Partitioned EDF scheduling on a few types of
unrelated multiprocessors*

Andreas Wiese Vincenzo Bonifaci Sanjoy Baruah

Abstract

A polynomial-time approximation scheme (PTAS) is derived for the parti-
tioned EDF scheduling of implicit-deadline sporadic task systems upon unrelated
multiprocessor platforms that are comprised of a constant number of distinct types
of processors. This generalizes earlier results showing the existence of polynomial-
time approximation schemes for the partitioned EDF scheduling of implicit-deadline
sporadic task systems on (1) identical multiprocessor platforms, and (2) unrelated
multiprocessor platforms containing a constant number of processors.

1 Introduction

Embedded and real-time systems are increasingly coming to be implemented upon
multicore platforms. As the computational demands made by ever more complex ap-
plications continue to increase, there is a need for enhanced performance capabilities
from these platforms. Initially, the approach adopted for obtaining such enhanced per-
formance was to increase core counts. Soon, however, chip makers began to distinguish
themselves not by offering more general-purpose cores, but by providing specialized
hardware components that accelerate particular computations. Examples include mul-
ticore CPUs with specialized graphics processing cores, specialized signal-processing
cores, specialized floating-point units, customizable FPGAs, etc. Computing platforms
such as these with specialized components are called heterogeneous or unrelated mul-
tiprocessor platforms.

We consider here the partitioned preemptive EDF scheduling of implicit-deadline
sporadic task systems (also known as Liu & Layland (LL) task systems [11]) on such
unrelated multiprocessor platforms. This is a difficult problem — even on simpler identi-
cal multiprocessor platforms (in which all the processors are assumed to have the same
capabilities), it is known (see, e.g., [12]) that such partitioning is highly intractable:
NP-hard in the strong sense. Optimal partitioning strategies are therefore unlikely
to have polynomial-time implementations. Techniques are known (see, e.g., [2]) for
representing this partitioning problem as an integer linear program (ILP). Although
solving an ILP exactly takes exponential time, approximation techniques [10] can be
used to solve these ILPs approximately, in polynomial time. These approximation

*This was I&TgXed on February 13, 2012.

algorithms make the following worst-case guarantee: any task system that can be parti-
tioned by an optimal algorithm on a given heterogeneous multiprocessor platform can
be partitioned by these algorithms upon a platform in which each processor is twice as
fast.

PTAS’s. A Polynomial-Time Approximation Scheme (PTAS) is an algorithm for
solving certain kinds of optimization problems approximately. A PTAS for a given
optimization problem takes as input a parameter § > 0 and an instance of the optimiza-
tion problem and, in time polynomial in the problem size (although not necessarily in
the value of §), produces a solution that is within a factor (1 + J) of being optimal.

For the case of identical multiprocessors, results by Hochbaum and Shmoys [6] can
be directly applied to obtain a PTAS for partitioning LL systems upon a given multi-
processor platform, which makes the following guarantee: Given a 6 > 0, an LL task
system, and an identical multiprocessor platform, if an optimal partitioning algorithm
can partition the task system upon the platform then the PTAS in [6] can partition the
same task system upon a platform containing the same number of processors, each of
which is (1 + J) times as fast.! This result was later generalized [7] to uniform mul-
tiprocessors, which are multiprocessor platforms in which each processor may have
a different speed but executing different tasks on a faster processor speeds up their
executions by the same constant multiplicative factor. However, it is known that no
such PTAS can exist for unrelated multiprocessors unless P = NP. In fact, [10] has
shown that under the assumption that P # NP, no polynomial-time algorithm with an
approximation ratio smaller than 3/2 can exist for this problem. To our knowledge,
the approximation ratio from [10] of two, mentioned above, is the best approximation
result known for heterogeneous multiprocessors.

Limited unrelated multiprocessors. The lower bound of 3/2 from [10] provides
strong evidence that we are unlikely to be able to approximately partition LL tasks on
unrelated multiprocessors to an arbitrary constant degree of accuracy, in polynomial
time. However, Andersson, Raravi and Bletsas [1] argue persuasively in a recent pa-
per that it is interesting to study heterogeneous multiprocessor platforms in which the
number of distinct fypes of processors is a (relatively small) constant. They point out
the plethora of currently-available and soon-to-be-available multicore CPUs with two
distinct types of processors — typically one or a few general-purpose processing cores
and one or more specialized graphics processors, or general-purpose processing cores
and “synergistic” processors for executing SIMD instructions. Such example multicore
CPUs provide motivation to consider the problem of partitioning LL task systems upon
unrelated multiprocessors in which all the processors are of a relatively small number
of distinct types. We refer to such multiprocessors as limited unrelated multiproces-
sors.

Equivalently, if the PTAS fails to partition the task system upon a given identical multiprocessor platform
then no algorithm can partition it upon a platform of the same number of processors, each 1/(1 + §) times
as fast.

This research. Given this increasing industrial trend towards CPUs that can be mod-
eled as limited unrelated multiprocessor platforms, it is interesting to ask whether one
can exploit specific properties of such platforms to design polynomial-time partitioning
algorithms that have a better worst-case approximation ratio than the currently small-
est known value of two (or indeed, better than the lower bound of 3/2) for the general
problem? In this paper, we answer this question in the affirmative, by demonstrating
the existence of a PTAS for partitioning LL task systems on platforms with a constant
number of distinct processor types.

