
25/04/2024 09:24

A Parallel Branch-and-Bound Algorithm to Compute a Tighter Tardiness Bound for Preemptive Global EDF /
Leoncini, Mauro; Montangero, Manuela; Valente, Paolo. - In: REAL-TIME SYSTEMS. - ISSN 0922-6443. -
55:2(2019), pp. 349-386. [10.1007/s11241-018-9319-6]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Real-Time Systems manuscript No.
(will be inserted by the editor)

A Parallel Branch-and-Bound Algorithm to Compute a
Tighter Tardiness Bound for Preemptive Global EDF

Mauro Leoncini · Manuela Montangero · Paolo
Valente

Received: date / Accepted: date

Abstract In this paper we present a parallel exact algorithm to compute an upper
bound to tardiness of preemptive Global EDF (G-EDF) schedulers, named harmonic
bound, which has been proved to be up to 30% tighter than previously proposed
bounds. Tightness is a crucial property of tardiness bounds: a too loose bound may
cause a feasible soft real-time application to be mistakenly deemed unfeasible.

Unfortunately, no polynomial-time algorithm is known to date to compute the
harmonic bound. Although there is no proof of hardness of any sort either, the com-
plex formula of the bound apparently provides no hints to devise algorithms with
sub-exponential worst-case cost.

In this paper we address this issue by proposing a parallel, exact, branch-and-
bound algorithm to compute the harmonic bound, called harm-BB, which proves to
be extremely fast in a large number of experiments. More specifically, we compare its
execution times with those of existing polynomial-time algorithms for other known
tardiness bounds on 630000 random task sets. harm-BB outperforms, or is compara-
ble to, the competitor algorithms in all scenarios but the ones with the highest number
of processors (7 and 8) and tasks (∼50). In the latter scenarios harm-BB is indeed
slower than the other algorithms; yet, it was still feasible, as it takes only about 2.8
s to compute the bound on a commodity Dual-Core CPU. Even better, we show that
harm-BB has a high parallel efficiency, thus its execution time may be largely cut
down on highly-parallel platforms.

Keywords Global EDF scheduler, Tardiness, Branch-and-Bound, Parallel algorithm

M. Leoncini, M. Montangero, P. Valente
Dipartimento di Scienze Fisiche, Informatiche e Matematiche
Università di Modena e Reggio Emilia
Via Campi 213/b
Modena, Italy
E-mail: name.surname@unimore.it

M. Leoncini
Istituto di Informatica e Telematica, CNR
Via Moruzzi 1
Pisa, Italy

2 M. Leoncini et al.

1 Introduction

Complex time-sensitive applications play an important role in industry, business and
daily life. Examples range from financial and IPTV services, to infotainment systems.
The requirements of these applications are often less stringent than those of hard
real-time (HRT) ones. In fact, these applications, modeled as sets of tasks that issue
jobs to execute, usually tolerate deadline misses for some jobs, provided that some
appropriate soft real-time (SRT) requirement is met. In many cases, it is sufficient
that an application-specific maximum job-completion tardiness is guaranteed with
respect to deadlines [15].

An important issue with these applications is that in most cases their computa-
tional demand can now be met only on multiprocessor platforms. On a multiproces-
sor, it is evidently more complex to schedule jobs so as to meet deadlines. We discuss
existing solutions in the description of the related work (Section 1.2). Fortunately, as
we highlight in that section, simple, global scheduling algorithms [7,27,10,11] are
able to meet the requirements of any feasible SRT task set, provided that the latter
tolerates a non-null tardiness with respect to deadlines. One of the lowest-overhead
algorithms is Global Earliest Deadline First (G-EDF), which simply schedules jobs
globally, in increasing deadline order.

On the downside, G-EDF may or may not succeed in meeting the requirements of
a SRT application, depending on the actual maximum tardiness that it can guarantee
to the tasks of the application. Moreover, maximum tardiness also affects the sizes of
the buffers that may be used to conceal deadline misses. As a consequence, tardiness
bounds for G-EDF [8,12,10,26], or, more precisely, the tightness of these bounds,
play a critical role in determining the feasibility of applications scheduled with G-
EDF. In fact, a too loose bound may cause a feasible application to be deemed un-
feasible, or buffers to be uselessly too large. In this respect, the tardiness bound for
G-EDF proposed in [26], named harmonic bound and valid for independent, implicit-
deadline tasks on identical processors, proved to be up to 30% tighter than previously
known bounds.

Moreover, as noted in [26], the harmonic bound follows from a general property
shared by every work-conserving scheduling algorithm; as a consequence of this,
it might help improve tardiness bounds and, in general, schedulability analysis also
of other algorithms, techniques, and resources (other than CPU) [8,23,20,29]. One
notable example, in this respect, is memory, that has clearly emerged as a critical
shared resource in multi-cores, many-cores and GPUs processors [30,6].

The harmonic bound seems to suffer from a major drawback, i.e., a quite complex
closed-form expression for which no polynomial-time algorithm is known to date for
its computation, though a proof of hardness of some sort is not available either. These
computational-cost issues are the motivation for the present contribution.

1.1 Contribution

We address the issue of efficiently computing the harmonic bound. A brute-force,
exponential-time algorithm, here named as harm-BF, was proposed in [26] to com-

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 3

pute the harmonic bound. Briefly stated, harm-BF incurs a high computational cost
because of the huge size of the space of task permutations that must be searched in
order to optimize certain quantities (see Section 3). We have been unable to either
prove any hardness result or provide a polynomial-time algorithm for the computa-
tion of the harmonic bound. However, in this paper we present a parallel algorithm
based on the Branch and Bound technique, named harm-BB, which proves to be very
effective in quickly pruning the permutation space to be searched.

In more details, the algorithm presented in this paper is an improved, parallel
version of the preliminary, sequential algorithm that we introduced in a previous
work [18]. The new algorithm exploits the fact that large portions of the above-
mentioned task-permutation space can be searched independently from one another.
This key property enables harm-BB to compute the harmonic bound through a num-
ber of parallel threads that in practice is only limited by the level of parallelism of the
underlying hardware platform.

Before proceeding, we must also underline that [18] contained a few errors in
the reported experimental results. More specifically, due to a subtle mistake in our
C++ implementation of harm-BB, in [18] we reported unduly low harm-BB execution
times for the most demanding scenarios. Here we report the correct execution times.

To assess the performance of harm-BB, we benchmarked both harm-BB and all
the other polynomial algorithms over 630 groups of 1000 task sets each, with each
group of task sets randomly generated according to one of 630 different combinations
of: (1) number of processors, (2) utilization, and (3) period ranges. harm-BB proved
to be faster than the competitor algorithms, or at least about as fast, in all scenar-
ios, except for those with a number of processors equal to 7 and 8, with 8 being the
maximum value investigated. Although in the latter scenarios harm-BB resulted sig-
nificantly slower than the other algorithms1, in nonetheless took no more 2.8 seconds
to complete on an average Dual-Core CPU, even with the highest number of tasks
(around 50) and processors (8).

In addition, as already stated, we prove that harm-BB has a high parallel effi-
ciency, meaning that its execution time can be largely cut down on a highly-parallel
platform.

1.2 Related work

One of three main scheduling paradigms is usually adopted to schedule jobs so as to
meet deadlines: global, where any pending job can be executed on any available pro-
cessor; partitioned, where the jobs of a given task can be executed only on a statically-
selected processor; semi-partitioned, a variant of the partitioned scheme, where some
tasks may migrate across processors. Optimal, global multiprocessor scheduling al-
gorithms have been devised by [1,2,22,24]. They guarantee all deadlines to feasible
task sets (i.e., task sets with a total utilization not higher than the total platform ca-
pacity), but are relatively complex, and may incur non-trivial overheads [4,5]. On the
opposite end, partitioned and semi-partitioned schemes are much simpler, and incur

1 These are the scenarios for which wrong execution times, in the order of just milliseconds, were
reported for the sequential version of harm-BB in [18].

4 M. Leoncini et al.

significantly lower overheads. However, these schemes are not optimal. In this re-
spect, a simple semi-partitioned approach that combines many different techniques
has recently been proposed [5]. The authors proved that such an approach is able to
schedule all HRT task sets, among those considered in their experiments, with a total
utilization of up to 99% of the system capacity (and occasionally even more).

However, if a feasible SRT task set tolerates a non-null tardiness with respect to
deadlines, then even very simple global schedulers [7,27,10,11] exist which are able
to meet the requirements of the task set, independently of its total utilization. One of
the simplest algorithms owning this feature is G-EDF, which has been proven to guar-
antee bounded tardiness for every task set with a total utilization not exceeding the
total capacity of the system [7,27]. G-EDF is even simpler than the solution proposed
in [5], as the latter incorporates many non trivial features, which include: a policy to
allocate tasks on processors, a bandwidth server, an instance of (uni-processor) EDF
running for each processor, as well as a few other heuristic criteria. As for feasibil-
ity on real systems, G-EDF is strongly believed to be an effective and low-overhead
solution for SRT tasks.

In addition, according to [19] and [20], G-EDF seems effective also for new
parallel task models. Special variants targeted at these more complex task models
have been proposed by [29]. In this respect, the state-of-the-art results with a semi-
partitioned approach [21] are still far from the optimal results achieved in [5] for the
classical independent, implicit-deadline sporadic (or periodic) real-time tasks.

Three main tardiness bounds for G-EDF have been devised before the harmonic
bound was proposed. In its tightest version, the first such bound appeared in [8]. The
second bound, again in its tightest form, was proposed by [12] as an improvement
(which was already discussed in [8]) of compliant-vector analysis (CVA). The third
bound was obtained by [10] through an alternative improvement on CVA, named PP
Uniform Reduction Law.

To compute all the above mentioned bounds, polynomial-time algorithms are
available which are exceedingly faster than harm-BF. However, in the conference
version of this paper we observed that harm-BF seemed amenable to highly efficient
parallel implementation on modern multi- and many-core architectures. Here we pro-
vide one such implementation, based on the Branch and Bound approach, that proves
the correctness of our observation.

