 is assigned to a processor in  P 2.  Let  τ OP T 1  denote  the  tasks (except 

those from H 1) assigned to processors in P 1 by OPT. Analogously, let τ OP T 2 denote 
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the tasks (except those from H 2) assigned to processors in P 2 by OPT. Therefore 

(using Inequalities (1) and (2)), we know that: 
 

  

 
  

 

 
 

Using Expression (33) gives us: 

  

  

  
 

 

 

We can now reason about the inequalities we obtained about the assignments of FF- 

3C and OPT. Rewriting Inequalities (52) and (58) respectively yields: 
 

 
 

 

 
 

We can see that Inequalities (60) and (61) with x = 
J,

τ    H 1 u
1  and y = α  ensure 

that  the  assumptions  of  Lemma  6  are  true,  given  also  the  ordering  of  F 1  during 

assignment over P 1  (Line 2 in Algorithm 3), which ensures that ∀τi  ∈ F 11, ∀τj  ∈ 
u2 u2 

F 12 : ≥ . Using Lemma 6 gives us: 
1 1 
i j 

 

   

 
  

 

 

  
 

Applying Inequalities (58) and (59) to the inequality above gives us: 
 

  
1
 

 

 

 

Applying Inequalities (49) and (52) to left-hand side of Inequality (62) gives us: 
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This is a contradiction. 

  

 

Failure on Line 23 in FF-3C: A contradiction results—proof analogous to previous 

case. 

 
We see that all cases where FF-3C declares FAILURE lead to contradiction. 

Hence, the lemma holds. D 

 
Note: The value of α must depend on the utilization of tasks in the task set on which 

FF-3C is applied. To apply the above result for a task assignment problem, α must 

be assigned the smallest value so that Expression (34) holds for the task set. As the 

value of α increases, the speed competitive ratio of FF-3C also increases. 

In Lemma 7, we used α to denote a bound on the utilization of a task set (τ ) 

on which we apply FF-3C and we stated a relation between the utilization of one task 

set (τ ) used for FF-3C and another task set (τ ,) used for an optimal task assignment 

algorithm. It is sometimes convenient to express similar relationship but with an ex- 

pression of a bound on the utilization of a task set on which we apply the optimal 

algorithm. For this purpose, we use α, to denote a bound on the utilization of a  task 
set (τ ,) on which the optimal algorithm is applied. Let α, = 1 

α
α . Algebraic rewriting 

− 
1
 

gives us α =   α,
 . With this α,, note that the expression u1,  

=    
ui

 can be rewrit- 
1+α, i 1−α 

1, 

ten as: u1  = u1,  
× (1 − α,

 ) which can be rewritten as: u1  =  
ui

 . Also, with this 
i i 1+α, i 1+α, 

α,, the expression u1 ≤ α can be rewritten as: u1,  
≤ α,. Applying this on Lemma  7 
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gives us: 
 

Lemma 8  Let α, denote a real number: 

 

 

Let us derive a new task set τ from the task set τ , as follows: 
 

 
 

 

If for τ ,, it holds that: 

 

 

  
 

 

 

then 

 
 



 

 

Proof  The proof follows from the discussion above. D 

 
The above result can also be expressed in terms of the additional processor speed 

required by FF-3C as compared to that of an optimal algorithm for scheduling a given 

task set. 
 

Theorem 1  Let α, denote a real number: 0 < α, ≤ 1. 

If for a task set τ ,, it holds that: 

  

  

  
 

then 

 
 

 

Proof  The theorem directly follows from Lemma 8. D 

 

Note: The value of α, must depend on the utilization of tasks in the task set (τ ,) on 

which the optimal algorithm is applied. To apply the above results for a task assign- 

ment problem, α, must be assigned the smallest value so that Expression (66) holds 

for a given task set. 

 
Theorem 2 The speed competitive ratio of FF-3C is at most 2. 

 

Proof  The proof follows from applying α, = 1 in Theorem 1. D 

Note: Our results continue to hold if we replace first-fit with any reasonable alloca- 

tion algorithm that has a resource augmentation bound of 1 − α. Another example of 
such an algorithm is best-fit. We have used first-fit for ease of explanation. 

 

 
5 Time-complexity of FF-3C 

 
We show that the time-complexity of FF-3C is a low-degree polynomial function of 

the number of tasks (n) and processors (m). By inspection of the pseudo-code for 

FF-3C (Algorithm 2), the function first-fit is invoked at most 5 times. Within each of 

those invocations: 

• Sorting is performed over a subset of τ (i.e., at most n tasks). The time-complexity 

of this operation is O(n · log n) e.g., using Heapsort. 
• Sorting is performed over all processors, (i.e., m processors). The time complexity 

of this operation is O(m · log m). 

• First-fit bin-packing is performed whose time complexity is O(n · m). 



 

 

Thus the time-complexity of the algorithm is at most 

 
 

 

 
 

6 Extensions to FF-3C 

 
We now discuss how to enhance FF-3C to attain better average-case performance. 

 
6.1 The FF-4C algorithm 

 
One drawback of FF-3C is the early declaration of failure while trying to assign heavy 

tasks. If heavy tasks could not be assigned to their favorite processor type then FF-3C 

declares failure (on Lines 4 and 5 in Algorithm 2) without even trying to assign them 

on their non-favorite processor type. In an extreme case, FF-3C would fail with a 

system composed of (i) a heavy task of type H1 (resp., of type H2) that could fit on 

a processor of type-2 (resp., type-1) and (ii) zero processors of type-1 (resp., type-2) 

and infinite processors of type-2 (resp., type-1). FF-4C, an enhanced version of FF- 

3C, overcomes this drawback and gives better average-case performance than FF-3C. 