A note. The PTAS we present in this paper has been designed to demonstrate that
partitioning algorithms of polynomial-time complexity exist, that offer arbitrarily good
approximations to optimality. We have not attempted to make this PTAS exhibit good
run-time performance “in practice.” For example, for ease of explanation we have at
several points chosen to perform certain steps in a computationally more expensive
(although still polynomial-time) manner than is needed. We hope that our result here
will encourage research into seeking out polynomial-time partitioning algorithms that
exhibit better run-time behavior in practice, and perhaps give rise to look-up table
(LUT) based scheduling strategies (see, e.g., [4], where the theoretically significant but
too-slow-to-implement in practice PTAS for partitioning on identical multiprocessors
was rendered practically useful by means of a LUT).

2 Task and platform model

In a limited unrelated multiprocessor platform, there are x distinct types of processor
for some constant «, and all the processors in the platform are restricted to being of one
of these k types.

An implicit-deadline sporadic task (LL task) is characterized by its worst-case ex-
ecution times on each type of processor, and its period [11]. Since we are concerned
with partitioned EDF scheduling on preemptive platforms, however, it follows from
the well-known preemptive uniprocessor utilization-based feasibility test for LL task
systems [11] that the parameters of significance are the utilizations of the task on each
type of processor. We are given a task system of n Liu and Layland tasks to be parti-
tioned upon an m-processor limited unrelated multiprocessor platform with « distinct
types of processors. For each i,1 < i < n, the ’th task is specified by specifying
the m utilization values u;;, 1 < j < m. The interpretation is that the utilization of
the 4’th task if implemented on the j’th processor is equal to u;;. Note that these u;;
values must be consistent with the processor types: if the j°th and j”’th processors are
of the same type then u;; = w;;» for each 4, 1 < ¢ < n. Given such specifications, we
seek a feasible partitioning of the task system upon the multiprocessor platform, where
a feasible partitioning is defined as follows:

Definition 1 (feasible partitioning) A feasible partitioning of a system of Liu and
Layland tasks upon a multiprocessor platform is a partitioning of the tasks among
the processors in which the total utilization assigned to each processor does not exceed

n number of tasks

K number of different types of processors

m number of processors

Ujj the utilization of the ¢’th task, if implemented on the j’th processor
€ desired degree of accuracy

E number of integer powers of (1 + €) in (¢, 1] (Eqn 1)

big tasks the ¢’th task is big for the j’th processor if u;; > €. (Definition 2)
small tasks || the ¢’th task is small for the j’th processor if u;; < e. (Definition 2)

Table 1: Terminology and notation

the capacity of the processor. That is, for each processor j it is the case that

Z ’U,”S].

(the ©’th task is assigned to the j’th processor)
|

Let € denote a constant > 0; informally, this represents the degree of accuracy we
desire in our PTAS.

3 Background

In this section we briefly review some concepts and results that we will use in deriving
our PTAS.

3.1 Linear and Integer Linear programs

In a Linear Program (LP) over a given set of variables, one is given a collection of
“constraints” that are expressed as linear inequalities over these variables, and option-
ally an “objective function,” also expressed as a linear inequality of these variables. If
an objective function is specified then the goal is to find some assignment of values
to the variables satisfying all the constraints, that results in an extremal (maximum/
minimum) value of the objective function; if no objective function is specified then the
goal is to determine some assignment of values to the variables that satisfies all the
constraints.

It is known that an LP can be solved in time polynomial in its representation by the
ellipsoid algorithm [9] or the interior point algorithm [8]. (In addition, the exponential-
time simplex algorithm [5] has been shown to perform extremely well “in practice,”
and is often the algorithm of choice despite its exponential worst-case behaviour.) We
do not need to understand the details of these algorithms: for our purposes, it suffices
to know that LP problems can be efficiently solved (in polynomial time).

An Integer Linear Program (ILP) is a linear program with the additional constraint
that some or all of the variables are restricted to take on integer values only. Differently
from LPs, solving ILPs is known to be intractable (NP-hard in the strong sense [13]).

The Linear Program obtained from any Integer Linear Program by relaxing the
requirement that the variables take on integers values only, is referred to as the LP-
relaxation of the ILP.

3.2 Matchings on Bipartite graphs

A bipartite graph G = (V, W, E) is specified by specifying two disjoint sets of nodes
V and W and a set of edges E where every edge in E has one endpoint in each of V'
and W. We say that £/ C E is a matching for V in this graph if

1. for each node v € V there is exactly one edge of E’ incident to v, and
2. for each node w € W there is at most one edge of E’ incident to w.

(We assume that |V'| < |W|; otherwise, no matching of V' exists.)

A fractional matching is a generalization of a matching: a fractional matching for
V' is an assignment of non-negative weights on the edges in F such that (i) For each
v € V, the weights of all the edges incident on v sum to exactly one; and (ii) For each
w € W, the weights of all the edges incident on w sum to at most one. A “normal”
matching (often called an integral matching) can thus be thought of as a fractional
matching satisfying the additional condition that each edge weight is either zero or
one.

There is an algorithm due to Birkhoff [3] that, given any fractional matching for
a bipartite graph, determines an integral matching in polynomial time — see [14] for
details. We will use this result later; hence we formally state it as a theorem here.

Theorem 1 (Birkhoff’s algorithm) Given any fractional matching for a bipartite graph,
it is possible to determine an integral matching on the same graph in time polynomial
in the representation of the graph.