Although many good works are present in the literature on parallel Branch-and-
Bound, some of which also provide usable frameworks (see, e.g., [9]), turning a spe-
cific algorithm into highly efficient parallel code always presents peculiarities and
challenges, as correctly noted in [16]. In particular, the issue of interprocess com-
munication and synchronization, mainly resulting from the need of coordinating the
exploration of the huge search space, is one that might frustrate the gain due to the
possibly much higher computing power available.

To cope with the above problem, an extreme solution is to give up doing space
partitioning at all. This is suggested, for instance, in the first approach presented in the
above mentioned paper [16]. There, the speed-up over sequential implementations is
expected from at least one process to start space exploration equipped with a good
approximation of the optimum (solution) value, which would lead to a great amount
of pruning. Of course, success here highly depends on the application domains and, in

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 5

particular, on the availability of probabilistic information about the optimum value.
We also note that avoiding (or highly constraining) space partitioning also reduces
the possible arising of known anomalies (see, e.g., [17]).

In our case, we can limit interprocess communication and other more subtle im-
plementation problems due to the particular nature of the space being explored.

Roadmap

In Section 2 we describe the system model. In Section 3 we explain the harmonic
bound in details and discuss the brute force algorithm. In Section 4, we present the
branch and bound algorithm, and, in Section 5, we describe the experimental setting
and discuss the obtained results.

2 Task and service model

In this section we introduce the model adopted in the paper and the notation (sum-
marized in Table 1).

Table 1: Main notations used throughout the paper.

Model
τ , N Set and number of tasks
τi ∈ τ i-th task in τ

Ci Worst-case computation time of the jobs of
task τi

Ti Period/Minimum inter-arrival time of the
jobs of task τi

M Number of symmetric processors
Ui =

Ci
Ti
≤ 1 Utilization of task τi

Usum = ∑i∈τ Ui ≤M Total utilization of the task set
U = dUsume−1
Harmonic Bound and B&B Algorithm
G-long permutation Permutation with G elements
Π(τ,G) Set of all G-long permutations of tasks in τ

cΠ(π j,G,h) Set of G-long tail-constrained permuta-
tions with tail π j and head length h

S ∈ {Γ ,Ω} Depending on which function harm-BB is
computing

SLB Value of current best solution
SUP(π j) Upper Bound for S(πi), with

πi ∈ cΠ(π j,G,h)

6 M. Leoncini et al.

2.1 Task model

We consider a set τ of N asynchronous tasks τ1, τ2, . . ., τN , each one consisting of an
infinite sequence of jobs to execute. The j-th job of τi, denoted by J j

i , is characterized
by a 4-tuple, (r j

i ,c
j
i , f j

i ,d
j
i) where:

– r j
i is the release (or arrival) time of J j

i ;
– c j

i is the computation time, namely the time needed to execute J j
i on a unit-speed

processor;
– f j

i is the job finish time;
– d j

i is an absolute deadline, i.e., the time within which the job should be finished;

A fifth important parameter is the job tardiness, t j
i , which is defined in terms of dead-

line and finishing time, i.e.:

t j
i = max(0, f j

i −d j
i)

No offset is specified for the release time of the first job of any task.
Let Ci = sup j c j

i and Ti = inf j

(
r j+1

i − r j
i

)
be the maximum computation time and

minimum inter-arrival time of the jobs of task τi, respectively. For all j it clearly
holds r j+1

i ≥ r j
i +Ti. The pair (Ci,Ti) somehow characterizes task τi. In particular, for

any j ≥ 1 the absolute deadlines d j
i are given implicitly and set to r j

i +Ti.
We define as tardiness of a task the maximum tardiness experienced by any of its

jobs, and for each task τi we define its utilization as Ui ≡ Ci
Ti
≤ 1. Finally, we denote

by Usum the total utilization ∑τi∈τ Ui of the task set, and by U the quantity dUsume−1.

2.2 Service model

The harmonic bound holds for a task set τ , defined as in the previous subsection,
under the following conditions:

– jobs are executed on a multiprocessor with M identical unit-speed processors;
– M satisfies the inequalities M < N and Usum ≤M;
– jobs are scheduled according to the global and preemptive EDF (G-EDF) policy,

meaning that 1) each time a processor becomes idle, the pending (and not yet
executing) job with the earliest deadline is dispatched on it, 2) when a job J
arrives whose deadline comes before that of at least one running job, then the job
in execution with latest deadline is preempted (i.e., suspended) in favor of J, with
ties broken arbitrarily.

3 The harmonic bound

In this section, we first recall the formula of the harmonic bound, then we provide
a short description and analysis of the brute-force algorithm, harm-BF, which can

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 7

be used to compute the bound. A detailed description of the harmonic bound can be
found in [26].

The formula of the harmonic bound is rather long and complex and unfortunately
we cannot offer any easy intuitions to help understand it. However, for the purposes
of the present paper, what is important is to catch on the “structure” of (the formula
of) the bound. The latter can be expressed in terms of two maximization functions on
task sets, which we will denote as Γ and Ω . In turn, to closely reflect actual harm-BB
computations, we define Γ and Ω via two more general functions, Γ (·) and Ω(·),
respectively, that apply to task permutations.

We start with two definitions that will be used through all the paper. Recall that,
by definition, U = dUsume−1 is a natural number.

Definition 1 (G-long permutation and set) Given the set of tasks τ and an integer
G≤ N(= |τ|), we say that a permutation (τi1 , . . . ,τiG) of elements in τ with cardinal-
ity G ≤ N is a G-long permutation. Moreover, we write Π(τ,G) to denote the set of
all
(N

G

)
G-long permutations.

Definition 2 (M-contribution) Given an integer G ≤U and a G-long permutation
πi ∈Π(τ,G), for any g≤ G we define

Mπi
g ≡M−

g−1

∑
v=1

Uiv . (1)

Mπi
g can be regarded as the residual utilization available after the first g− 1 tasks of

the permutation. We are now able to introduce our first auxiliary function Γ (·).

Function Γ (·). Given a U-long permutation πi, we define

Γ (πi)≡ Γ ((τi1 ,τi2 , . . . ,τiU))≡M ·
U

∑
g=1

Cig

Mπi
g
. (2)

Note that the right-hand side of Equation (2) contains a summation of U frac-
tions, one for each task in the permutation. Given the ith fraction we have that: (1)
the numerator is the task completion time of the ith task in the permutation, (2) the
denominator is a M-contribution that depends on the utilizations of the tasks with
indices smaller than i in the permutation.

We now define Γ (τ) simply as the maximum, over all possible U-long permuta-
tions πi in τ , of Γ (πi), i.e.,

Γ (τ) = max
πi∈Π(τ,U)

Γ (πi). (3)

The formula for our second auxiliary function, Ω(·), is slightly more complex
and makes use of Γ .

8 M. Leoncini et al.

Function Ω(·). Given a G-long permutation πi ∈Π(τ,G), with 1≤G≤U , we define

Ω(πi)≡Ω((τi1 ,τi2 , . . . ,τiG))≡
1
M
·Mπi

G+1 ·

Γ (τ) ·
G

∑
g=1

Uig

Mπi
g Mπi

g+1
+

G

∑
g=1

Cig

Mπi
g︸ ︷︷ ︸

ω(πi)

 . (4)

Notice that ω(πi) contains two summations with G terms each, one for each task
in the permutation, and that such terms are fractions. Given the ith fraction of one of
the two summation, we have that: (1) numerators are either task utilizations or com-
pletion times of the ith task in the permutation, (2) denominators are defined in terms
of M-contributions. For the summation on the left, the involved M-contributions de-
pend on the utilizations of all tasks in positions 1 through i. For the summation on the
right, only utilizations of tasks up to position i−1 are involved.

We define Ω(τ) as the maximum of Ω(πi) over all possible G-long permutations
πi in τ , for 1≤ G≤U , i.e.,

Ω(τ)≡ max
πi∈Π(τ,G)

1≤G≤U

Ω(πi). (5)

A few observations are in order. First, for simplicity we will write Γ and Ω in-
stead of Γ (τ) and Ω(τ), since τ is the (fixed) set of tasks. Second, even if Ω does
depend on Γ , the permutations that maximize the two functions are not necessar-
ily the same. Moreover, while Γ is computed by maximizing over the permutations
of exact length U , the definition of Ω takes all permutations of size at most U into
consideration.

The Harmonic Bound. We are now ready to state the harmonic bound for the set of
tasks τ as a function of Ω (and hence also of Γ).

Theorem 1 (Harmonic Bound) For every job J j
i of each task τi we have

f j
i −d j

i ≤Ω +
M−1

M
Ci. (6)

As proven by Lemma 2 in [26], the right-hand side (RHS) of (6) is not negative,
and is therefore a tardiness bound (recall that tardiness is a non-negative quantity).

3.1 harm-BF: a brute-force approach

The time-consuming part in computing the harmonic bound is of course the compu-
tation of Γ and Ω . Given a task set τ , the brute force approach harm-BF proceeds as
follows:

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 9

1. Compute Γ . Generate all the possible U-long permutations πi ∈ Π(τ,U), and
compute the value Γ (πi) defined in (2) for each such permutation. Then, accord-
ing to (3), take the maximum among these values to get Γ .

2. Compute Ω . Generate all the possible G-long permutations πi ∈ Π(τ,G), for
all G ∈ {1, . . . ,U}, and compute the value Ω(πi) in (4) for each such permuta-
tion, using the value of Γ computed in step (1). Then, according to (5), take the
maximum among these values.

3. Compute the RHS of (6) for every task in τ , using the value of Ω computed in
step (2).

The time complexity of harm-BF is clearly factorial.

4 harm-BB: a Branch-and-Bound approach

In this section we present our parallel algorithm harm-BB which parallelizes a Branch-
and-Bound approach to compute the harmonic bound. In particular, functions Γ and
Ω are computed independently, Γ first, and in both cases a parallel Branch-and-
Bound algorithm is used. By default, harm-BB generates a number of parallel ex-
ecution threads equal to the number of logical processors that run the algorithm.
Alternatively, the number of parallel threads can be given as an input parameter. In
this way, by setting this number to one, we can simulate a sequential execution of the
algorithm.