The algorithm FF-4C, upon failing to assign tasks in H1 (resp., H2) on processors of 

type-1 (resp., type-2), tries to assign those unassigned tasks onto their non-favorite 

processors of type-2 (resp., type-1). 

The pseudo-code of FF-4C is shown in Algorithm 4. Lines 1–3 of FF-4C are the 

same as that of Lines 1–3 of FF-3C (shown in Algorithm 2) and Lines 21–40 of FF- 

4C are same as that of Lines 6–25 of FF-3C. Lines 4–5 of FF-3C are replaced as 

shown in Lines 4–20 of FF-4C. 

 
6.1.1 The speed competitive ratio of FF-4C 

 
We first prove the superiority of FF-4C in terms of set of tasks that it can successfully 

schedule as compared to that of FF-3C and then we prove the speed competitive ratio 

of FF-4C. 

 
Theorem 3 The task sets that are schedulable by FF-4C are a strict superset of those 

that are schedulable by FF-3C. 

 
Proof  To prove that the claim is true, we need to show that: 

1. whenever FF-4C fails, FF-3C would also fail and 

2. there is at least one task set τ for which FF-3C fails to assign τ on Π whereas 

FF-4C succeeds in assigning τ on Π . 

The intuition for proving 1. is that if H 11 = H 1 and H 22 = H 2 (i.e., the code be- 
tween Lines 7–11 and 15–19 are not executed in FF-4C) then the behavior of FF-4C 
is exactly the same as that of FF-3C. For proving 1., we consider all the cases where 



 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FF-4C declares FAILURE and show that FF-3C will also declare FAILURE in each 

of those cases. 

 
Failure on Line 10 in FF-4C: This implies that FF-4C could not assign all the tasks 

in H 1 to their favorite processor type P 1 and hence only few tasks (H 11) were 

assigned to P 1  and the rest were attempted to be assigned to their non-favorite pro- 



 

 

2 

cessors P 2 and failed. In such a case, FF-3C would have declared failure on Line 4 

(in Algorithm 2) itself as it would also fail to assign all the tasks in H 1 to P 1 since it 

also uses the same first-fit algorithm (of Algorithm 3) that is used by FF-4C. 

Failure on Line 18 in FF-4C: When the algorithm fails here, there are two scenarios 

that need to be considered with respect to the assignment of tasks in H 1 (earlier in 

the algorithm): (i) all the tasks in H 1 were successfully assigned to P 1      (indicated 

by boolH 1 = FALSE, i.e., Lines 7–11 were not executed at all) and (ii) only few 
tasks from H 1 could be assigned to P 1 and hence the rest were assigned to P 2 

(indicated by boolH 1 = TRUE). For the first scenario, the proof is symmetric to the 
previous case (i.e., proof given for ‘Failure on Line 10 in FF-4C’; FF-3C would have 

declared FAILURE on Line 5 itself as it would also fail to assign all the tasks in H 2 

to processors in P 2). For the second scenario, the proof is analogous to the previous 
case as FF-3C would have declared FAILURE on Line 4 (in Algorithm 2) itself as 

soon as a task from H1 was failed to be assigned to P 1. 

Failure on Lines 24, 30 and 38 in FF-4C: When the algorithm fails on one of these 
lines, our proof depends on the assignment of tasks in H 1 (resp., H 2) earlier in the 
algorithm, i.e., whether all the tasks of H 1 (resp., H 2) have been successfully as- 

signed to their favorite processors, i.e., P 1 (resp., P 2) or only few tasks could be 
assigned to their favorite processors and the rest to the non-favorite processors, i.e., 

H 11 on P 1 and H 12 on P 2 (resp., H 22 on P 2 and H 21 on P 1). In the algorithms, 
this information is captured using a boolean variable, boolH 1 (resp., boolH 2). For 

example, boolH 1 = FALSE indicates that all the tasks of H 1 were assigned on their 
favorite processors P 1 and boolH 1 = TRUE implies that only few tasks from H 1, 
i.e., H 11 could be assigned on their favorite processors P 1 and the rest, i.e., H 12, 

were assigned on their non-favorite processors P 2. Analogous explanation holds for 

boolean variable boolH 2. Hence, with the help of these two boolean variables we 

have captured all the possible scenarios for FF-4C to fail (on one of the Lines 24, 

30 or 38) in Table 2 along with the corresponding proof to look for in the paper 

(as the proofs provided earlier in the paper can be reused to reason about these sce- 

narios). 

For proving 2., we illustrate the superiority of FF-4C over FF-3C with an example 

task set. D 
 

Example 3 Consider a platform comprising a processor P1 of type-1 and a processor 

P2 of type-2, a task set τ = {τ1, τ2, τ3} shown in Table 3. 
It is trivial to observe that a schedulable assignment exists for this task set on the 

given platform: assign τ1 and τ3 to P1  and τ2  to P2. We now simulate the  behavior 

of FF-4C and FF-3C for this task set on the given platform and show that FF-4C 

succeeds whereas FF-3C fails. 

First, let us look at FF-4C. On Line 1 (see Algorithm 4), FF-4C groups the tasks 

as follows: H 1 = {τ1, τ2} and F 1 = {τ3}. 
On Line 5, FF-4C calls first-fit sub-routine to assign tasks in H 1 to processor P1 

of type-1. The sub-routine succeeds in assigning task τ1 to P1 and fails to assign the 
other task τ2  to P1  as there is not enough capacity left on P1. Hence, after executing 

Line 5 of FF-4C, we have: H 11 = {τ1}. After assigning τ1 to P1, the remaining 

utilization on P1 is 1 − E. 