4 OQOur partitioning strategy: outline

Given a collection of n implicit-deadline sporadic tasks to be partitioned on an m-
processor unrelated multiprocessor platform consisting of « different types of proces-
sors, this is how we seek to obtain a feasible partitioning.

e First, we transform the task system into another that is easier to partition. We
will show that the transformed system can be partitioned upon the given platform
provided the original system can be partitioned upon a platform in which each
processor is slower by a factor 1/(1 + ¢).

This transformation process is described in Section 5. Once we have completed
the transformation, we deal exclusively with this transformed task system.

e Next, we consider the platform. In Section 6 we distinguish between big and
small tasks, and introduce the notion of patterns of big tasks. We will see that
patterns of big tasks are a characterization of any feasible (i.e., successful) par-
titioning of any task system on the platform under consideration, in the sense

that for any feasible partitioning one can define a pattern of big tasks character-
izing that partitioning. We will show that upon the given platform, the number of
different patterns of big tasks that characterize feasible partitionings is bounded
from above by a polynomial in the number of processors.

e Since there are only polynomially many different patterns of big tasks that char-
acterize feasible partitionings, it is possible, in polynomial time, to spend a poly-
nomial amount of time examining each of these patterns. That, therefore, is what
we do in Section 7. For each pattern,

1. We assume that it corresponds to a feasible partitioning of the task system
that we wish to partition, upon a platform in which each processor is slower
by a factor (1 — €).

2. Under this assumption, we construct an ILP that represents the feasible
partitioning, with the integer variables in the ILP denoting where each task
gets allocated. This is done in Section 7.1.

3. Solving an ILP is an NP-hard problem. However if the ILP is “relaxed”
by removing the restriction that the variables take on integer values, then
an assignment of values to the variables that satisfies all the constraints can
be determined in polynomial time, if such an assignment of values exists.
If no such assignment of values exists, we move on to the next pattern; if
we have exhausted all the patterns then we stop and declare failure: we are
unable to find a feasible partitioning. We will see that such failure implies
that there is no feasible partitioning of the task system (on a platform in
which each processor is slower by a factor (1 — ¢)).

o If we did not report failure above, we will have obtained a (fractional) solution to
the relaxation of the ILP. This fractional solution may allocate a single task across
multiple processors (and therefore does not represent a feasible partitioning of
the task system). We obtain a feasible partitioning from this fractional solution
in the following manner.

1. We construct a bipartite graph from the fractional solution, and define a
fractional matching on this graph that corresponds to the fractional alloca-
tion of the tasks on the processors. We describe how this graph and the
matching are determined, in Section 7.2.

2. We then use the algorithm of [3] (mentioned in Theorem 1 above) to deter-
mine an integer matching from the fractional one.

3. Finally in Section 7.3, we use the integer matching to determine a partition-
ing of the task system. Recall that we had constructed our ILP under the
assumption that the pattern of big tasks under consideration corresponds
to a feasible partitioning of the task system upon a platform in which each
processor was slower by a factor (1 — ¢). Given this assumption, we show
that the partitioning we have obtained is feasible upon the given platform.

Note that there are two speedup factors involved: a l%re factor in the initial transfor-
mation of the task system, and a (1 — ¢) factor in the construction of the ILP and the

consequent determination of the feasible partitioning. We will therefore have shown
that if our algorithm fails to partition a given task system upon a specified platform,
then no algorithm can partition the task system upon a platform in which each proces-

sor is slower by a factor (%_T_:)

5 Initial transformation of the task system

In this section we describe how we transform the task system to one that becomes easier
to partition, and show (Lemma 1) that given any partitioning of the transformed system
upon a platform we can obtain a partitioning of the original system upon a platform in
which each processor is faster by a factor (1 + ¢).

The transformation consists of rounding up each u;; value to the largest integer
power of (1 + ¢€).

For example, if ¢ = 0.25 then the successive integer powers of ¢ are 1.259 =
1.0; 1.2571 = 0.8; 1.2572 = 0.64; 1.2572 = 0.512; 1.25~% = 0.4096; 1.25°5
0.32768; 1.2576 = 0.262144; 1.25=7 = 0.2097152; and so on. Therefore a Us; =
would be rounded up to 0.4096; a u;; = i to 0.262144, and so on.

We note that the task system obtained as a result of the transformation depends
upon the task system that is to be transformed, and the value of the constant ¢, but not
upon the characteristics of the particular platform on which it is to be partitioned. In
the remainder of this paper, we will attempt to partition the task system obtained by
transforming the original task system; the following lemma asserts that doing so costs
us a processor speedup no greater than (1 + ¢):

wl— ||

Lemma 1 If there is no feasible partitioning of the transformed task system upon a
given platform, then there is no feasible partitioning of the original system upon a
1

platform in which each processor is (m) times as fast. B

Let E denote the number of integer powers of (1 + €) in (e, 1]. For our example of
€=0.25, E = 7. (Since (1 +¢)~7,at 0.2097152, is < ¢, the integer powers of 1.25 in
(0.25,1] are 0, 1,2, 3,4, 5, and 6.)