As the high level approach in computing the two functions is often analogous,
when appropriate, we will first describe the algorithm referring to any of the two
functions using a generic alias S ∈ {Γ ,Ω}, and then giving specific indications for
each function when needed.

The rest of this long section is organized as follows: we will start by recalling the
basic concepts of the Branch-and-Bound technique, and then we will describe how
to apply and parallelize the technique to the special case of computing the harmonic
bound. Pseudo-code for the bound computation is given in Figures 3 and Figure 6,
and referenced throughout the text when needed.

4.1 Branch-and-Bound basics

Here, we give a succinct high-level description of the Branch-and-Bound approach [14]
for the solution of combinatorial optimization problems. Authors familiar with such
technique may directly proceed to Section 4.2.

We describe the approach for maximization problems, like the ones involved in
the computation of the harmonic bound. For minimization problems dual considera-
tions apply. A brute force algorithm for a maximization problem explores the search
space (i.e., the space of all the feasible solutions to the problem) by computing the ob-
jective function at each point of the space and returning the solution with maximum
value. The Branch-and-Bound approach also explores the search space but with the
aim at reducing the number of evaluations. As the name suggests, the two main op-
erations performed by a Branch-and-Bound algorithm are branching, which amounts

10 M. Leoncini et al.

to partitioning a subspace of the search space into smaller sets, and bounding, which
is the computation of an upper bound to the values of all the solutions belonging to
a particular subspace. Initially, the subspace under investigation is the whole search
space A. At the generic step, the algorithm considers one particular subspace A′ ⊆ A
and the value x of the best solution found so far; the algorithm tries to compute an
upper bound b to the value of any solution in A′. If b≤ x, then the subspace is aban-
doned, since it cannot possibly contain a solution better than the current one. This
operation is called pruning. If instead b > x holds, then A′ deserves further inves-
tigations. In this case, the algorithm further partitions the subspace2 and marks the
generated spaces for future analysis. Clearly, a subspace that includes one single so-
lution cannot be further partitioned. In this case the algorithm explicitly computes
the value of the corresponding solution, which possibly replaces the best current one.
The algorithm stops when there are no more subsets to bound; it then returns the best
current solution found as the value of the optimal solution to the problem.

The key to efficiency for Branch-and-Bound algorithms is clearly the possibility
to prune large portions of the search space using a relatively small number of bound-
ing operations. When this happens, we observe a significant decrease in the running
time (with respect to brute force). Obviously, the Branch-and-Bound approach is not
the magic wand to cope with high-complexity problems; indeed, in the worst case all
(or almost all) feasible solutions must be evaluated to locate an optimal one and thus
the worst-case running time is asymptotic to that of brute force.

Execution tree. The execution of a Branch-and-Bound algorithm can be represented
by a (dynamically growing) rooted tree T , in which each node corresponds to a subset
of the search space. The level of a node x ∈ T is the number of edges of the unique
path in T joining x to the root. The root itself is the only node at level 0. Initially, T
includes only the root r which corresponds to the whole search space.

In general, a node x at level ` represents a subset of the search space that we
denote with Vx. The set Vx results from the partition of (the subspace associated to)
its parent node (at level `−1). Nodes that are (still) not partitioned are leaves of T .

Each leaf of the tree is either dead or alive. Dead leaves correspond to pruned
subsets, while alive leaves correspond to those subsets that did not undergo bounding
yet. When an alive leaf x undergoes branching, a set of children is generated and
added to the tree, each one corresponding to a subset of Vx.

An example is depicted in Figure 1.

In the following of this section, we will concentrate on the computation of func-
tions Γ and Ω . We will define the search spaces and subsets Vxs for the two functions.
Then, we will describe how to compute a first best current solution, how to branch and
how to bound. Finally, we will prove the correctness of the computed upper bounds.

2 The way this partition is made, as well as the number of generated subspaces, is clearly problem
dependent.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 11

Optimal solution

(a) (b)

(c)(d)

(e)

Branched node

Alive node

Dead node

Node corresponding to
 singleton

Fig. 1: Example of execution tree for a Branch-and-Bound algorithm. Initially, the
root of the tree is the only alive node. At each branching operation, a set of sibling
is added as children of a former alive node. Each bounding operation determines if
one alive node is to be branched or declared dead. For a leave corresponding to a
singleton, the actual value of the function is computed with input that singleton, and
only the best solution is retained.

4.2 Search spaces and execution trees

For both function Γ and function Ω the search space is a set of permutations of tasks.
In particular,

– Function Γ : the search space is the set Π(τ,U), i.e., the set of all U-long permu-
tations;

– Function Ω : the search space is the set ∪1≤G≤U Π(τ,G), i.e., the set of all permu-
tations with length ranging from 1 to U .

The execution of harm-BB considers subsets of feasible solutions in the search
space, each corresponding to one node of the execution tree, i.e., the tree that rep-
resents the algorithm execution. To describe such subsets we need to introduce the
concepts of Head and Tail of a permutation and of tail-constrained permutations.

Definition 3 (Head and Tail) Given three natural numbers h, t and G, such that h+
t = G≤ N, and a G-long permutation

πi = (τi1 , . . . ,τiG) ∈Π(τ,G),

we define:

12 M. Leoncini et al.

(τ2,
(τ4,
(τ5,
(τ6,

〉
τ1,τ3)︸ ︷︷ ︸

Fixed
tail

(a) cΠ((τ1,τ3),3)

(τ4,τ5,τ6,
(τ4,τ6,τ5,
(τ5,τ4,τ6,
(τ5,τ6,τ4,
(τ6,τ4,τ5,
(τ6,τ5,τ4,

〉
τ2,τ1,τ3)︸ ︷︷ ︸

Fixed
tail

(b) cΠ((τ2,τ1,τ3),6)

Fig. 2: Example of tail constrained permutations. Given the set of tasks τ =
{τ1,τ2,τ3,τ4,τ5,τ6}: (a) set of tail constrained permutations with G = 3 and π j =
(τ1,τ3); (b) set of tail constrained permutations with G = 6 and π j = (τ2,τ1,τ3).

- The head of πi of length h as the permutation

H(πi,h) = (τi1 , . . . ,τih),

i.e., the first h elements of permutation πi;
- The tail of πi of length t as the permutation

T (πi, t) = (τiG−t+1 , . . . ,τiG),

i.e., the last t elements of permutation πi.

Definition 4 (Tail-constrained permutations) Given a natural number G, such that
0 ≤ G ≤ N, and a t-long permutation π j = (τ j1 , . . . ,τ jt) ∈ Π(τ, t), for some t ≤ G,
we define the set of tail-constrained permutations as:

cΠ(π j,G)≡ {πi ∈Π(τ,G) | T (πi, t) = π j}, (7)

i.e., all G-long permutations whose tail of length t = |π j| is equal to the given permu-
tation π j (See Figure 2 for a couple of examples).

We can now be more precise about the permutation spaces associated to the nodes
of the Branch-and-Bound tree resulting from the execution of harm-BB. Intuitively,
each node of the tree corresponds to a set of permutations sharing the same tail.

Function Γ . A node at level t ≤U corresponds to a set of U-long tail-constrained
permutations cΠ(π j,U), where each permutation has tail π j ∈Π(τ, t) of length t.

For t = 0, the root corresponds to the set of U-long tail-constrained permuta-
tions with degenerate empty tail. Leaves that can not be further branched, correspond
to singletons, that is, sets of U-long tail-constrained permutations with degenerate
empty heads.

Referring to the example in Figure 2, the set in (a) corresponds to a node at level
t = 2 when U = 3, while set in (b) to a node at level t = 3 when U = 6.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 13

Function Ω . To compute Ω , harm-BB builds a forest of execution trees, instead of
just one single tree. In particular, there are U execution trees, one for each integer
value G ∈ {1, . . . ,U}. Each tree accounts for permutations of fixed length G and is
analogous to the execution tree for Γ , with the sole difference of the length of the
permutations. For t = 0 and G ∈ {1, . . . ,U}, the root corresponds to the set of G-long
tail-constrained permutations with degenerate empty tail.

Trees are built one after the other, in decreasing order with respect to the length
of the permutations.

Execution trees are computed by leveraging parallelism. Indeed, the computation
on distinct subtrees involves distinct subsets of the search space, and hence it is very
natural to assign distinct subtrees to distinct parallel thread for their computation.
In particular, harm-BB assigns to idle threads nodes at level one in the execution
tree which have not been taken into consideration yet, and each thread computes the
whole subtree rooted at such node (Lines 20-25 of code in Figure 6).

The choice of assigning to threads only nodes at level one in the execution tree
is motivated by the fact that blocking and waking up threads takes time, and this can
reach microseconds. To get a high parallel efficiency, threads must execute computa-
tions that last more than this overhead time. Therefore, each thread deals with large
subtrees.

4.3 Best current solution

harm-BB keeps and updates the value of the best current solution found until that mo-
ment, denoted with SBC. During the algorithm execution, when harm-BB encounters
a leaf that corresponds to a singleton {πi}, it computes S(πi) and compares this value
with that of the current best solution SBC. If SBC < S(πi), then πi becomes the new
(current) best solution and harm-BB updates the value of SBC by setting SBC = S(πi).

Observe that SBC is a global variable and thus operating on it might generate
conflicts among threads. To circumvent this, we could force a thread lock the variable
any time it needs to access the variable. Unfortunately, such an easy solution is likely
to result in a poorly efficient parallel implementation, as threads might waste time
waiting for the variable to be unlocked. To minimize locking on SBC, we observe
that, being SBC a scalar, we can (safely) assume that any update of its value is atomic.
This implies that, if a thread tries to read SBC while another thread is updating it, then
the first thread sees either the previous or the new value, but not an inconsistent value.
Therefore, harm-BB makes a thread read SBC without taking the lock, but requires a
lock on SBC if the thread has to update its value. After locking SBC, the thread has
to check again if it really has to update the value of the variable. Indeed, it might
happen that the value of SBC has been updated by another thread in between the read
operation and the decision to update the value. Therefore, the update occurs only if
the locked value of SBC is smaller than the value S(πi) computed by the thread (Lines
4-11 of code in Figure 6) .