 

 

τ1 
1 

τ2 
1 

τ3 
1 

1 

1 

1 
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Table 2  Summary of proof of speed competitive ratio of FF-4C for different cases 
 

 

boolH1 boolH2 Explanation of the scenario Use the reasoning of 
 

 

FALSE FALSE All the tasks of H 1 and H 2 were assigned to their favorite 

processors P 1 and P 2 respectively. This indicates that 

the behavior of FF-4C is same as that of FF-3C in this 

case (i.e., code on Lines 7–11 and 15–19 of FF-4C is not 
executed). Hence, the reason for failure of FF-4C on Line 

24, 30 and 38 is same as that of failure of FF-3C on Line 

9, 15 and 23 

FALSE    TRUE     Only few tasks of H 2 (H 22) could be assigned on P 2 and 

the rest (H 21) were assigned to P 1. In such a case, FF-3C 
would have failed on Line 5 itself during the assignment 

of H 2 on P 2 as it fails to assign all the tasks from H 2 on 

P 2 and does not even try to assign the failed tasks of H 2 

on P 1 

TRUE     FALSE     This case is analogous to the previous case where    only 

few tasks of H 1 (H 11) could be assigned to P 1 and rest 

(H 12) were assigned to P 2. In this case, FF-3C would 

have failed on Line 4 itself during the assignment of H 1 

on P 1 as it fails to assign all the tasks from H 1 on P 1 and 

does not even try to assign the failed tasks of H 1 on P 2 

TRUE    TRUE     This case is similar to one of the two previous cases, 

i.e., boolH1 = FALSE ∧ boolH2 = TRUE and boolH1 = 

TRUE ∧ boolH2 = FALSE 

Proof of Lemma 7, 

‘Failure on Line 9, 15 

and 23’ respectively 
 

 

 

 
Proof of Theorem 3, 

‘Failure on Line 18 in 

FF-4C’ 

 

 

 
Proof of Theorem 3, 

‘Failure on Line 10 in 

FF-4C’ 

 
 

 
Proof of Theorem 3, 

‘Failure on  Line  10 

in FF-4C’ and ‘Failure 

on Line 18 in FF-4C’ 

respectively 
 

 

 

 

Table 3 An example task set 

schedulable by FF-4C but not 

by FF-3C 

τi u1 2 

i ui belongs to 

2 + E 

2 + E 

2 − E 

2 + 2E H1 

2 + 2E H1 

2 F1 
 

 

 

 

On Line 8, it creates H 12 = {τ2}. 
On Line 9, it successfully assigns τ2  to processor P2  using first-fit sub-routine. 

After assigning τ2 to processor P2; the remaining utilization on P2 is 1 − 2E. 

On Line 21, it successfully assigns τ3 (of F 1) to processor P1 using first-fit sub- 

routine. After assigning τ3  to P1, the remaining utilization on P1  is 0. 

So, the final assignment of tasks is as follows: τ1 and τ3 are assigned to P1 and  τ2 

is assigned to P2—hence, FF-4C succeeds. 

Now let us look at FF-3C. FF-3C groups the tasks as follows: H 1 = {τ1, τ2} and 

F 1 = {τ3}. FF-3C fails to assign both the tasks in H 1 to processor P1 of type-1 since 

the sum of their utilization (( 1 + E) + ( 1 + E) = 1 + 2E) exceeds 1.0. 
2 2 

Hence FF-3C declares FAILURE on Line 4 (see Algorithm 2). 



 

 

2 

Thus, we showed that: 1. whenever FF-4C fails, FF-3C also fails and 2. there is at 

least one task set τ for which FF-3C fails to assign τ on Π whereas FF-4C succeeds 

in assigning τ on Π . Hence the theorem holds. D 
 

Now we prove the speed competitive ratio of FF-4C. 
 

Lemma 9  Let α denote a real number: 0 <α ≤ 1 . 

Let us derive a new task set τ , from the task set τ as follows: 
 

 

 

 

 

 

 

then 

 

 

 

Proof  We know from Lemma 7 that 

 

 

 

Also, from Theorem 3 we know that if FF-3C succeeds to assign a task set τ on a 

computing platform Π (|P 1|, |P 2|) then FF-4C succeeds as well (on the same plat- 
form). Formally, this can be stated as: 

 

 

Combining Expression (67) and (68) gives us: 

 

 

Hence, the proof. D 

 

Similar to Lemma 7, the above lemma uses α to denote a bound on the utilization 

of a task set (τ ) on which we apply FF-4C and states a relation between the utilization 

of one task set (τ ) used for FF-4C and another task set (τ ,) used for an optimal task 

assignment algorithm. Now, similar to Lemma 8, let us express this relationship with 

α,, an expression of a bound on the utilization of a task set (τ ,) on which we   apply 

the optimal algorithm. 
 



 

 

Lemma 10  Let α, denote a real number: 0 < α, ≤ 1. 

Let us derive a new task set τ from the task set τ , as follows: 



 

 

If for τ ,, it holds that: 
 

 

 

 

 

 

 

then 
 

 

 

 

Proof  The reasoning is analogous to the proof of Lemma 8. D 

 
Now, we express the above result in terms of the additional processor speed re- 

quired by FF-4C as compared to that of an optimal algorithm for scheduling a given 

task set. 
 

Theorem 4  Let α, denote a real number 0 < α, ≤ 1. 

If for a task set τ ,, it holds that: 
 

 

 

 

 

 

 

then 
 

 

 

 

 

 

 

Proof  The theorem directly follows from Lemma 10. D 

 
Theorem 5 The speed competitive ratio of FF-4C is at most 2. 

 

Proof  The proof follows from applying α, = 1 in Theorem 4. D 

6.1.2 Time-complexity of FF-4C 

 
We can use the same reasoning provided for the time-complexity of FF-3C in Sect. 5 
for FF-4C as well. FF-4C uses the first-fit sub-routine at most seven times (see Al- 
gorithm 4) and each time (i) sorting is performed over at most n tasks whose com- 

plexity is O(n · log n) (ii) sorting is performed over m processors whose complexity 
is O(m · log m) and (iii) first-fit bin-packing takes O(n · m) time. Hence, the time- 

complexity of FF-4C is: O(n · max(m, log n) + m · log m). 

