Skip to main content
Log in

Optimal and efficient adaptation in distributed real-time systems with discrete rates

  • Published:
Real-Time Systems Aims and scope Submit manuscript

Abstract

Many distributed real-time systems face the challenge of dynamically maximizing system utility and meeting stringent resource constraints in response to fluctuations in system workload. Thus, online adaptation must be adopted in face of workload changes in such systems. We present the MultiParametric Rate Adaptation (MPRA) algorithm for discrete rate adaptation in distributed real-time systems with end-to-end tasks. The key novelty and advantage of MPRA is that it can efficiently produce optimal solutions in response to workload variations caused by dynamic task arrivals and departures. Through offline preprocessing MPRA transforms an NP-hard utility optimization problem to the evaluation of a piecewise linear function of the CPU utilization. At run time MPRA produces optimal solutions by evaluating the function based on the CPU utilization. Analysis and simulation results show that MPRA maximizes system utility in the presence of varying workloads, while reducing the online computation complexity to polynomial time. The advantages of MPRA have been validated through the implementation in a real-time middleware system and experiments on a physical testbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A non-greedy synchronization protocol (Sun and Liu 1996) can be used to remove release jitter of subtasks.

References

  • Abdelzaher TF, Atkins EM, Shin KG (2000) QoS negotiation in real-time systems and its application to automated flight control. IEEE Trans Comput 49(11):1170–1183

    Article  Google Scholar 

  • Abdelzaher TF, Shin KG, Bhatti N (2002) Performance guarantees for web server end-systems: a control-theoretical approach. IEEE Trans Parallel Distrib Syst 13(1):80–96

    Article  Google Scholar 

  • Abdelzaher T, Stankovic J, Lu C, Zhang R, Lu Y (2003) Feedback performance control in software services. IEEE Control Syst 23(3):74–90

    Article  Google Scholar 

  • Acevedo J, Pistikopoulos E (1999) An algorithm for multiparametric mixed-integer linear programming problems. Oper Res Lett 24(10):139–148

    Article  MathSciNet  MATH  Google Scholar 

  • Bemporad A, Borrelli F, Morari M (2002) Model predictive control based on linear programming—the explicit solution. IEEE Trans Autom Control 47(12):1974–1985

    Article  MathSciNet  Google Scholar 

  • Brandt SA, Nutt GJ (2002) Flexible soft real-time processing in middleware. Real-Time Syst 22(1–2):77–118

    Article  MATH  Google Scholar 

  • Brandt S, Nutt G, Berk T, Mankovich J (1998) A dynamic quality of service middleware agent for mediating application resource usage. In: IEEE real-time systems symposium, pp 307–316

    Google Scholar 

  • Buttazzo GC, Lipari G, Caccamo M, Abeni L (2002) Elastic scheduling for flexible workload management. IEEE Trans Comput 51(3):289–302

    Article  Google Scholar 

  • Center for Distributed Object Computing (Washington University) (2012) The ADAPTIVE Communication Environment (ACE). www.cs.wustl.edu/~schmidt/ACE.html

  • Cervin A, Eker J, Bernhardsson B, Årzen KE (2002) Feedback-feedforward scheduling of control tasks. Real-Time Syst 23(1–2):25–53

    Article  MATH  Google Scholar 

  • Chen Y, Lu C, Koutsoukos X (2007) Optimal discrete rate adaptation for distributed real-time systems. In: IEEE real-time systems symposium, pp 181–192

    Google Scholar 

  • Chen J, Tan R, Xing G, Wang X, Fu X (2010) Fidelity-aware utilization control for cyber-physical surveillance systems. In: IEEE real-time systems symposium, pp 117–126

    Google Scholar 

  • Fu Y, Kottenstette N, Chen Y, Lu C, Koutsoukos XD, Wangh H (2010a) Feedback Thermal control for real-time systems. In: RTAS, pp 111–120

    Google Scholar 

  • Fu Y, Lu C, Wang H (2010b) Control-theoretic thermal balancing for clusters. In: IPDPS, pp 1–11

    Google Scholar 

  • Gal T, Nedoma J (1972) Multiparametric linear programming. Manag Sci 18:406–442

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh S, Rajkumar RR, Hansen J, Lehoczky J (2003) Scalable resource allocation for multi-processor QoS optimization. In: International conference on distributed computing systems, pp 174–183

    Google Scholar 

  • Ibarra OH, Kim CE (1975) Fast approximation algorithms for the knapsack and sum of subset problems. J ACM 22(4):463–468

    Article  MathSciNet  MATH  Google Scholar 

  • Kao B, Garcia-Molina H (1997) Deadline assignment in a distributed soft real-time system. IEEE Trans Parallel Distrib Syst 8(12):1268–1274

    Article  Google Scholar 

  • Koutsoukos X, Tekumalla R, Natarajan B, Lu C (2005) Hybrid supervisory utilization control of real-time systems. In: IEEE real-time and embedded technology and applications symposium, pp 12–21