Observing more generally that (1 + ¢)° = 1 and

((1+e)_”<e)(:>(x>11;;é(11462)),

we conclude that log(1/¢)
1 log(1/e
E [7] . (1)

~ llog(1 +¢)

6 Characterizing feasible partitionings

In this section we consider any task system in which all task utilization values are
integer powers of (1 + €), that can be feasibly partitioned on the given multiprocessor
platform. Let us consider feasible partitionings of such task systems on the platform.
We first classify tasks as big tasks or small tasks, as follows

Definition 2 (Big and small tasks) We say that the i’th task is big for processor j if
u;j > € otherwise, it is small for processor j. B

We seek to determine the number of different ways (or “patterns”) in which big tasks
can be arranged upon the processors in such a feasible partitioning. We will show
(Lemma 2) that this number is bounded from above by a polynomial in the number of
processors m.

6.1 A single processor

First, let us consider any one processor on the platform in this feasible partitioning.
For each t,0 <t < F, let m; denote the number of big tasks with utilization equal to
(1 + €)™t that are assigned to this processor in this feasible partitioning. We refer to
the vector (g, 71, ..., Tp—1) as the pattern of big tasks on this processor. We say this
pattern induces 7 slots of size (1 +¢)~" on the processor for each ¢, 1 < ¢t < E. Each
such slot accommodates one task with utilization (1 + ¢) .

For our running example of ¢ = 0.25, suppose that a feasible partitioning were to
assign two big tasks with utilization 1.2576 = 0.262144 each, and one big task with
utilization 1.25~% = 0.4096, on a processor. This information could be represented by
the pattern of big tasks (0,0, 0,0, 1,0, 2).

In addition, this pattern 7 leaves an idle capacity equal to a fraction

E-1 .
1- t)
; (I+e)f

of the capacity of the processor; this idle capacity may be used for accommodating
tasks that are small tasks on that processor.

For the example of e = 0.25 and the pattern of big tasks (0, 0,0, 0, 1,0, 2); this idle
capacity equals

1—(1x0.4096 + 2 x 0.262144) = 0.066112.

Notation. Let () denote the total number of possible patterns of big tasks on a proces-
sor, that could occur in any feasible partitioning. Since each big task on a processor
has utilization > € on that processor, there can be no more than L%J big tasks on a
processor; therefore, none of the m; values in any pattern of big tasks may take on a
value larger than [1 |. It therefore follows that

QS(HtJ)E. 3)

Note that this upper bound on the number of possible different patterns of big tasks
on a processor is a constant for a given value of the constant e. Let us define some
arbitrary ordering on these () possible patterns, so that it makes sense to speak of the
£’th pattern of big tasks on a processor for each £,1 < ¢ < Q.

1. A pattern of big tasks on a single processor: (g, ..., Tg_1)

e There are at most () such possible distinct patterns, where @ is bounded as
in Equation 3

2. Patterns of big tasks on all the processors of a particular type: (d1,ds, ..., dg)
e There are at most m® such possible distinct patterns
3. Patterns of big tasks on all the processors of the platform

e There are at most m*? such possible distinct patterns (Equation 4)

Table 2: Summarizing patterns of big tasks

6.2 Processors of a single type

Next, consider all the processors on the platform of any one fype in the feasible par-
titioning. We can represent the combinations of patterns of big tasks on these proces-
sors as a vector (dq,ds,. .., dg) where each d; is a non-negative integer. This vector
denotes that there are d, processors of this type, upon which the task-assignment cor-
responds to the ¢’th pattern of big tasks on a processor, for each /,1 < ¢ < Q.

Since each d, is bounded from above by the total number of processors of this type,
which is in turn bounded from above by the total number of processors m, there are at
most m® possible such vectors that could occur in any feasible partitioning.

6.3 All the processors

Finally, let us consider all the processors on the platform in the feasible partitioning.
Since there are x distinct types of processors, the total number of patterns of big tasks
on the platform that could occur in any feasible partitioning is bounded from above by

mre.)

The various kinds of patterns defined above are summarized in Table 2.

Observe that, since () is constant for constant ¢, the possible number of distinct
patterns of big tasks on all the processors of the platform is polynomial in m for a
given value of the constant e. This is formalized in the following lemma:

Lemma 2 For constant €, there are at most polynomially many possible distinct pat-
terns of big tasks on all the processors of the platform. B

7 Obtaining an (approximate) feasible partitioning

Upon a given multiprocessor platform, Lemma 2 above shows that there are at most
polynomially many possible distinct patterns of big tasks on all the processors that

could correspond to feasible partitionings. We now seek to determine whether one of
these could correspond to a feasible partitioning of the task system that we wish to
partition. However we do not know which of these patterns (if any) may be the one
corresponding to a feasible partitioning of our task system; therefore, we will consider
each in turn. In considering a pattern we construct, in polynomial time, an ILP such
that a solution to this ILP exists if and only if the pattern corresponds to a feasible
partitioning of our particular task system upon a platform in which each processor is
slower? by a factor (1 — ¢). The manner in which this ILP is constructed is described
in Section 7.1. We then seek to solve a “relaxation” of the ILP, which may allocate a
task across multiple processors (with the fractions of each task allocated across all the
processors summing to one). If we obtain such a solution, we move on to the next step
listed below; else, we consider the next pattern. If we exhaust all the patterns without
finding a solution to the LP relaxation of the ILP corresponding to any of the patterns
then we report failure. We will show that such failure implies that the task system
cannot be partitioned in a feasible manner upon a platform in which each processor is
slower by a factor (1 — €).

If we did not report failure above, we will have obtained a fractional solution to the
LP relaxation of the ILP corresponding to some pattern of big tasks.