6.2 The FF-4C-NTC algorithm 

 

In FF-3C (and also in FF-4C), tasks are categorized as H 1, F 1, H 2 and F 2 and this 

makes it possible to prove the speed competitive ratio the way we do it. Unfortunately, 

this categorization can misguide the algorithm to assign a task in a way which causes 
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a failure later on. For example, consider a task set with two tasks τ1 with u1 = 0.5, 
u2 1 2 

1 = 1.0 and τ2  with u2 = 1.0, u2 = 1.0 + E and a platform comprising a processor 
P1  of type-1 and P2  of type-2. Clearly, there exists a schedulable assignment of the 
given task set on the given platform: assign τ1 to P2 and τ2 to P1. Now let us see 

what FF-3C does for this problem instance. FF-3C classifies τ1 and τ2 as H 1 and 

assigns τ1 to P 1 and then tries to assign τ2 to P 1 but fails. FF-4C also exhibits 

similar behavior: it assigns τ1 to P 1 and then it attempts to assign τ2 to P 2 after 

an unsuccessful attempt to assign it to P 1 and fails. Hence, both FF-3C and FF-4C 
fails on this task set. Therefore, we present a new algorithm namely, FF-4C-NTC to 

handle such cases. 

The algorithm FF-4C-NTC classifies tasks as τ 1 and τ 2 as defined by Inequali- 

ties (4) and (5), and for each class, assigns tasks in order of decreasing u2/u1  for i i 
type-1 processors and decreasing u1/u2  for type-2 processors, respectively with  ties 

i i 

broken favoring the task with lower identifier. FF-4C-NTC does not classify τ 1 into 

H 1 and F 1 nor τ 2 into H 2 and F 2 (as was the case with FF-3C and FF-4C): It only 
considers favorite/non-favorite processor types and disregards the information (used 
by both FF-3C and FF-4C) whether a task is heavy or not. The pseudo-code of FF- 

4C-NTC is shown in Algorithm 5. The algorithm first tries to assign tasks from τ 1 

on their favorite processors of type P 1 using first-fit and if any of these tasks could 

not be assigned then it tries to assign them on their non-favorite processor type P 2— 

and analogously for τ 2. For the above example, FF-4C-NTC assigns τ1 to P2 and τ2 

to P1. 

FF-4C-NTC also has the same time-complexity of O(n · max(m, log n)+m · log m) 
as the previously discussed algorithms. 

 
 

 
 

 
 

This algorithm will be used as a sub-routine in our next algorithm, namely FF-

4C-COMB, discussed in Sect. 6.3. We will not use FF-4C-NTC as a stand-alone 

algorithm and hence we will not discuss its speed competitive ratio. 
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6.3 The FF-4C-COMB algorithm 

 
As discussed in earlier sections, for some task sets FF-4C succeeds whereas FF-4C- 

NTC fails and for other task sets FF-4C-NTC succeeds whereas FF-4C fails. FF-4C- 

COMB exploits this fact by making use of both the algorithms to get the best out of 

the two—pseudo-code is listed in Algorithm 6. It first attempts to assign the task set 

with FF-4C and, upon failing, it tries with FF-4C-NTC. 

 
6.3.1 The speed competitive ratio of FF-4C-COMB 

 
In this section, we establish the speed competitive ratio of FF-4C-COMB. 

 

Lemma 11  Let α denote a real number: 0 <α ≤ 1 . 

Let us derive a new task set τ , from the task set τ as follows: 
 

 

 

 

If for τ , it holds that: 

 

 

 
 
 
 
 
 
 
 

 
 

then 

 
 



 

 

Proof An equivalent claim is that if a task set τ is not schedulable under FF-4C- 

COMB over a computing platform Π then the task set τ , would likewise be un- 

schedulable, using any algorithm, over computing platform Π . We will prove this by 

contradiction. 

Assume that FF-4C-COMB has failed to assign τ on Π but it is possible (using an 

algorithm OPT) to assign τ ,  on Π . Since FF-4C-COMB failed to assign τ  on Π , it 

follows that FF-4C-COMB declared FAILURE. We explore the only possibility for 

this to occur: 

 
Failure on Line 5 in FF-4C-COMB: For FF-4C-COMB to declare FAILURE on 

this line, FF-4C must have failed on Line 1 (in Algorithm 6). But, from Lemma 9 we 

know that 

sched
(
nmo-feasible,τ ,,Π 

( 
P 1 , P 2 

)) 
⇒ sched

(
FF-4C,τ,Π 

( 
P 1 , P 2 

))
 

Since FF-4C declared FAILURE, it must hold that τ , is (nmo-) infeasible on Π . 

Hence, OPT produces an infeasible assignment—this is a contradiction. D 

 
As done previously for FF-3C and FF-4C, the following lemma expresses this 

relationship with α,, an expression of a bound on the utilization of a task set (τ ,) on 

which we apply the optimal algorithm. 

 

Lemma 12  Let α, denote a real number: 0 < α, ≤ 1. 