    Chapter  Google Scholar 

  • Kvasnica M, Grieder P, Baotić M (2004) Multi-Parametric Toolbox (MPT)

  • Lee C, Siewiorek D (1998) An Approach for Quality of Service Management. Technical Report CMU-CS-98-165, Computer Science Department, CMU

  • Lee C, Lehoczky J, Rajkumar R, Siewiorek DP (1999a) On quality of service optimization with discrete QoS options. In: IEEE real time technology and applications symposium, pp 276–286

    Google Scholar 

  • Lee C, Lehoczky JP, Siewiorek DP, Rajkumar R, Hansen JP (1999b) A scalable solution to the multi-resource QoS problem. In: IEEE real-time systems symposium, pp 315–326

    Google Scholar 

  • Lee CG, Shih CS, Sha L (2004) Online QoS optimization using service classes in surveillance radar systems. Real-Time Syst 28(1):5–37

    Article  MATH  Google Scholar 

  • Lehoczky JP (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: IEEE real-time systems symposium, pp 201–213

    Google Scholar 

  • Lindberg M, Årzén KE (2010) Feedback control of cyber-physical systems with multi resource dependencies and model uncertainties. In: RTSS, pp 85–94

    Google Scholar 

  • Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J ACM 20(1):46–61

    Article  MathSciNet  MATH  Google Scholar 

  • Lu C, Stankovic J, Tao G, Son S (2002) Feedback control real-time scheduling: framework, modeling, and algorithms. Real-Time Syst 23(1/2):85–126

    Article  MATH  Google Scholar 

  • Lu C, Wang X, Gill C (2003) Feedback Control Real-Time Scheduling in ORB Middleware. In: IEEE Real-Time and Embedded Technology and Applications Symposium, pp 37–48

    Google Scholar 

  • Lu C, Wang X, Koutsoukos X (2005) Feedback utilization control in distributed real-time systems with end-to-end tasks. IEEE Trans Parallel Distrib Syst 16(6):550–561

    Article  Google Scholar 

  • Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, New York

    MATH  Google Scholar 

  • Murty KG (1980) Computational complexity of parametric linear programming. Math Program 19(1):213–219

    Article  MATH  Google Scholar 

  • Natale MD, Stankovic J (1994) Dynamic end-to-end guarantees in distributed real-time systems. In: IEEE real-time systems symposium, pp 216–227

    Google Scholar 

  • Rajkumar R, Lee C, Lehoczky J, Siewiorek D (1997) A resource allocation model for QoS management. In: IEEE real-time systems symposium, pp 298–307

    Google Scholar 

  • Rajkumar R, Lee C, Lehoczky JP, Siewiorek DP (1998) Practical solutions for QoS-based resource allocation. In: IEEE real-time systems symposium, pp 296–306

    Google Scholar 

  • Sahni S (1975) Approximate algorithms for the 0/1 knapsack problem. J ACM 22(1):115–124

    Article  MathSciNet  MATH  Google Scholar 

  • Steere DC, Goel A, Gruenberg J, McNamee D, Pu C, Walpole J (1999) A feedback-driven proportion allocator for real-rate scheduling. In: Operating systems design and implementation, pp 145–158

    Google Scholar 

  • Sun J, Liu JWS (1996) Synchronization protocols in distributed real-time systems. In: International conference on distributed computing systems, pp 38–45

    Google Scholar 

  • Tokuda H, Kitayama T (1994) Dynamic QoS control based on real-time threads. In: NOSSDAV, vol 93. Springer, London, pp 114–123

    Google Scholar 

  • Tondel P, Johansen TA, Bemporad A (2003) Evaluation of piecewise affine control via binary search tree. Automatica 39(5):945–950

    Article  MathSciNet  Google Scholar 

  • Wang X, Jia D, Lu C, Koutsoukos X (2005a) Decentralized utilization control in distributed real-time systems. In: IEEE real-time systems symposium, pp 133–142

    Google Scholar 

  • Wang X, Lu C, Koutsoukos X (2005b) Enhancing the robustness of distributed real-time middleware via end-to-end utilization control. In: IEEE real-time systems symposium, pp 189–199

    Google Scholar 

  • Wang X, Chen Y, Lu C, Koutsoukos X (2007) FC-ORB: a robust distributed real-time embedded middleware with end-to-end utilization control. J Syst Softw 80(7):938–950

    Article  Google Scholar 

  • Wang X, Fu X, Liu X, Gu Z (2009) Power-aware CPU utilization control for distributed real-time systems. In: IEEE real-time and embedded technology and applications symposium, pp 233–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Lu, C. & Koutsoukos, X.D. Optimal and efficient adaptation in distributed real-time systems with discrete rates. Real-Time Syst 49, 339–366 (2013). https://doi.org/10.1007/s11241-012-9168-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11241-012-9168-7

Keywords

Navigation