14 M. Leoncini et al.

4.4 Initial solutions

The initial SBC value is set by taking the highest among two quantities, corresponding
to specific solutions that are deemed to be not too distant from the optimal value.
We denote such solutions τC and τU , respectively. These are composed of the U-
long permutations with largest Cis (resp. smallest Uis) values, sorted in increasing
(resp. decreasing) order. The intuition is that we try to maximize the fractions in
the expressions in (2) and (4): by taking the largest Cis we tend to maximize the
numerators; by taking the smallest Uis, we tend to minimize the M-contributions at
the denominators.

Then, at the beginning, we set (Lines 1-5 of code in Figure 3)

SBC = max{S(τC),S(τU)}.

For what concerns the function Ω , ΩBC is the initial solution for the execution
tree with U-long permutations. For the other trees, we also take the best solution
computed by previous execution trees into consideration.

COMPUTEΩ(τ,U)

1 // Compute initial values for Γ and Ω

2 Compute τU
3 Compute τC
4 ΓBC := max{Γ (τU),Γ (τC)} // Global variable
5 ΩBC := max{Ω(τU),Ω(τC)} // Global variable
6 // Generate parallel execution threads
7 GENERATEPARALLELTHREADS(num logical CPUs)
8 // Compute Γ ;
9 // U is the length of the permutation, () is the empty tail

10 Γ := EXECUTIONTREEΓ (U,()) // Uses global variable ΓBC
11 // Compute Ω

12 Ω := 0
13 // start one execution tree for each G
14 for G =U downto 1
15 // G is the length of the permutation, () is the empty tail
16 Ω := max{ΩBC,EXECUTIONTREEΩ(G,())}// Uses global variable ΩBC
17 return Ω

Fig. 3: Pseudo-code of main thread for the computation of function Γ

given set of tasks τ and U = dUsume, where Usum is the total utilization.
GENERATEPARALLELTHREADS(num logical CPUs) generates a number of par-
allel threads equal to the number of logical CPUs; EXECUTIONTREEΓ and
EXECUTIONTREEΩ are recursive functions, whose pseudo-code can be found in
Figure 6, that generate and explore the Branch-and-Bound execution trees for the
two functions and use the global variables SBC.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 15

4.5 Branching

Branching is the operation executed at a given alive node x of the execution tree
(Lines 14-29 of code in Figure 6) to add new leaves. The set Vx of solutions associated
to x is a set of constraint permutations and, intuitively, branching is done by simply
increasing the length of the tail by one, in all possible ways (hence partitioning the
set Vx). The branching strategy is the same for the execution tree of Γ and for each
tree of Ω .

We give a formal general description for a node corresponding to a generic subset
of G-long permutations, with G ∈ {1, . . . ,U}, and tail π j.

Consider a node x at level t < G in the tree, corresponding to the set of G-long
permutations cΠ(π j,G). For a given t-long tail π j = (τ j1 , . . . ,τ jt), let τ(j) be the set
of task in τ excluding those in the tail π j; i.e., τ(j) = τ \{τ j1 , . . . ,τ jt}. The branching
procedure generates a new leaf in the tree for each task τ ′ ∈ τ(j), i.e., that is not
already in the tail. Each leaf is set as child of node x and corresponds to the subset of
G-long permutations with tail composed by the task τ ′ followed by the tasks in π j,
i.e., the set cΠ((τ ′,τ j1 , . . . ,τ jt),G).

Observe that branching at a single node can be done in polynomial time, for both
functions.

Example 1 Figure 4 shows an example of a portion of a complete execution tree,
with the indication of the corresponding Vx for each node x. In this example, the
task set is τ = {τ1,τ2,τ3,τ4}. The root node corresponds to the set of all 3-long
permutations on the task set τ . The node at level one corresponds to the subset of 3-
long permutations with tail τ1, and all possible other alternatives in the two positions
of the head. Its children, at level two, are obtained by increasing the tail by one task,
choosing among all possible tasks in τ , except τ1 (which is already in the tail). The
chosen task is the label of the outgoing edge. Each child node corresponds to a set of
3-long permutations with two tasks in the tail, and the constraint that the last one is
τ1. This leads to have three children at level two of the tree, corresponding to three
sets of 3-long permutations with tails (τ2,τ1),(τ3,τ1) and (τ4,τ1). Finally, at level
three there are nodes with a tail that is composed by three tasks, i.e. they correspond
to singletons and contain exactly one feasible solution. In this case the tail has the
length of the permutation and the head is empty. These nodes can not be further
branched.

After being added to the tree, the new leaves have to undergo bounding. harm-BB
orders the sibling leaves in decreasing order of completion time of the new task added
to the tail during the branching operation. This will be the order in which such nodes
will be considered for bounding. Referring again to Figure 4, if we assume that C1 ≥
C2 ≥C3 ≥C4, sibling nodes are evaluated form left to right. This heuristic is intended
to examine the subset that might contain a solution with larger value first and, thus,
prune the subtrees of the siblings earlier (using completion times empirically proved
to be more effective than using utilization for the same purpose).

16 M. Leoncini et al.

Fig. 4: Figure relative to example 1: portion of complete execution tree. Inside each
node of the tree there is the indication of the corresponding subset of the set of 3-long
permutations over the set τ = {τ1,τ2,τ3,τ4}. The root corresponds to the whole set
of permutations Π(τ,3). Labels on edges indicate the task that has been selected to
extend the tail of the father node to derive the children nodes.

4.6 Bounding

Bounding is the operation that allows harm-BB to decide whether a leaf x is dead or
alive. Given the corresponding set Vx of G-long tail constraint permutations with tail
π j, harm-BB computes an upper bound SUP(π j) for the values of the solutions in the
set Vx; i.e., we have

S(πi)≤ SUP(π j) (8)

for each G-long permutation πi with tail π j.
If SUP(π j)≤ SBC (the value of the best current available solution), then the whole

set of permutations in Vx is pruned from the search space, i.e., x is declared dead. Oth-
erwise, x is declared alive and will undergo branching (Line 13 of code in Figure 6).

The value SUP(π j) is computed by substituting specific values in the function
S(·) in order to be sure that (8) holds. It is straightforward to obtain an upper bound
if all values Cigs and Uigs that are relative to tasks in the head of πi are substituted
with the maximum Cmax and maximum Umax values. Indeed, Cis and Uis give a posi-
tive contribution in the numerators, while the Uis give a negative contribution in the
denominators.

However, with a bit more care we obtain a tighter bound, which should allow
harm-BB to declare dead a larger number of nodes with respect to a looser one.

The idea is to use not only Cmax and Umax, but the h largest Cigs and the h largest
Uigs. In particular, all values Cigs and Uigs that are relative to tasks in the head of πi

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 17

are substituted with the h largest Cis (in increasing order) and the h largest Uis (in
decreasing order) among all tasks in τ , excluding those in the fixed.

To formalize this idea we define h virtual tasks having the desired completion
times and utilizations and then we give a complete example.

Definition 5 (Virtual tasks) Given a G ≤ U and a t-long tail π j ∈ Π(τ, t), with
t ≤ G, the set τ(j) ⊆ τ is the set of tasks in τ that do not belong to the tail π j. We
define h = G− t virtual tasks τ̂1, . . . , τ̂h in the following way:

1. Order the Uis of the tasks in τ(j) in decreasing order, obtain the sequence Ur1 ≥
Ur2 ≥ . . .≥Ur|τ|−t and retain the largest h Uis:

Ur1 ≥Ur2 ≥ . . .≥Urh . (9)

2. Order the Cis of the tasks in τ(j) in increasing order, obtain the sequence Ck1 ≤
Ck2 ≤ . . . ≤Ck|τ|−t and retain the largest h Cis (starting with the index (|τ|− t)−
h+1 = |τ|−G+1):

Ck|τ|−G+1 ≤Ck2 ≤ . . .≤Ck|τ|−t . (10)

3. For y = 1, . . . ,h, the virtual task τ̂y is characterized by the following values of
utilization Ûy and completion time Ĉy:

- Ûy =Ury ; i.e., the yth Ui starting from the right of the ordered sequence in (9);
- Ĉy = Ck|τ|−G+y ; i.e., the yth Ci starting from the right of the ordered sequence

in (10).

In other words, completion times and utilizations of the virtual tasks coincides
with the h largest in τ(j). Observe that virtual tasks exhibits increasing completion
times and decreasing utilizations. Moreover, notice that virtual tasks may or may not
actually exist in τ . This is not an issue, as these tasks are used to compute the upper
bound to the values of feasible solutions in a given subset of task permutations, and
not the value of one feasible solution.

Example 2 Figure 5 shows an example of how to define virtual tasks. (a) The task set
is τ = {τ1,τ2,τ3,τ4,τ5,τ6,τ7}, we are considering 5-long permutations with a 3-long
tail equal to π j = (τ2,τ5,τ4) (hence, the head length is 2). The set of tasks that are
not in the tail, and that are used to define the virtual tasks, is τ(j) = {τ1,τ3,τ6,τ7}. (b)
Steps (1) and (2) of Definition 5 are performed: utilizations of tasks in τ(j) are ordered
in decreasing order; completion times of tasks in τ(j) are ordered in increasing order;
the boxed values are the h= 2 largest values selected in the ordered sequences (9) and
(10). (c.1) Two virtual tasks are defined: τ̂1 has utilization equal to the first (leftmost)
boxed value and completion time equal to the first (leftmost) boxed value; τ̂2 has
utilization equal to the second (from the left) boxed value and completion time equal
to the second (from the left) boxed value. Observe that τ̂1 = τ3, while τ̂2 is a task that
does not exist in τ .

We are now ready to define the permutation that is given as input to the functions
that are used to compute the upper bounds.