Let us derive a new task set τ from the task set τ , as follows: 
 

u1, 
∀τi ∈ τ , : u1 =     i 

 u2, 

∧ u2 =    i  

 

If for τ ,, it holds that: 

i 
1 + α, 

i 
1 + α, 

 

∀τi ∈ τ , : 
(
u1,  

≤ α,
) 

∨ 
(
1 < u1, )  

and 
i i 

∀τi ∈ τ , : 
(
u2, 

≤ α,
) 

∨ 
(
1 < u2, )

 
i i 

 

then 

sched
(
nmo-feasible,τ ,,Π 

( 
P 1 , P 2 

)) 
⇒ sched

(
FF-4C-COMB,τ,Π 

( 
P 1 , P 2 

))
 

Proof  The reasoning is analogous to the proof of Lemma 8. D 

 
The following theorem expresses the above result in terms of the additional pro- 

cessor speed required by FF-4C-COMB as compared to that of an optimal algorithm 

for scheduling a given task set. 

 

Theorem 6  Let α, denote a real number 0 < α, ≤ 1. 



 

 

If for a task set τ ,, it holds that: 

 

 

 
 

 

then 

 

 

 

 
 

 

 

Proof  The theorem directly follows from Lemma 12. D 

 
Theorem 7 The speed competitive ratio of FF-4C-COMB is at most 2. 

 

Proof  The proof follows from applying α, = 1 in Theorem 6. D 

6.3.2 Time-complexity of FF-4C-COMB 

 

We know that both FF-4C and FF-4C-NTC have the same time-complexity of O(n · 

max(m, log n) + m · log m). FF-4C-COMB (pseudo-code in Algorithm 5) calls FF-4C 
first and upon failing it calls FF-4C-NTC. Hence, time-complexity of FF-4C-COMB 

is also O(n · max(m, log n) + m · log m). 

 
7  Experimental setup and results 

 

After seeing the theoretical bounds of our algorithms, we wanted to evaluate their 

performance and compare it with state-of-the-art. For this purpose, we looked at the 

following issues: (i) how well our algorithms perform compared to state-of-the-art in 

successfully assigning the tasks to processors, i.e., how much faster processors our 

algorithms need in order to assign a task set compared to state-of-the-art algorithms?, 

(ii) how fast our algorithms run compared to state-of-the-art algorithms? and (iii) how 

much pessimism is there in our theoretically derived performance bounds? 

In order to answer these questions, we performed two sets of experiments. First, 

we compared the performance of our algorithms with two state-of-the-art algorithms 

(Baruah 2004b, 2004c). Both Baruah (2004b, 2004c) proposed solutions with speed 

competitive ratio of 2. Hence, we evaluated the performance of our algorithms with 

Baruah (2004b, 2004c) by setting α, = 1 when their speed competitive ratio becomes 
2 as well. We observed that, in our experiments with randomly generated task   sets, 

our algorithms perform better in practice than state-of-the-art. We also observed that 

our algorithms run significantly faster compared to state-of-the-art. Then, we simu- 

lated our algorithms for different values of α,. We observed that even for this im- 

proved analysis case (where the speed competitive ratio is quantified with task set 



 

 

parameters as opposed to a constant number (Andersson et al. 2010)), they still per- 

form better than indicated by the speed competitive ratio. We now discuss both the 

cases in detail. 
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7.1 Comparison with state-of-the-art 

 
We implemented two versions of Baruah (2004c) (SKB-RTAS and SKB-RTAS-IMP) 

and two versions of Baruah (2004b) (SKB-ICPP and SKB-ICPP-IMP). SKB-RTAS 

and SKB-ICPP follow from the corresponding papers; the -IMP variants are our 

improved versions of the respective algorithms (see description below). We imple- 

mented all algorithms using C on Windows XP on an Intel Core2 (2.80 GHz) ma- 

chine. For SKB-algorithms we also used a state-of-art LP/ILP solver, IBM ILOG 

CPLEX (IBM Inc. 2011). 

In Baruah (2004c), a two step algorithm to assign tasks on a heterogeneous plat- 

form is proposed. The algorithm is as follows: 

1. The assignment problem is formulated as ILP and then relaxed to LP. The LP 

formulation is solved using an LP solver. Tasks are then assigned to the processors 

according to the values of the respective indicator variables in the solution. Using 

certain tricks (Potts 1985), it is shown that there exists a solution (for example, 

the solution that lies on the vertex of the feasible region) to the LP formulation in 

which all but at most m − 1 tasks are integrally assigned to processors where m is 
the number of processors. 

2. The remaining at most m − 1 tasks are integrally assigned on the remaining ca- 
pacity of the processors using “exhaustive enumeration”. 

While assigning the remaining tasks in Step 2, the author illustrates with an example 

that the utilization of the task under consideration is compared against the value 1 − z 
for assignment decisions on any processor, where z (returned by the LP solver) is 
the maximum utilized fraction of any processor—SKB-RTAS implements this (pes- 

simistic) rule. Since the actual remaining capacity of each processor6  can easily  be 

computed from the LP solver solution, SKB-RTAS-IMP uses that, instead of 1 − z, 
to test assignments, for improved average-case performance. 

In Baruah (2004b), author proposes a two step algorithm, namely taskPartition, to 

assign tasks on a heterogeneous platform. The algorithm is as follows: 

1. This step is similar to Step 1 of (Baruah 2004c) as described above. 

2. The remaining at most m − 1 tasks are assigned using the bipartite matching tech- 

nique such that at most one task from the m − 1 remaining tasks is assigned to 
each processor. 