1. We first use this fractional solution to construct a bipartite graph, and to identify
a fractional matching in this bipartite graph — this step is detailed in Section 7.2.

2. Next, we use the algorithm of Birkhoff [3] to obtain an integral matching in the
graph, also in polynomial time.

3. Finally we use this integer matching to deduce a partitioning of our particular
task system — Section 7.3 explains how this is done.

7.1 The integer linear program

We first introduce some notation:

e Let S denote all the slots induced on all the processors by the particular pattern
of big tasks under consideration. We note that since each processor may have no
more than | £ | slots, there are no more than m | £ | slots across all the processors;

this is polynomial in m.

e Let IDLE; denote the fraction of the capacity of the j’th processor that is not
assigned to big tasks by the combination of patterns under consideration; the
value of IDLE; is determined according to Expression 2.

The linear program is on the following variables:

e A variable z;, for each task i and each slot s € S such that the i’th task would
fit exactly into slot s. That is, if slot s is on the j’th processor and is of size

2We will see that we need to consider slower processors here than the ones actually available, since some
error is introduced in obtaining a feasible partitioning from this ILP in polynomial time. This is only to be
expected since solving ILPs is known to be NP-hard.

10

(1 + ¢)~*, then we define the variable z;, only for those 4,1 < i < n, for which
U5 = (1 + 6)_t.

Informally speaking, the variable z;, is to take on the value one if the 7’th task is
assigned to the s’th slot, and zero otherwise.

e A variable x;; for each task 4 and each processor j, for which u;; < e. (That is,
task ¢ is a small task on the j’th processor.)

Informally speaking, the variable x;; is to take on the value one if the ¢’th task is
assigned to the idle capacity on the j’th processor, and zero otherwise.

Note that there are no more than n. X (m/€) + n x m variables, which, for constant e,
is polynomial in n and m.
The constraints in the LP are as follows:

m
Zl’ij+zzis=1 foreachi,1 <i<n 5)
Jj=1 ses
n
Z Zis <1 foreach s € S ©)
i=1
n
injuij < IDLE; — ¢ foreach 7,1 <j<m (7)
i=1
x5 20 for each 7, j
2is 2 0 for each i, s

Constraint 5 asserts that each task be assigned; Constraint 6, that each slot gets no
more than one task. Constraint 7 checks that all the small tasks assigned to a processor
are able to fit into the amount of capacity left over on that processor by the big tasks.
Note the “—e” term on the RHS of Constraint 7: this reflects the assumption that the
ILP represents a solution on processors that are slower by a factor (1 — €), and hence a
fraction € of the capacity of each processor remains unused in this feasible partitioning.

It is evident that each integral solution to the ILP with Constraints 5-7 corresponds
to a feasible partitioning of the task system upon a platform in which each processor is
slower by a factor (1 — €); this is formalized in the following lemma:

Lemma 3 The ILP represented by Expressions 5-7 has integral solutions for all the x;
and all the z;s variables if and only if the task system (obtained after the transformation
of Section 5) has a feasible partitioning according to the enumerated pattern upon a
platform in which each processor is slower by a factor (1 —¢). B

Unfortunately, solving an ILP is highly intractable — it is NP-hard in the strong sense.
However if the restriction that all the variables take on integer values is removed, then
a solution to the relaxed ILP (which is now just a linear program) can be obtained in
polynomial time — see Section 3.1. We therefore obtain such a fractional solution to
the LP; let &;; (2;5, resp.) denote the value assigned to the variable x;; (z;s, resp.) in
this non-integral solution to the relaxed ILP.

11

7.2 The graph, and the fractional matching

Given the fractional solution to the LP denoted by the ;;’s and the Z;,’s as described
above, our next step is to concurrently (i) build a bipartite graph, and (ii) identify a
fractional matching in this bipartite graph.

We first describe the procedure by which we determine the nodes of this graph.

o task nodes. We will have a single task node v; for each task 7, 1 < ¢ < n.
o slot nodes. We will have a single slot node w; for each slot s € S.

e proc nodes. We will have several proc nodes for each processor j. Let k; be

defined as follows:
kj = ’VZ iij-‘

That is, k; denotes the ceiling of the sum of the fractional assignments of tasks

that are small on processor j, that get made to processor j in the fractional solu-

@ 2 (k5)
Uy .

u

tion. For each processor j we will have k; proc nodes, denoted u G

Intuitively, each task node corresponds to a task, and each slot node and each proc node
corresponds to a “place” where a task can be accommodated. (Since the solution to the
LP had assigned a total of) . Z;; tasks on the idle capacity on the j’th processor and
we seek an integral assignment, this idle slot is assigned “places” capable of accom-
modating k; = [, Z;;] tasks.) An edge between a task node and a slot node or a proc
node denotes that the task is assigned to that “place;” a fractional weight assigned to
that edge denotes that a fraction of the task is assigned to that “place.”

We now describe how we determine the edges of the graph. We will see that all
edges connect task nodes (v;’s) to slot nodes or proc nodes (w;’s or u§-k) ’s) — the graph
is thus indeed a bipartite graph. We also describe how we assign weights to these
edges such that these weights comprise a fractional matching for the set of task nodes
{v;}_,. That is, the weights are assigned such that the sum of the weights of edges
incident on each task node exactly equals one, and the sum of the weights of edges
incident on each slot node and each proc node is no larger than one.