18 M. Leoncini et al.

task set 3-long tail
τ = {τ1,τ2,τ3,τ4,τ5,τ6,τ7} π j = (τ2,τ5,τ4)

tasks not in tail
G = 5 h = 2 τ(j) = τ \{τ2,τ5,τ4}

= {τ1,τ3,τ6,τ7}

(a)

order Uis of tasks in τ(j) in decreasing order
order Cis of tasks in τ(j) in increasing order

U3 ≥ U1 ≥U6 ≥U7

C1 ≤C7 ≤ C3 ≤ C6

select the first h Uis and the last h Cis (boxed values)

(b)

h virtual tasks Upper Bound Perm.

τ̂1

〈
Û1 =U3
Ĉ1 =C3

τ̂2

〈
Û2 =U1
Ĉ2 =C6

πUP = (τ̂1, τ̂2,τ2,τ5,τ4︸ ︷︷ ︸
tail π j

)

(c.1) (c.2)

Fig. 5: Figure relative to Examples 2 and 3: computation of virtual tasks and upper
bound permutation. (a) Input values for the examples. (b) Steps (1) and (2) of Def-
inition 5, which determine the utilizations and the completion times of the virtual
tasks. (c.1) Virtual tasks determined according to step (3) of Definition 5. (c.2) Upper
Bound permutation determined according to Definition 6

Definition 6 (Upper Bound permutation for tail π j) The upper bound permutation
for the G-long tail constrained permutations with t-long tail π j is denoted with πUP
and is the sequence of G tasks obtained by concatenating the sequence of virtual tasks
(τ̂1, . . . , τ̂h) with the tasks in the tail π j.

Example 3 Figure 5 (c.2) shows the resulting 5-long upper bound permutation πUP
relative to Example 2: the head is composed by the two virtual tasks τ̂1 and τ̂2, while
the tail by the tasks in the given tail π j.

4.6.1 Computing upper bounds

In this section we define upper bounds to the values of the solutions in the set Vx cor-
responding to node x of the execution tree. These bounds are obtained by calculating

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 19

the value of specific functions (identical, or very similar, to Γ and Ω) on input the
upper bound permutation πUP defined in the previous section.

We give details for the two functions separately.

Upper Bound to function Γ . Given a t-long tail permutation π j ∈ Π(τ, t) and a U-
long tail-constrained permutation πi with tail π j, we restate the definition of Γ (πi)
given in equation (2) by splitting the summation in two parts: one concerning tasks
in the head, the other concerning tasks in the tail:

Γ (πi) = M ·


h

∑
g=1

Cig

Mπi
g︸ ︷︷ ︸

head addends
(a)

+
U

∑
g=h+1

Cig

Mπi
g︸ ︷︷ ︸

tail addends
(b)


(11)

Let πUP be the U-long upper bound permutation for tail π j. The upper bound that
we compute for value Γ (πi) is the value resulting in calculating function Γ on input
πUP. Hence, using (11) we have

ΓUP(π j)≡ Γ (πUP) = M ·


h

∑
g=1

Ĉig

MπUP
g︸ ︷︷ ︸

head addends
(a′)

+
U

∑
g=h+1

Cig

MπUP
g︸ ︷︷ ︸

tail addends
(b′)


(12)

We make the following observations concerning the upper bound in (12) with
respect to function Γ in (11):

– the numerators in the tail addends in (b′) and in (b) are identical: they are the
completion times of the tasks in the tail π j;

– the numerators in the head addends in (a′) are the completion times of the virtual
tasks in πUP and form an increasing sequence (with respect to the summation
index). The numerators in (a′) are the completion times of the tasks in the head
of πi and, in general, are not ordered;

– all denominators are M-contributions: in the upper bound these are computed by
using permutation πUP, while in function Γ by using permutation πi.

Upper Bound to function Ω . Analogously to what we did for function Γ , we restate
the definition of function Ω by separating the contributions of tasks in the head and
the tail. Given the t-long tail permutation π j ∈ Π(τ, t) and a G-long tail-constrained
permutation πi with tail π j, we can restate the term ω(πi) in the definition of Ω(πi)
given in equation (4) in the following way:

20 M. Leoncini et al.

ω(πi) = Γ ·


h

∑
g=1

Uig

Mπi
g Mπi

g+1︸ ︷︷ ︸
head addends

(c)

+
G

∑
g=h+1

Uig

Mπi
g Mπi

g+1︸ ︷︷ ︸
tail addends

(d)


+

h

∑
g=1

Cig

Mπi
g︸ ︷︷ ︸

head addends
(a)

+
G

∑
g=h+1

Cig

Mπi
g︸ ︷︷ ︸

tail addends
(f)

. (13)

Let πUP be the upper bound permutation for tail π j. The bound for ω(πi) that we
compute is the value of a function that is very similar to (13), on input πUP. The main
difference is the order of the numerator in the summation (c): in the upper bound we
consider the utilizations of the virtual tasks in the head in inverse order (starting from
the one with larger index), so that they form an increasing sequence. We define:

ωUP(π j)≡

Γ ·


h

∑
g=1

Ûih−g+1

MπUP
g MπUP

g+1︸ ︷︷ ︸
Head addends

(c′)

+
G

∑
g=h+1

Uig

MπUP
g MπUP

g+1︸ ︷︷ ︸
Tail addends

(d′)


+

h

∑
g=1

Ĉig

MπUP
g︸ ︷︷ ︸

Head addends
(a′)

+
G

∑
g=h+1

Cig

MπUP
g︸ ︷︷ ︸

Tail addends
(f ′)

. (14)

We make the following observations concerning the upper bound in (14) with
respect to function ω in (13):

– head addends (a) and (a′) are the same as in equations (11) and (12), respectively.
– the numerators in the tail addends in (d′) (resp. (f ′)) and in (d) (resp. (f)) are

identical. These are the utilizations (resp. completion times) of the tasks in the
tail π j;

– the numerators in the head addends in (c′) are the utilizations of the virtual task
in πUP and form an increasing sequence (with respect to the summation index).
The numerators in (c) are the utilizations of the tasks in the head of πi and, in
general, are not ordered.

– all denominators are functions of M-contributions: in the upper bound these are
computed by using permutation πUP, while in function ω by using permutation
πi.

Then, remembering that the |τ(j)| values Ûis are ordered in decreasing order, we
take into account the smallest h such values, i.e., the last h, with indices ranging from
|τ(j)|−h+1 to |τ(j)|. The upper bound is given by a function that is very similar to
the definition of Ω(πi) :

ΩUP(π j)≡
1
M
·

M−
h

∑
v=1

Û|τ(j)|−v+1−
G

∑
v=h+1

Uiv︸ ︷︷ ︸
(m)

 ·ωUP(π j). (15)

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 21

Observe that bounding at a single node of the tree, for both Γ and Ω , can be done
in polynomial time, and we will always recompute the bound from scratch at each
node.

Indeed, the computation of the bound at a child node can not be easily performed
incrementally starting form the bound at its father node. In fact, consider the head of
the of the upper bound permutation at a child node; when the corresponding virtual
tasks change, the values MπUP

g s that appear in the denominators of (12) and (15) are
clearly affected. But this means that such values have to be recomputed. In some
cases such recomputation can be done starting from partial values of the MπUP

g s at
the father note. Unfortunately, the partial values needed at a child differ from those at
another child. Experimental evidence then showed that storing and accessing all the
partial values needed requires more time than recomputing them again from scratch.

4.6.2 Execution Tree Pseudocode

The pseudocode for execution trees for both functions Γ and Ω is given in Figure 6.
Input values are the permutation head length h and the tail permutation π j, while
the value of the best current solution SBC is a global variable (so that each thread
can access it and update it when needed). The function EXECUTIONTREES(h,π j) is
recursive: the base case occurs when the length of the head is equal to zero (test in
Line 3); i.e., the search space corresponds to a specific single task permutation. In
Lines 4-11, the value of the objective function is computed, compared with the best
current solution, which is possibly updated (Line 10).

Recursion occurs in the else branch from Line 12 to Line 29. In Line 13 bound-
ing is performed for the current search space to decide if branching is needed. In
Lines 15-29 branching is performed and recursive calls (Line 28) on new children
performed. Lines 20-25 are executed only by the main thread (started at the root)
which assigns subtrees to parallel idle threads. GET IDLE THREAD() is a function
that returns the id of the first thread that becomes idle (and stops the main thread
meanwhile). ONTHREADS(thread,h− 1,(τx,π j)) assigns subtree to thread thread,
which then recursively calls EXECUTIONTREES(h− 1,(τx,π j)) (Line 28). Finally,
lines 30-33 are executed only by the main thread: it waits for all other threads to
terminate and returns the value of the best current solution.

4.6.3 Proving upper bounds

In this section we prove the correctness of the upper bounds defined in the previous
section. In particular, we will prove the two following statements:

– For each U-long tail-constrained permutation πi with tail π j, we have

Γ (πi)≤ ΓUP(π j). (16)

– For each G∈ {1, . . . ,U}, for each G-long tail-constrained permutation πi with tail
π j, we have

Ω(πi)≤ΩUP(π j). (17)

22 M. Leoncini et al.

EXECUTIONTREES(h,π j)

1 // Global variable SBC is value of best current solution
2 // h is head length, π j is tail permutation
3 if h = 0 // head is empty
4 // Check if π j is a better solution than best current
5 if S(π j)> SBC
6 // Get lock on SBC
7 GET LOCK ON(SBC)
8 // Check again if update is needed
9 if S(π j)> SBC

10 SBC := S(π j)
11 RELEASE LOCK ON(SBC)
12 else // Bound
13 if SUP(π j)> SBC
14 // Branch
15 τ(j) := τ \π j

16 while τ(j) is not empty
17 Pick a task τx ∈ τ(j)

18 // New head is one task shorter,
19 // new tail is old tail π j appended to picked task τx
20 if |π j|= 0 // Only thread in the root
21 // Assign subtrees to idle threads
22 // Wait for available thread
23 thread = GET IDLE THREAD()
24 // Assign computation to idle thread
25 ONTHREADS(thread,h−1,(τx,π j))
26 else
27 // Continue with recursion
28 EXECUTIONTREES(h−1,(τx,π j))

29 τ(j) := τ(j) \{τx}
30 if |π j|= 0 // Only thread in the root
31 // Wait for all threads to terminate
32 WAITTERMINATIONOFALLTHREADS()
33 return SBC

Fig. 6: Pseudo code for execution trees for both functions Γ and Ω .