Let r1, r2,..., rk denote the distinct utilization values in the given task set sorted in 

the increasing order, where 1 ≤ k ≤ m × n. The two step algorithm is called repeat- 

edly by a procedure, namely optSrch, with different values of ri ,  1 ≤ i ≤ k. When 
taskPartition is called by optSrch with a ri , all the utilizations that are greater   than 

ri  are set to infinity. The procedure optSrch checks for the condition U
ri

 ≤ 1 − ri 

 
 

6The actual remaining capacity on processor p is 1 
J,

 
: i,p = 1 ui,p where ui,p represents the utilization 

of τi on processor p (Baruah 2004c). The symbol xi,p  represents the indicator variable and the value 

of 0 ≤ xi,p ≤ 1 indicates how much fraction of task τi  must be assigned to processor p. The term 1 − 
J,

i:xi,p =1 ui,p gives an accurate estimation of the remaining capacity on processor p as it ignores the 
fractionally assigned tasks on that processor whereas z is pessimistic since it includes those tasks as well. 
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in order to determine whether a feasible mapping has been obtained by taskPartition 

where U
ri

 denotes the value of objective function of the vertex solution returned 

by LP solver—SKB-ICPP implements this feasibility test. This pessimistic condition 

severely impacts performance. Hence, SKB-ICPP-IMP implements a better feasibil- 

ity condition which checks that the sum of utilizations of all the tasks assigned to each 

processor does not exceed its computing capacity thereby improving its performance 

significantly in practice. 

The necessary multiplication factor is defined as the amount of extra speed of pro- 

cessors the algorithm needs, for a given task set, so as to succeed, as compared to 

an optimal task assignment algorithm. We assess (i) the average-case performance of 

algorithms by creating a histogram of necessary multiplication factor and also (ii) the 

average run-time of each algorithm. Since all the SKB-algorithms use CPLEX, an 

external program, for assigning tasks to processors (for solving LP), they are penal- 

ized by the startup time and reading of the problem instance from an input file—we 

refer to this overhead as CPLEX overhead. We deal with this issue by measuring the 

average time for CPLEX overhead and subtract it from the measured running time of 

those algorithms that rely on CPLEX. In particular, SKB-ICPP and SKB-ICPP-IMP 

invoke CPLEX multiple times for a single task set. So, we record, for such algorithms 

for each task set how many times CPLEX was invoked and subtract as many times 

the average CPLEX overhead. 

We have considered the following as CPLEX overhead: (i) starting CPLEX from 

our program through a system call and (ii) reading of an input file (i.e., problem in- 

stance) by CPLEX. We measured the total time that CPLEX takes to start and read 

the largest input file possible for our simulation (i.e., problem involving 12 tasks and 

6 processors). We measured this time for 200 iterations (same as the number of task 

sets for which we have computed the average execution times) and took the average 

of these measurements. This average value was subtracted (i) once for every measure- 

ment of SKB-RTAS and SKB-RTAS-IMP and (ii) r times for every measurement of 

SKB-ICPP and SKB-ICPP-IMP where r is the number of different ui,j values the 

algorithm tries for each task set. 

The problem instances (number of tasks, their utilizations and number of proces- 

sors of each type) were generated randomly. Each problem instance had at most 12 

tasks and at most 3 processors of each type. We term a task set critically feasible if it 

is feasible on a given heterogeneous multiprocessor platform but rendered infeasible 
if u1  and u2  of all the tasks in the system are increased by an arbitrarily small factor. 

i i 

To obtain critically feasible task sets from randomly generated task sets, we perform 

the assignment with ILP as discussed in Baruah (2004b) and obtain z—the utilization 
of the most utilized processor, and then multiply all the task utilizations by a factor 

of 1  and repeatedly feed back to CPLEX till 0.98 <z ≤ 1. 
We ran each algorithm on 15000 critically feasible task sets to obtain the necessary 

multiplication factor. The pseudo-code for determining the necessary multiplication 

factor for task sets is shown in Algorithm 7. We input a task set to algorithm A (where 

A can be: FF-3C, FF-4C, FF-4C-NTC, FF-4C-COMB, SKB-RTAS, SKB-RTAS-IMP, 

SKB-ICPP or SKB-ICPP-IMP) and if the algorithm cannot find a feasible mapping, 

we increment the multiplication factor by a small step, i.e., STEP = 0.01 and divide 

the original u1  and u2  of each task by the new multiplication factor (whose value  is 
i i 



 

 

mult_fact 

 
 

Algorithm 7: Pseudo-code to determine necessary multiplication factor for   an 

algorithm 
 

 

1   STEP := 0.01 

2 for i = 1 to 15000 do //for each critically feasible task set 
3 found_mult_fact := false 

4 mult_fact := 1 
5 Let curr_τ denote the critically feasible task set under consideration 

6 while (found_mult_factor /= true) do 

7 Multiply the utilizations of all the tasks in curr_τ by a factor of 1.0 ; let temp_τ 
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10 

11 

12 

13 

14 

15 

16  end 

 

 

 

 

 

 

 

 

 

end 

denote the resulting task set 

result := mappingAlgo(temp_τ , assign_info) // assign_info is an output 

variable which contains the task assignment information 

if (result = SUCCESS) then 

found_mult_fact := true 
print mult_fact, assign_info 

else 

mult_fact := mult_fact + STEP 
end 

 
 

 

 

 

 
 

 

 
 



 

 

Fig. 2 Comparison of necessary multiplication factor for all the SKB-algorithms (if an algorithm has low 

necessary multiplication factor for many task sets then the algorithm performs well) 

 

 
now 1.01) and feed this task set to algorithm A. These steps (multiplication factor 

adjustment and feeding back of the derived task set) are repeated till the algorithm 

succeeds, which gives us the necessary multiplication factor. This entire procedure is 

repeated for each of the 15000 task sets. With this procedure, we obtain a histogram 

of necessary multiplication for different algorithms. 

Figure 2 shows the comparison of all the versions of SKB-algorithms. The SKB- 

RTAS-IMP and SKB-ICPP-IMP with their improved tests (to check the feasibility 

of task assignment to processors) give better average-case performance compared 



 

 

 

 
 

 
 

 

Fig. 3 Comparison of necessary multiplication factor for all of our FF-algorithms (if an algorithm has 

low necessary multiplication factor for many task sets then the algorithm performs well) 

 
 

 
 

 

 
 

Fig. 4 Comparison of necessary multiplication factor for three algorithms (if an algorithm has low nec- 

essary multiplication factor for many task sets then the algorithm performs well) 

 
 

to their counterparts. As we can see, SKB-RTAS-IMP gives the best performance 

among all the SKB-algorithms. 