Edges corresponding to large tasks. For each Z;s > 0 (i.e., for each variable z;
that was assigned a value > 0 in the fractional solution), we add the edge (v;, ws) and
assign it a weight equal to Z;,. (Informally, we are assigning a fraction Z;5 of the ¢’th
task to the slot s.)

Since the #;; and Z;5 values comprise a solution to the LP, Condition 6 ensures that
no node wg will have incident edges with weights summing to more than one.

Edges corresponding to small tasks. The procedure here is more elaborate. We
describe it below, followed by an illustrative example (Example 7.2); the reader may
find it convenient to follow the example concurrently with the description.

Let us consider a particular processor j.

12

1

3

9]

i 15K < 1; need < &;;; avail < 1
> need denotes the remaining edge-weight that needs to be assigned to edges inci-
dent on v;. avail denotes the remaining edge-weight that can be assigned to edges

incident on
2 while (i < nj)

k)

do if (need < avail)
then > A single additional edge from v; to u ;5 will suffice

else

(k")
add edge (v;, u'*") with weight need (i.e., 2}) + need)
avail < avail — need
i < i+ 1;need < &; j > Consider the next task
(k")

> An edge from v; to u;" " is not enough; will need to add an edge

k'+1
from v; to ug +1)

if (avail > 0)
then > An edge from v; to u

edge to u(»kurl)
(k")

add edge (v;, u;
need < need — avail
k' < k' + 1; avail < 11> Go to the next proc node

(

]f/
j) for some of the need; rest on an

) with weight avail (i.e., ;z§j’> +— avail)

Figure 1: Pseudo-code for adding edges corresponding to the assignment of small tasks

13

If £;;; > 0 then we will add edges from node v; to one or two of the nodes
in {ug.l), u§2), . ,uékj)}, in the manner detailed below. We will see that the

weights assigned to these edges sum to Z;;.

Suppose that there are n; such tasks (i.e., there are n; different ¢ such that Z;; >
0).

For notational convenience, let us (locally — i.e., for the purposes of this argu-
ment only) rename these n; tasks so that they are indexed as 1,2,...,n; in
non-increasing order of utilization on the j’th processor; i.e., with the property
that u;; > w41y, forall 4,1 <7 <mnjy.

We will now add some edges between the v;’s and the uék)
to these edges. Let ﬁgf) denote the weight we assign to the edge between nodes
v; and ug.k) (informally, a fraction jgc) of the ¢’th task will be assigned to the
k’th “place” on the idle capacity left over on processor j by the slots .S). Since
Z;; denotes the fraction of the ¢’th task will be assigned to the idle capacity left

over on processor j by the slots .S, we must ensure that

j

~(k) 4
E xij = Tij
k=1

Figure 1 describes the procedure by which these edges are added. Informally,

’s, and assign weights

— The tasks are considered in non-increasing order of their utilizations on the
7 th processor (this follows from the renaming step as described above).

— In “considering” a task i, the objective is to add edges from v; to the nodes

{ugk)}zfz , with weights summing to Z;;. Furthermore, the sum of the
(k)
J

— During the process of adding edges such that these objectives are fulfilled,

. . . . k),
an invariant is maintained: at most one of the proc nodes — the u§)’ _ has

incoming edges summing to more than zero but less than one.

weights of the edges incident on any node w; ~ must not exceed 1.

— Let ug»k/) denote the node of the invariant, if any. Initially, &’ < 1.
If an edge of weight Z;; can be added from the node v; corresponding to the
k/
’ 5)
weights of the edges incident on uék) to exceed 1, then this edge is added
and the task (¢ + 1) becomes the task under consideration. Otherwise, two
edges are added:

task under consideration to this node u; ’ without causing the sum of the

1. an edge of as much weight as can be added without causing the sum of
the weights of the edges incident on ugk) to exceed 1, is added from

(k")
J
2. another edge of weight equal to #;; minus the weight assigned to the
(k'+1)

j .

node v; tonode u; ’; and

edge in the step above, is added from node v; to node u

14

Note that the invariant is maintained, since node u§) now has incoming

. . k' +1 . .
edges summing to one while node u§ b may have incoming edges sum-

ming to more than zero but less than one.

Example Let us focus upon a particular j. For this particular j, suppose that the LP so-
lution has resulted in three of the &;; values being 0.6, 0.7, and 0.75, with the remaining
values all zero.

e In accordance with the “renaming” mentioned above, we will index these three
tasks by 3, 2, and 1 respectively, so that £1; = 0.75, £2; = 0.7, and 3; = 0.6.

e Since [0.6 + 0.7 + 0.75] = 3, there will be three nodes ugl), u§2), and ugg).
e Since £1; = 0.75, we assign an edge of weight 0.75 between v; and u§-1). That
is, 1% = 0.75.

e Next, we consider £, which equals 0.7. We therefore assign an edge of weight
(1 —0.75) = 0.25 between vo and uy), and an edge of weight (0.7 — 0.25) =

0.45 between v, and u§-2). That is, 33%) = 0.25 and fcg) = 0.45.
e Finally, we consider Z3;, which equals 0.6. We therefore assign an edge of
weight (1 — 0.45) = 0.55 between v3 and u§2), and an edge of weight (0.6 —

0.55) = 0.05 between vz and u'”). That is, 2} = 0.55 and 2§, = 0.05.
u

7.3 Determining the task assignment

From the fractional matching defined above, we use the algorithm of [3] to determine,
in polynomial time, an integral matching. This matching satisfies the property that
each task-node v; is matched to either a single slot node w, for some s € S, or a single
proc node u;k) for some j,kwithl < j<mand1 <k <kj.