Consider first equation (15). Observe that quantity (m) is not smaller than the
multiplicative factor

Mπi
G+1 = M−

h

∑
v=1

Uiv −
G

∑
v=h+1

Uiv

that appears in the definition of Ω(πi) in equation (4). In fact, the Ûis in (m) are the
smallest among all tasks that might appear in the head. Hence, to prove (17) we just
need to prove that

ω(πi)≤ ωUP(π j). (18)

To prove upper bounds we compare summations that appear in the functions and
in the corresponding upper bounds. In particular,

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 23

– to prove (16), referring to equations (11) and (12), we show that (a) ≤ (a′) and
that (b)≤ (b′);

– to prove (18) , referring to equations (13) and (14), we show that (a)≤ (a′),(c)≤
(c′),(d)≤ (d′) and (f)≤ (f ′).

We start with the following lemma concerning M-contributions. It is not difficult
to show that these contributions (and hence denominators) in the upper bounds are
never larger than the corresponding ones in the objective functions.

Lemma 1 For any h,g ≤ G and for each G-long tail constraint permutation πi ∈
cΠ(π j,G) with tail π j, we have

Mπi
g ≥MπUP

g .

Proof Given g, we can write both Mπi
g and MπUP

g separating the contribution given by
the head and the (possibly empty) tail:

Mπi
g = M −

h

∑
v=1

Uiv︸ ︷︷ ︸
Head

contribution

−
g−1

∑
v=h+1

Uiv︸ ︷︷ ︸
Tail

contribution

≥M −
h

∑
v=1

Ûiv︸ ︷︷ ︸
Head

contribution

−
g−1

∑
v=h+1

Uiv︸ ︷︷ ︸
Tail

contribution

= MπUP
g ,

h

∑
v=1

Uiv ≤
h

∑
v=1

Ûiv

true by definition of the Ûis in the permutation πIP.

This lemma allows us derive bounds for summations relative to tail contributions.

Corollary 1 The tail contribution in equations (12) and (14) are greater or equal to
tail contribution in equations (11) and (13), respectively; i.e., (b) ≤ (b′), (d) ≤ (d′)
and (f)≤ (f ′).

For the summations (a′) and (c′), that are relative to the head contributions, we
first introduce intermediate values (a′′) and (c′′) by substituting the M-contributions
in the denominators. We have

Corollary 2 Referring to summations in equations (12) and (14), we have

(a′) =
h

∑
g=1

Ĉig

MπUP
g
≥

h

∑
g=1

Ĉig

Mπi
g︸ ︷︷ ︸

(a′′)

(c′) =
h

∑
g=1

Ûih−g+1

MπUP
g MπUP

g+1
≥

h

∑
g=1

Ûih−g+1

Mπi
g Mπi

g+1︸ ︷︷ ︸
(c′′)

24 M. Leoncini et al.

To conclude our proofs, we now just need to prove that (a′′)≥ (a) and (c′′)≥ (c).
To this end, we use the following result (for the sake of presentation, its proof is
postponed in Section 4.6.4).

Corollary 3 Given two sequences of m numbers n1 ≤ n2 ≤ . . .nm and d1 ≥ d2 ≥
. . .dm, we have

m

∑
g=1

ng

dg
≥

m

∑
g=1

nπ(g)

dg
,

for any permutation π : {1, . . . ,m}→ {1, . . . ,m}.

Corollary 4 The head contribution (a′) in equations (12) and (14) is an upper bound
to the head contribution (a) in equations (11) and (13).

Proof We prove that

h

∑
g=1

Ĉig

Mπi
g

= (a′′)≥ (a) =
h

∑
g=1

Cig

Mπi
g
,

and the statement then follows from Corollary 2, as (a)≥ (a′′)≥ (a′).
Assume first that the sets of numerators in (a′′) and (a) coincide; i.e.,∪h

g=1{Cig}=
∪h

g=1{Ĉig}. Then, by Corollary 3, the thesis follows by setting ng = Ĉig and dg = Mπi
g .

In fact, the Ĉigs form an increasing sequence of numbers, while the Mπi
g a decreasing

one.
Assume now that there exists an index k such that Cik does not appear in the set

∪h
g=1{Ĉig}. Then, by definition of the Ĉigs, we have Cik ≤ Ĉi1 ≤ Ĉik , and consequently

that

Ĉik

Mπi
k
≥

Cik

Mπi
k
.

Hence, we just need to prove that (a′′)− Ĉik
M

πi
k
≥ (a)− Cik

M
πi
k
, and we can proceed in

the same way.

Lemma 2 The head contribution (c′) in equation (14) is an upper bound to the head
contribution (c) in equation (13).

Proof The proof is analogous to the proof of Corollary 4 by observing that the nu-
merators in (c′) are in increasing order.

Theorem 2 For any G-long tail constraint permutation πi ∈ cΠ(π j,G) with tail π j,
such that G ∈ {1, . . . ,U}, we have

ΓUP(π j)≥ Γ (πi) and ΩUP(π j)≥Ω(πi).

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 25

4.6.4 Proof of Corollary 3

In this section we give the proof of Corollary 3.

We start with the following lemma.

Lemma 3 Given two non decreasing sequences of m numbers a1 ≤ a2 ≤ . . .am and
b1 ≤ b2 ≤ . . .bm, we have

m

∑
g=1

agbg ≥
m

∑
g=1

aπ(g)bg,

for any permutation π : {1, . . . ,m}→ {1, . . . ,m}.

Proof Let M = ∑
m
g=1 agbg and assume by contradiction that M is not the maximum

among all possible indices permutations. Then, there must be permutation π such that
M′ = ∑

m
g=1 aπ(g)bg > M and such that indices, in π , are not in increasing order.

Thus, there must be at least one index i such that

aπ(i) > aπ(i)+1,

while we still have that bi ≤ bi+1. Hence, we have

(aπ(i)−aπ(i)+1)(bi+1−bi)≥ 0,

and thus

aπ(i)bi+1 +aπ(i)+1bi ≥ aπ(i)bi +aπ(i)+1bi+1, (19)

where on the right side of Equation (19) we have the contribution of the two consec-
utive terms in M′ starting at index i

We now have two cases:

(i) if the > holds in Equation (19), then, by switching aπ(i) with aπ(i+1) we obtain a
summation strictly greater M′, and this is a contradiction, as M′ is supposed to be
the maximum value.

(ii) If the = holds, then we can switch aπ(i) with aπ(i+1) and we obtain the same
(supposedly) maximum value M′ for a permutation π ′ in which values at indices
i and i+ 1 are in increasing order. Now, either all values are in non decreasing
order, and thus M′ = M and the thesis holds, or we can proceed as before for any
other index j such that aπ ′(j) > aπ ′(j)+1.

The proof of Corollary 3 now follows simply by observing that the sequences
n1 ≤ n2 ≤ . . .nm and 1

d1
≤ 1

d2
. . .≤ 1

dm
are non decreasing.

26 M. Leoncini et al.

5 Experimental results

In this section we present our experimental results. We evaluate the efficiency of our
implementation of harm-BB [13] by performing a large number of experiments. The
three main contributions of this section are listed below.

– We compare the execution times of harm-BB and harm-BF, in order to establish
the improvement of harm-BB over a simple brute force approach. In addition,
we evaluate the effectiveness of harm-BB on the inside, by reporting the ratio
between the number of task permutations pruned and the total number of per-
mutations that had to be generated in the absence of pruning (i.e., the number of
permutations generated by harm-BF).

– We evaluate the parallel efficiency of harm-BB and show the speedup it can pro-
vide on commodity multi-core CPUs.

– We compare the computation time of harm-BB with that of the fastest available
implementations for the other polynomial algorithms for the computation of dif-
ferent bounds to the tardiness of global EDF schedulers.

The results reported in this section are based on the analysis of the execution times
of all the mentioned algorithms over 630000 random task sets, generated accord-
ing to the distributions of utilizations and periods described in the next paragraphs.
These distributions are those considered in previous works on tardiness or lateness
(e.g., [10,28,11]). Here we show only a few representative cases, with respect to the
very large amount of results we collected, because all the experiments performed ex-
hibit roughly the same relative performance among the algorithms. Full results and
code used in the experiments can be found in [13]3.

In the rest of this section we will first give details on the experimental setting and
then present our results.

5.1 Experimental settings

Systems and task sets. We generated task sets for systems with two to eight proces-
sors. We set to eight the maximum value since this appears to be the largest number
of processors for which G-EDF is an effective solution to provide SRT guarantees
[3]. In particular, we generated 1000 sets of implicit-deadline periodic tasks for each
number of processors M ∈ {2, . . . ,8} by varying task utilizations and periods in all
possible ways (for a total of 630 combinations) according to the specifications given
below.

Total utilization: given M ∈ {2, . . . ,8}, we considered task sets with total utilizations
Usum in the interval [M/2, . . . ,M, increasing in steps of M/10.

Task utilization: we considered both uniform and bimodal distributions so as to char-
acterize three different “load classes”.

– For uniform distributions:
– light distribution, with task utilizations in the interval [0.001,0.1];

3 All experiments can be repeated by applying two patches to [25] and running an ad-hoc script.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 27

– medium distribution, with task utilizations in [0.01,0.99];
– heavy distribution, with task utilizations in [0.5,0.99].

– For bimodal distributions, task utilizations were chosen uniformly in either
[0.01,0.5] or [0.5,0.99], with the selection of the specific range done as fol-
lows:

– for light distribution, probabilities 8/9 and 1/9, respectively;
– for medium distribution, probabilities 6/9 and 3/9, resp.;
– for heavy distribution, probabilities 4/9 and 5/9, resp.

Task periods: we considered the three following uniform distributions, characterized
by increasing (average) periods.

- Short distribution, in the range [3ms,33ms];
- Moderate distribution, in the range [10ms,100ms];
- Long distribution, in the range [50ms,250ms].