Figure 3 shows the performance of all our FF-algorithms. As we can see, FF- 

3C performs poorly compared to the other three, and FF-4C-COMB gives the best 

performance among all the FF-algorithms as it makes use of both FF-4C and FF-4C- 

NTC algorithms (whose performance lies between FF-3C and FF-4C-COMB). 

Since SKB-RTAS-IMP offered the best necessary multiplication factor among all 

the SKB-algorithms and FF-4C-COMB offered the best necessary multiplication fac- 

tor among all the FF-algorithms, we only depict these along with FF-3C since it is 

the baseline of all our algorithms in Fig. 4. As seen in our experiments, the neces- 

sary multiplication factor of FF-4C-COMB never exceeded 1.35 whereas for FF-3C 



 

 

Table 4 Average execution 

time of our algorithms (in 

microseconds) 

 
Multiplication 

factor 

 
New Algorithms 

Measured average execution time 
 

 FF-3C FF-4C FF-4C-NTC FF-4C-COMB 

1.00 0.84 0.73 0.97 1.06 

1.25 0.53 0.55 0.54 0.56 

1.50 0.49 0.48 0.46 0.48 

1.75 0.49 0.46 0.40 0.42 

2.00 0.51 0.47 0.43 0.50 

 
Table 5  Average execution time of SKB-algorithms (in microseconds) with the CPLEX overhead 

 
 

Multiplication 

factor 

Old Algorithms 

Measured avg. execution time including CPLEX overhead 
 

 SKB-RTAS SKB-RTAS-IMP SKB-ICPP SKB-ICPP-IMP 

1.00 32477.35 32562.27 394753.66 369170.79 

1.25 31665.74 31525.82 393745.52 325010.43 

1.50 31747.28 31740.34 381912.81 297383.55 

1.75 31749.19 31598.63 337205.23 290102.20 

2.00 31752.65 31781.70 291689.45 287692.93 

 
 

Table 6 Average execution time of SKB-algorithms (in microseconds) after subtracting the CPLEX over- 

head 
 

Multiplication 

factor 

 

Old Algorithms 

Measured avg. execution time excluding CPLEX overhead 
 

 SKB-RTAS SKB-RTAS-IMP SKB-ICPP SKB-ICPP-IMP 

1.00 14263.68 14348.60 164551.87 161689.21 

1.25 13452.07 13312.15 163565.96 149459.82 

1.50 13533.61 13526.67 161373.08 140211.38 

1.75 13535.52 13384.96 151003.87 137302.53 

2.00 13538.98 13568.03 137989.63 136490.37 

 
 

and SKB-RTAS-IMP this factor is close to 2.00 and 1.60 respectively. Therefore, FF- 

4C-COMB offers significantly better average-case performance compared to state- 

of-the-art. 

We also measured the running times of each algorithm for the same task set. Ta- 

ble 4 shows the running time of FF-algorithms, Table 5 shows the running time of 

SKB-algorithms with CPLEX overhead and finally Table 6 shows the running time 

of SKB-algorithms after subtracting the measured CPLEX overhead (from the values 

shown in Table 5). We deal with the CPLEX overhead in the SKB-algorithms for 

fair evaluation. We can see that, in the experiments, our proposed algorithms all run 

in less than 1.1 µs (Table 4) but SKB-algorithms have running times in the range  of 



 

 

13500 to 160000 µs (Table 6). Hence all of our algorithms run at least 12000 times 

faster. 

 

7.2 Evaluation of our algorithms for different values of α, 

 

We evaluated the performance of our algorithms for different values of α,. We ran- 
domly generated 100000 critically feasible task sets. Each critically feasible task set 

had at most 25 tasks and at most 2 processors of each type.7 We then classified the 

critically feasible task sets based on the value of α, of each task set into ten groups— 

for a given critically feasible task set, if α, ≤ 0.1 then the task set belongs to the first 

group, if 0.1 < α, ≤ 0.2 then the task set belongs to the second group, . . .  , and finally 

if 0.9 < α, ≤ 1.0 then the task set belongs to the tenth group. Then, we ran each  al- 
gorithm, i.e., FF-3C, FF-4C, FF-4C-NTC and FF-4C-COMB for the above generated 

critically feasible task sets and observed their necessary multiplication factors. We 

plotted the histogram of necessary multiplication factors for each of these algorithms 

for task sets in each of the groups. Since the experiments in previous subsection have 

confirmed that FF-4C-COMB performs better compared to all other algorithms and 

since FF-3C is the baseline of all our algorithms, we only depict these. 

Figure 5 shows the performance of FF-3C and FF-4C-COMB algorithms. We 

only show the results obtained for five cases, i.e., 0.1 < α, ≤ 0.2, 0.3 < α, ≤ 0.4, 

. . . , 0.9 < α, ≤ 1.0. The observations for other cases follow the same trend. As   we 
can see from the graphs, for the vast majority of task sets, the algorithms perform 

much better than indicated by their speed competitive ratio, even when we consider 

the speed competitive ratio as a function of task set parameters. 

 

 
8 Clustered scheduling 

 
Having seen the excellent performance of FF-3C—both its performance bound and 

its performance in experimental evaluation—we now consider a heterogeneous mul- 

tiprocessor platform where processors have two types (just like before) but processors 

of each type are organized into clusters of processors. Such a problem has been stud- 

ied in the past in the context of identical multiprocessor platform (Qi et al. 2010). 