From the integral matching thus obtained, we determine the assignment of tasks to
processors according to the following two rules.
Rule 1: If task node v; is matched to a slot node wy, then the 7’th task is assigned to
the processor on which the slot s was induced.

Since there are only edges from task nodes to slot nodes on which the task would
fit, it is evident that

e all tasks assigned in this manner fit on the processor to which they are assigned;
and

o these assignments leave a fraction IDLE; of the capacity of the j’th processor
available for assigning to small tasks.

15

Rule 2: 1f task node v; is matched to a proc node ugk), then the 4’th task is assigned to
the j’th processor.

We will now show that for all j, 1 < 7 < m, the total utilization of all the small
tasks assigned to the j’th processor in this manner does not exceed IDLE;.

Notation: Recall that 5055) denotes the weight that was assigned to the edge between
(k)
J

tion 7.2 above. Let fff) denote the weight assigned to the edge between task node v;

) in the integer matching obtained by applying the algorithm of [3]

J
to the fractional matching; it is evident that each igf) is either zero or one. Let Z;;
denote Z:J: 1 igf) i.e., Z;; is the sum of the weights on the edges from v; to all of
EGyy s . .
{u§.1), u§-2), s U @1 in the integer matching.
We note that for a given ¢ and j, the fractional matching that was obtained in Sec-

task node v; and proc node ;" in the fractional matching that was obtained in Sec-

and proc node u

tion 7.2 may have edges from v; to two “consecutive” proc nodes u§k) and u§-k+1). The

integral matching will match v; to at most one of these two proc nodes.

e Recall that in adding edges between task nodes and the proc nodes corresponding
to a particular processor j, we first ordered the task nodes in non-increasing order
of their utilizations on the j’th processor. Therefore if task node v,/ is fractionally

matched to proc node ulf =Y

J
node ug»k) in the fractional matching, then u;; > u;;.

and task node v; is fractionally matched to proc

(k)
J

= 1), it must be the case that u;; is at most the utilizations of all tasks
k—1)

e Therefore if task node v; is matched with proc node u
(k)

ij
that are matched with proc node ug

all k > 2
S a3y <3 al (8)
i=1 i=1

Now the cumulative utilization of all the small tasks on the j’th processor is given

in the integral matching
(e T

in the fractional matching. That is, for

16

v 7 ol kj -~
Do dguig = Y E i (Since iy = YL, 7)) ©)
i=1 pasit
i n *)
- Z Tij Ui
k=1i=1
ki n
< maX{uij | Tij > O} + Z Z i‘gf)u”
k=2 i=1
k) n
s et Z Z jz(';:)uij (Since task ¢ is small for processor j)
k=2 i=1
kj*]- n
< et Z Z i"gf)uz] (By Equation 8)
k=1 i=1

IA
[0}
+
(]
§>
<
8
<

€ + (IDLE; — ¢€) (Since the &;;s satisfy Constraint 7 of the LP)
IDLE;

IAIA

We have thus shown that the total utilization of all the small tasks assigned to the j’th
processor can be accommodated in the idle capacity IDLE; left over by the big tasks.
Lemma 4 follows.

Lemma 4 If the LP-relaxation of the ILP of Section 7.1 has a solution, then our task
assignment strategy (as described by Rules 1 and 2 above) obtains a feasible partition-
ing. B

8 Summary of the algorithm

Given an implicit-deadline sporadic task system to be partitioned among the processors
of a limited unrelated multiprocessor platform,

1. We round up all the utilization parameters, to obtain a transformed task system.

2. We (implicitly or explicitly) enumerate all the patterns of big tasks upon the
given platform, that correspond to feasible partitionings of task systems. We
consider each separately; in considering a pattern,

(a) We set up an ILP representing a feasible partitioning of the transformed
task system upon a platform in which each processor is slowed down by a
factor (1 — ¢).

(b) We solve the LP-relaxation of this ILP. If successful, we proceed to the
next step. If the LP-relaxation has no solution, we consider the next pattern

17

of big tasks; if we have considered all the patterns of big tasks, we declare
failure and return.

3. From the solution to the LP-relaxation of the ILP, we construct a bipartite graph
and define a fractional matching on this graph.

4. We apply the algorithm of [3] (mentioned in Theorem 1 above) to determine an
integer matching from the fractional one.

5. We use this integer matching to determine a feasible partitioning of the task
system.

Our algorithm makes the following performance guarantee:

Theorem 2 If our polynomial-time algorithm fails to obtain a feasible partitioning of
a task system upon a given platform, then no algorithm can partition the task system
on a platform in which each processor is slower by a factor (%—;Z)

Proof Suppose that our algorithm fails to find a feasible partitioning. By Lemma 4,
the ILP constructed in Section 7.1 does not have a solution. Hence by Lemma 3, the
(transformed) task system does not have a feasible partitioning on a platform on which
each processor is slower by a factor (1 — €). By applying Lemma 1 we therefore
conclude that the original task system cannot have a feasible partitioning on a platform

on which each processor is slower by a factor (1=5).