For the sake of presentation, in the following we will refer to a collection of 1000
task sets, generated with the same combination of the above parameters, simply as a
group.

Algorithms and implementations. In addition to harm-BB and harm-BF, we consid-
ered the most efficient polynomial algorithms defined for computing the other three
tardiness bounds for G-EDF. In the following list, we report, for each of these algo-
rithms, the acronym that we use for the algorithm and the bound that the algorithm
computes:

– da Bound proved by [8].
– cva Bound proved by [10] using the CVA analysis with the PP Reduction Rule.
– cva2 Bound proved by [12] using the CVA analysis with the alternative optimiza-

tion rule proved by [8].4

For each of the above algorithms, we ran its fastest version available in [25], namely
its native (C++) version. We selected the binary-search variant for cva and cva2.
harm-BB has been implemented in C++, using the pthread library. The code is avail-
able and can be downloaded from [13].

Execution platforms. We executed all the algorithms on an OS X and a Linux system,
equipped with

– a Dual-Core (Four logical processors) 3.1 GHz Intel Core i7-5557U CPU with
1.8 GHz DDR3 DRAM,

– a Quad-Core (Eight logical processors) 2.4GHz Intel Core i7-2760QM CPU with
a 1.3 GHz DDR3 DRAM,

respectively.

4 We name cva2 the oldest one between the last two algorithms, just to preserve the same naming as the
one used for the bounds in [26].

28 M. Leoncini et al.

Measures and statistics. For conciseness, given a specific algorithm and a generated
task set, we will use the wording execution time of the algorithm for the task set to
refer to the total time needed by the algorithm to compute its target tardiness bound
for all the tasks in the task set. For every generated task set and every algorithm, we
measured the execution time of the algorithm for that task set. We found that, for
each algorithm and each group of task sets, the variation of the execution time of the
algorithm was negligible across the task sets in the group. Therefore, for simplicity,
hereafter we report, for each group of task sets and each algorithm, only the average
execution time of the algorithm over all the tasks in the group. We call this average
quantity just execution time of the algorithm for the group of task sets.

Graph scale. Given the high variability of the execution times of harm-BF and, to
a lesser extent, of harm-BB, for the y-axis in all execution-time graphs we use a
logarithmic scale.

Number of processors and number of threads. Again for brevity, we say just number
of processors to refer to the number of processors of the virtual system on which the
execution of the generated task sets is simulated, while we say just number of threads
to refer to the number of parallel threads of execution generated by harm-BB (and
used by harm-BB to compute the harmonic bound in a parallel fashion).

5.2 Results

5.2.1 Comparison between harm-BB and harm-BF

We compare the brute force algorithm, harm-BF, with the algorithm based on the
Branch-and-Bound approach, harm-BB, by executing both algorithms on the less ad-
vantageous platform for harm-BB, namely the Dual-Core CPU (see next subsection
for speedups). On this platform, harm-BB automatically sets the number of parallel
execution threads to 4, i.e., to the number of logical processors. Results show that
harm-BB makes the bound feasible to compute up to eight processors, while harm-
BF only up to six.

For example, Figure 7 shows the execution time of harm-BB (tagged as harm-
BB-4, to stress the actual number of threads) and harm-BF for a representative group
of task sets: uniform light utilizations, long periods and total utilization equal to M.
This is one of the most demanding groups of task sets for exponential algorithms as
harm-BF and harm-BB, because it contains the largest task sets.

As can be seen, with six processors the exponentially-growing execution time
of harm-BF is already two orders of magnitude higher than that of harm-BB for 8
processors. With 7 processors harm-BF is already practically unfeasible, differently
from harm-BB, whose execution time remains below 100ms even with 8 processors.

The results for the other groups of task sets exhibit a similar time/feasibility gap.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 29

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

2 3 4 5 6 7 8

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
e
c
]

Number of processors

harm-BF
harm-BB-4

Fig. 7: Comparison between the execution times of harm-BF and harm-BB (with
four threads) on the Dual-Core CPU, for the largest task-set group (uniform light
utilizations, long periods and total utilization equal to M).

5.2.2 Branch-and-bound efficiency: pruning

Besides parallelism (that will be dealt with in the next section), the other reason why
harm-BB is much faster than harm-BF is its effectiveness in pruning vast portions of
the search space. To give evidence of this statement, we measured the ratio between
the number of task permutations that harm-BB prunes during its execution and the
total number of permutations that are evaluated by harm-BB (and by harm-BB itself
when instructed to avoid pruning).

Even on the demanding group of task sets detected in the previous section (i.e.,
uniform light utilizations, long periods, and total utilization equal to M), harm-BB
proves to be extremely effective in pruning the search tree. Indeed, the ratio quickly
grows from ∼0.65 with two processors, to 0.9 with three, and remains very close to
1 for every other number of processors.

The fact that the ratio tends to increase as the number of processors grows is ex-
plained by the fact that, simultaneously working on distinct subtrees of the execution
tree, very good solutions are found earlier (in one of the subtree), leading to larger
pruning in all subtrees.

Despite such high pruning ratio, there are still cases in which the execution time
of harm-BB is not negligible. This is due to the fact that, even with pruning, a very
large number of permutations might have to be evaluated. Table 2 shows the figures
obtained for the same demanding group of task outlined before and for M ranging
from 2 to 8. We observe that such numbers grow as big as 4 millions (on the average)
for M = 8, which explains the corresponding execution times for large values of M.

5.2.3 Parallel efficiency and speedup

To analyze the gain we have in parallelizing the Branch-and-Bound approach, we
compare the execution time of harm-BB limited to one thread (no parallelism) and of
harm-BB allowed a larger number of threads.

30 M. Leoncini et al.

Table 2: Pruning statistics for the task set with uniform light utilizations, long periods
and total utilization equal to M. Average of non pruned is rounded up to closer integer.

M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8
AVERAGE RATIO 0.642 0.901 0.987 0.998 0.9998 0.99998 0.999998
AVERAGE NON PRUNED 5 76 475 3,569 36,769 386,343 4,065,575
MIN NON PRUNED 2 21 73 718 7,362 117,595 1,295,928
MAX NON PRUNED 9 158 1,207 12,125 125,662 777,396 9,807,490

We test the two versions of harm-BB on the two execution platform, the Dual-
Core CPU first, and then the Quad-Core.

In the Dual-Core platform, speedups range from ∼1.4 to ∼1.7. To present these
results, we discuss two representative cases:

(i) the first case is the one with the highest execution times, and thus one that would
benefit the most from a large speedup. This happens for the task-set group with
bimodal light utilizations, long periods and total utilization equal to M. This case,
together with all the other cases with high execution times, happens to be also
one of those with the highest speedups (∼1.7). This is rather lucky, as the cases
with the highest execution times are evidently the most critical ones.

(ii) The second case is the one in which harm-BB exhibits its lowest speedup. This
happens for the task-set group with bimodal medium utilizations and long peri-
ods. The highest speedup reached by harm-BB, in this case, is ∼1.4.

Figure 8 refers to case (i) and shows the execution times of harm-BB in two
different configurations: harm-BB-1, i.e., harm-BB limited to only one thread (no
parallelism), and harm-BB-4, i.e., harm-BB allowed to generate 4 parallel threads.
The latter case is the one for which harm-BB reaches its highest speedup on the
Dual-Core platform.

Unfortunately, it is not really easy to evaluate the speedup from Figure 8, the
graph results compressed because of the high variability of execution times. For this
reason, in Figure 9 we report speedups explicitly, for the heaviest sub-case in Fig-
ure 8, namely 8 processors, and as a function of the number of threads that harm-BB
is allowed to spawn. That is, for each number i of threads in the x-axis in Figure 9, we
executed harm-BB with the number of threads (manually) set exactly to i. Figure 9
shows that harm-BB reaches its maximum speedup with a number of threads equal to
the number of logical processors exposed by the CPU in the execution platform. For
this number of threads, harm-BB reaches a speedup of 1.7.

For case (ii), we have the lowest speedup (namely 1.36) but we also have that the
absolute execution times (given in details in Figure 13) are much lower than those for
case (i). In addition, the shape of the graph of the speedups for this case is the same
as in Figure 9, and hence here omitted.

We observe that in both cases the speedup is lower than the number of cores of the
Dual-Core CPU platform. Hence, the speedup of harm-BB is evidently sub-optimal.
We thus concentrate on the possible causes of this undesired behavior. In particular,
we are interested in understanding if this depends on the intrinsic nature of harm-BB,

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 31

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5 6 7 8

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
e
c
]

Number of processors

harm-BB-1
harm-BB-4

Fig. 8: Execution times of harm-BB on the Dual-Core platform, with 1 and 4 parallel
threads, for the task-set group causing harm-BB’s highest execution times (bimodal
light utilizations, long periods and total utilization equal to M).

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 3 4 5

S
p
e
e
d
u
p
 o

n
 D

u
a
l-
C

o
re

 C
P

U

Number of parallel threads

harm-BB, 8-processor case

Fig. 9: Speedups of harm-BB on the Dual-Core platform, as a function of the number
of execution threads, for the 8-processor case of the task-set group causing harm-BB’s
highest execution times (bimodal light utilizations, long periods and total utilization
equal to M).

on wrong choices made in the design of the parallel algorithm, or on the peculiarities
of the execution platform. Our investigation brings us to conclude that the last one is
the main reason behind sub-optimality of speedup.

The principal explanation of why the speedup is not closer to the actual number
of cores of the platform is that some threads take more time than others to complete
their task. To investigate if this happens during the execution of harm-BB, we evaluate
the maximum percentage of time, over the total time needed to compute Γ or Ω

(equations (3) and (5)), during which less than the total number of threads of harm-
BB are working in parallel. In particular, we concentrate on the only two possible
causes for this lack of parallelism:

32 M. Leoncini et al.

Unbalanced threads. That is, threads work for different amounts of time with respect
to each other. This would cause some of the threads to finish later than others,
with the computational power of the CPU less and less utilized as shorter threads
finish in advance. To evaluate the extent of such a load displacement in harm-BB,
we measure the duration of each thread during the execution of harm-BB and
verify that they all last virtually the same amount of time in our experiments.