However, to the best of our knowledge, no such work exists for heterogeneous plat- 

forms with two types of processors. We define a cluster of processors as a subset of 

all processors such that (i) all processors in the cluster are of the same type, (ii) each 

cluster has equal number of processors and (iii) a task can migrate between proces- 

sors in the same cluster. Note that a consequence of (ii) is that there is no “remain- 

ing cluster” with fewer processors. Related to (iii), the assumption that migration is 

allowed, we assume that an optimal migrative scheduling algorithm is used to sched- 

 
 

 

7Since we only evaluate FF-algorithms in this batch of experiments and do not run SKB-algorithms which 

make use of linear programming solvers thereby taking much longer to output the solution, we could 

afford to set a higher bound on the number of tasks in each problem instance compared to previous set of 

experiments. 
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Fig. 5 Performance of FF-3C and FF-4C-COMB algorithm in terms of necessary multiplication factors 
for different values of α, (if an algorithm has low necessary multiplication factor for many task sets then 

the algorithm performs well) 

 

 

ule the tasks in each cluster; the research literature offers several such algorithms 

for implicit-deadline sporadic scheduling, for example, the class of Pfair schedul- 

ing algorithms (Anderson and Srinivasan 2000), sporadic EKG with timeslot being 

the greatest common divisor of minimum inter-arrival times (Andersson and Bletsas 

2008) and the DP-WRAP framework (Levin et al. 2010). 

For the purpose of discussing scheduling on such a platform, let k denote the 

number of processors in a cluster. Clearly, we have 
|P 1| 

clusters containing type-1 

processors and we have 
|P 2| 

clusters containing type-2 processors. Let α denote a 

real number: 0 <α ≤ 1 . Let τ denote the task set such that: 
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We want to schedule the task set τ on computing platform Π (with clusters as men- 

tioned above) with migration allowed between processors in the same cluster. We 

formulate this problem as follows: 

Partition the set of tasks into 
|P 1|

 
|P 2| 

partitions where 
 

1 

k     of the partitions are said to be of type-1 
2 

k     of the partitions are said to be of type-2 
1 

– for each type-1 partition p, it holds that: 
J,

τj ∈p uj ≤ k 

– for each type-2 partition p, it holds that: 
J,

τ p u
2 ≤ k 

Once partitions have been formed, it is straightforward to assign tasks to processors 
(all tasks in a type-1 partition are assigned to a cluster of type-1 processor; analo- 

gously for type-2). Let us consider the special case where it holds that τ = F 1 ∪ F 2. 
The partitioning problem described above can be rewritten as follows: 

Partition the set of tasks into 
|P 1|

 
|P 2| 

partitions where 
 

1 

k     of the partitions are said to be of type-1 
2 

k     of the partitions are said to be of type-2 

– for each type-1 partition p, it holds that: 
J,

τj ∈p 

 

 

 

u1 

k   ≤ 1 

– for each type-2 partition p, it holds that: 
J,

τj ∈p 

u2 

k   ≤ 1 

Because of τ = F 1 ∪ F 2, we have that all tasks are “light”. Hence if the utilization 
of each task would be divided by k then all tasks would still be light. This, combined 
with Lemma 7, gives us that: 

– If it is possible to partition the set of tasks into 
|P 1|

 
|P 2| 

partitions where 
1 

k     of the partitions are said to be of type-1 
2 

k     of the partitions are said to be of type-2 

– for each type-1 partition p, it holds that: 
J,

 
j ∈ 

– for each type-2 partition p, it holds that: 
J,

 
j ∈ 

 

 

 

1 

j  ≤ 1 
2 

j  ≤ 1 

– then FF-3C can be used to assign tasks to partitions (where a partition corresponds 
to a processor in FF-3C) and this outputs a partitioning of the set of tasks into 
|P 1| 

k    + 
–  |P 1| 
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k     partitions where 

k     of the partitions are said to be of type-1 
2 

k     of the partitions are said to be of type-2 
– for each type-1 partition p, it holds that: 

J,
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Hence, we can see that FF-3C can be used to solve the problem of scheduling 

implicit-deadline sporadic tasks on a heterogeneous multiprocessor with clustering. 

Clearly, we do not have to use FF-3C; we can use any of its (average-case perfor- 

mance) improved versions, i.e., FF-4C, FF-4C-NTC, FF-4C-COMB. 

 

 

9 Discussion and conclusions 

 

The heterogeneous multiprocessor computational model (i.e., unrelated parallel ma- 

chines) is more general than identical or uniform multiprocessors, in terms of the sys- 

tems that it can accommodate. Generally, this called for algorithms with large compu- 

tational complexity, for provably good performance. We partially solve the issue via a 

scheduling algorithm for multiprocessors consisting of two unrelated processor types. 

This restricted model is of great practical interest, as it captures many current/future 

single-chip heterogeneous multiprocessors (AMD Inc 2010; Gschwind et al. 2006; 

Maeda et al. 2005; Freescale Semiconductor 2007). Our proposed algorithm, FF-3C, 

is low-degree polynomial in time-complexity, i.e., faster than algorithms based on 

ILP (or its relaxation to LP). We also proved that the speed competitive ratio of FF- 
3C is   1

 
−α where 0 <α ≤ 1 . 

Further, we designed variations of FF-3C which provide better average-case per- 

formance and have the same time-complexity and the same speed competitive ratio 

as that of FF-3C. We would like to mention that, in our experimental evaluations, 

one of our new algorithms, FF-4C-COMB, runs 12000 to 160000 times faster and 

has significantly smaller necessary multiplication factor than state-of-the-art algo- 

rithms (Baruah 2004b, 2004c). We also presented a version of FF-3C targeted for 

two-type heterogeneous multiprocessors where processors are organized into clus- 

ters and where migration of tasks is allowed between processors of the same cluster. 
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