9 Context and Conclusions

As multicore architectures become ubiquitous, chip makers are trying to distinguish
their products by providing specialized hardware components that accelerate particular
computations. Examples include multicore CPUs with specialized graphics processing
cores, specialized signal-processing cores, specialized floating-point units, customiz-
able FPGAs, etc. These multicore CPUs offer a fresh challenge to real-time schedul-
ing theory: task assignment on such multiprocessor platforms is known to be highly
intractable. This fact has given rise to research into efficient (polynomial-time) algo-
rithms for partitioning real-time workloads that are not exact, but nevertheless exhibit
reasonably good performance.

Scheduling problems, partitioned or otherwise, are inherently decision problems:
either a system is schedulable or not. However when answering the decision problem
exactly is provably intractable, it is useful to define an optimization version in order to
be able to quantitatively discuss the effectiveness of different approximate scheduling
algorithms. For partitioned scheduling, one such optimization version — the one we use
in this paper — asks: what is the minimum speed that the processors on the platform
must have, in order for the system to be schedulable?

Analogously to the classification of problems as polynomial-time, NP-complete,
PSPACE complete, etc., there is a classification of NP-hard optimization problems
according to the difficulty of obtaining approximate solutions to these problems in
polynomial-time. In particular, an NP-hard minimization problem is said to be in the

18

class APX if there is a constant c such that some polynomial-time algorithm can obtain
a solution to any problem instance that is no more than c times the cost of the (optimal)
minimum-cost solution. APX problems for which there exist polynomial-time algo-
rithms that can obtain a solution to any problem instance that is no more than c times
the cost of the (optimal) minimum-cost solution for all ¢ > 1 are said to be in the class
PTAS. It is good to show that an NP-hard optimization problem is in the class APX,
even better to show that it is in the class PTAS.

From the results in [10], it follows that the problem of partitioning implicit-deadline
sporadic task systems on unrelated multiprocessor platforms is not in PTAS (assuming
that P £ NP). However there is an interest in studying unrelated multiprocessor plat-
forms with large core-counts, in which all the cores are of only a few distinct types —
this interest was articulated in [1], motivated by currently-available and soon-to-be-
available multicore CPUs. For such limited unrelated multiprocessor platforms, we
have shown here that partitioning implicit-deadline sporadic task systems is indeed
in PTAS. We reiterate that we do not claim great practical relevance to the PTAS we
have derived; instead, it should be thought of primarily as an algorithmic core that gets
adapted and fine-tuned prior to its use in any particular application domain, according
to the characteristics of the task systems arising in those particular applications.

References

[1] ANDERSSON, B., RARAVI, G., AND BLETSAS, K. Assigning real-time tasks
on heterogeneous multiprocessors with two unrelated types of processors. In
Proceedings of the Real-Time Systems Symposium (San Diego, CA, 2010), IEEE
Computer Society Press, pp. 239-248.

[2] BARUAH, S. Partitioning real-time tasks among heterogeneous multiprocessors.
In Proceedings of the Thirty-third Annual International Conference on Parallel
Processing (Montreal, Canada, August 2004), IEEE Computer Society Press,
pp. 467-474.

[3] BIRKHOFF, G. Tres observaciones sobre el algebra lineal. In Revista Facultad de
Ciencias Exactas, Puras y Aplicadas Universidad Nacional de Tucuman, Serie A
(Matematicas y Fisica Teorica), vol. 5. 1946, pp. 147-151.

[4] CHATTOPADHYAY, B., AND BARUAH, S. A lookup-table driven approach to
partitioned scheduling. In Proceedings of the IEEE Real-Time Technology and
Applications Symposium (RTAS) (Chicago, 2011), IEEE Computer Society Press.

[5] DANTZIG, G. B. Linear Programming and Extensions. Princeton University
Press, 1963.

[6] HOCHBAUM, D., AND SHMOYS, D. Using dual approximation algorithms for
scheduling problems: Theoretical and practical results. Journal of the ACM 34, 1
(Jan. 1987), 144-162.

19

[71 HoCHBAUM, D., AND SHMOYS, D. A polynomial time approximation scheme

(10]

[11]

[12]

[13]

[14]

for scheduling on uniform processors using the dual approximation approach.
SIAM Journal on Computing 17, 3 (June 1988), 539-551.

KARMAKAR, N. A new polynomial-time algorithm for linear programming.
Combinatorica 4 (1984), 373-395.

KHACHIYAN, L. A polynomial algorithm in linear programming. Dokklady
Akademiia Nauk SSSR 244 (1979), 1093-1096.

LENSTRA, J.-K., SHMOYS, D., AND TARDOS, E. Approximation algorithms
for scheduling unrelated parallel machines. In Proceedings of the 28th Annual
Symposium on Foundations of Computer Science (Los Angeles, CA, Oct. 1987),
A. K. Chandra, Ed., IEEE Computer Society Press, pp. 217-224.

Liu, C., AND LAYLAND, J. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM 20, 1 (1973), 46-61.

LoPEz, J. M., Di1AzZ, J. L., AND GARCIA, D. F. Utilization bounds for EDF
scheduling on real-time multiprocessor systems. Real-Time Systems: The Inter-
national Journal of Time-Critical Computing 28, 1 (2004), 39-68.

PAPADIMITRIOU, C. H. On the complexity of integer programming. Journal of
the ACM 28, 4 (1981), 765-768.

WILLIAMSON, D., AND SHMOYS, D. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

20