Thread synchronization. Synchronization is needed when updating the best current
solution, as in Figure 6. We have instrumented the code to count the frequency at
which the check at line 5 in Figure 6 is performed, and the frequency at which
the lock is actually taken. For both operations, the resulting frequency is about 7
times per second. Such a low frequency causes an absolutely negligible loss of
parallelization, as each synchronization takes at most a few microseconds on the
execution platforms.

This analysis hints at parallel inefficiency being somewhere else, with respect
to harm-BB’s algorithm and implementation. Yet, should we have overlooked some
aspect, and should the inefficiency that limits harm-BB’s speedup be actually intrinsic
to harm-BB itself, then, by Amdahl’s law, harm-BB’s speedup should not grow further
if harm-BB is executed on a CPU with a higher parallelism than the Dual-Core of the
first platform. As a consequence, if, on the opposite end, the speedup does grow when
moving to a CPU with a higher parallelism, we have to conclude that harm-BB’s
speedup is being limited by the execution platform.

The results in figures 10 and 11 provide an answer for this question. These figures
are the counterparts, for the Quad-Core CPU, of figures 8 and 9. As shown in Fig-
ure 11, the maximum speedup is reached again with 4 threads (although the number
of logical processors is twice as before). More importantly, the speedup:

1. grows linearly with the number of threads, up to when the number of threads is
not higher than the number of cores;

2. reaches 3.38, i.e., twice the speedup for the Dual-Core case.

As a conclusion, according to our experimental results and in-code measure-
ments, harm-BB exhibits a high parallel efficiency, with a speedup limited mainly
by parallel inefficiencies in the execution platform (possibly in the pthread library,
operating system, CPU...).

5.2.4 Comparison among harm-BB, da, cva and cva2

We compare harm-BB against competitors and we report only results for the Dual-
Core platform, as this is the platform on which harm-BB achieves its lowest speedup.
In these tests harm-BB is free to generate its desired number of threads5 and, there-
fore, in the following figures we label harm-BB with just the harm-BB tag.

For all groups of task sets, with the exception of the ones with light utilizations,
harm-BB happens to be faster than, or comparable to, all the other algorithms but da,
up to 6 processors. However, for 7 and 8 processors, harm-BB execution time is still

5 according to Figure 3 and to the fact that the Dual-Core CPU exposes four logical CPUs, this means
that harm-BB generated 4 threads.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 33

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

2 3 4 5 6 7 8

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
e
c
]

Number of processors

harm-BB-1
harm-BB-4

Fig. 10: Execution times of harm-BB on the Quad-Core platform, with 1 and 4 par-
allel threads, for the task-set group causing harm-BB’s highest execution times (bi-
modal light utilizations, long periods and total utilization equal to M).

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9

S
p
e
e
d
u
p
 o

n
 Q

u
a
d
-C

o
re

 C
P

U

Number of parallel threads

harm-BB, 8-processor case

Fig. 11: Speedups of harm-BB on the Quad-Core platform, as a function of the num-
ber of execution threads, for the 8-processor case of the task-set group causing harm-
BB’s highest execution times (bimodal light utilizations, long periods and total uti-
lization equal to M).

feasible (and allows to compute a bound that is tighter than the ones computed by
competitors).

Before presenting our results in more details, we observe that, for what concerns
the performance of da, unfortunately we realized that the percentage of tasks for
which da completes the computation of its target bound becomes lower and lower as
M increases (we did not investigate this issue further). This is likely to deceptively
reduce the execution time of da to a large extent. In contrast, cva and cva2 always
compute their target bounds for all tasks. Because of this, in the next comments and
in the descriptions of the figures we focus only on cva and cva2.

Figure 12 shows the execution times of the four algorithms in the case of long
periods of uniform heavy utilization and total utilization equal to M. This is the best

34 M. Leoncini et al.

 0.01

 0.1

 1

 10

 100

2 3 4 5 6 7 8

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
e
c
]

Number of processors

da
cva

cva2
harm-BB

Fig. 12: Comparison among the execution times of harm-BB, da, cva and cva2 for
one of the groups of task sets for which harm-BB exhibits its lowest execution times
(uniform heavy utilizations, long periods and total utilization equal to M).

case for harm-BB, even if its performance still reflects harm-BB general behavior,
worsening significantly above 6 processors. However, for this task-set group the exe-
cution times of harm-BB remains in the order of the tens of milliseconds, hence still
feasible. The same order of magnitude holds for all task-set groups with not too many
tasks and with not too much variable utilization.

Figure 13 shows the execution times of the four algorithms for a task-set group
with a moderate number of tasks and a moderate variability of utilizations. As can be
seen, the execution times of harm-BB with 7 and 8 processors become much higher
than those of the competitors and of the previous case. This group represents an
intermediate-performance example for harm-BB.

The worst groups, in terms of utilization variability and number of tasks, are those
with bimodal light distributions. Figure 14 shows the group, in this subset, for which
harm-BB exhibits its worst performance. This is the same group for which we have
already shown speedups in the previous section (Figure 8). Also for these task sets,
harm-BB is significantly slower than the other algorithms only for 7 and 8 processors,
but it is still feasible.

According to our experiments, we conclude that the groups of task sets for which
harm-BB exhibits its highest execution times are those with both a high variability of
utilizations and a high number of tasks.

Indeed, the number of tasks influences the cardinality of the search space for
harm-BB, and therefore its execution time, as the size of the search space is factorial
in the number of tasks. However, the variability of utilizations is the most important
factor affecting the execution time of harm-BB. The explanation to this phenomenon
is to be found in the fact that such variability of utilizations rapidly decreases the
effectiveness of harm-BB pruning strategy.

This happens when the upper bound computed for a given subset of feasible solu-
tions is too loose: the subset is not pruned because its upper bound is larger than the

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 35

 0.01

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7 8

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
e
c
]

Number of processors

da
cva

cva2
harm-BB

Fig. 13: Comparison among the execution times of harm-BB, da, cva and cva2 for one
of the groups of task sets for which harm-BB exhibits an intermediate performance
(bimodal medium utilizations, long periods and total utilization equal to M).

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 3 4 5 6 7 8

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
e
c
]

Number of processors

da
cva

cva2
harm-BB

Fig. 14: Comparison among the execution times of harm-BB, da, cva and cva2 for
the largest-size group of task sets for which harm-BB exhibits its worst performance
(bimodal light utilizations, long periods and total utilization equal to M).

value of the best current solution, even if there is no solution in the subset that leads
to a value larger than the best current solution.

In harm-BB, this undesired behavior might occur because the choice of the Ûs in
the summation m̂ =

(
∑

h
v=1 Û|τ(j)|−v+1

)
of the term (m) in (15) is independent from

choice of the utilizations Ûs in the head contribution (c’) in the term ωUP(π j) in (14).
When utilizations presents a large variability, the utilizations chosen for m̂ might be
small (leading to a large (m)), while those chosen for ωUP(π j) might be large (leading
to a large ωUP(π j)). Therefore, the value of ΩUP(π j) (resulting from the product of
the former terms) gets greatly inflated.

36 M. Leoncini et al.

6 Conclusions

We run experiments on 630000 task sets and, for almost all of them, our implemen-
tation of harm-BB proved able to compute the harmonic bound for the tardiness of
G-EDF schedulers in less, or almost the same, time than what takes existing polyno-
mial algorithms to compute looser tardiness bounds. Only for the highest numbers of
processors (7 and 8) and tasks (∼50), harm-BB was slower than the other algorithms.
It was however still feasible, with an execution time not higher than 3 seconds in
the worst cases. We also detected the cases in which harm-BB performs poorly with
respect to competitors, i.e., instances with a large number of tasks and large variabil-
ity of task utilizations. Such information might be used when deciding which algo-
rithm to use to compute the bound (always keeping in mind that harm-BB computes
a tighter bound).

Moreover, we showed that harm-BB has a high parallel efficiency, which allows
for a large cut down of its execution time on a highly-parallel platform (as, for ex-
ample, the same one deemed to execute the applications for which the bound is com-
puted), making harm-BB always a valid alternative to competitors.

Acknowledgments

Authors wish to thank Prof. Daniele Funaro for providing a compact proof of Lemma 3.

References

1. Anderson, J.H., Srinivasan, A.: Mixed pfair/erfair scheduling of asynchronous periodic tasks. Journal
of Computer and System Sciences 68(1), 157 – 204 (2004). DOI 10.1016/j.jcss.2003.08.002. URL
http://www.sciencedirect.com/science/article/pii/S0022000003001508

2. Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: A notion of fairness
in resource allocation. Algorithmica 15, 600–625 (1996)

3. Bastoni, A., Brandenburg, B., Anderson, J.: An empirical comparison of global, partitioned, and clus-
tered multiprocessor real-time schedulers. In: Proceedings of the 31st IEEE Real-Time Systems Sym-
posium, pp. 14–24 (2010)

4. Bastoni, A., Brandenburg, B.B., Anderson, J.H.: An empirical comparison of global, partitioned, and
clustered multiprocessor edf schedulers. In: Proceedings of the 2010 31st IEEE Real-Time Systems
Symposium, RTSS ’10, pp. 14–24. IEEE Computer Society, Washington, DC, USA (2010). DOI
10.1109/RTSS.2010.23. URL http://dx.doi.org/10.1109/RTSS.2010.23

5. Brandenburg, B.B., Gül, M.: Global scheduling not required: Simple, near-optimal multiprocessor
real-time scheduling with semi-partitioned reservations. In: 2016 IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 99–110 (2016). DOI 10.1109/RTSS.2016.019

6. Cavicchioli, R., Capodieci, N., Bertogna, M.: Memory interference characterization between cpu
cores and integrated gpus in mixed-criticality platforms. In: 22nd IEEE International Conference
on Emerging Technologies And Factory Automation (ETFA) (2017)

7. Devi, U.C., Anderson, J.H.: Tardiness bounds under global edf scheduling on a multiprocessor. In:
RTSS, pp. 330–341. IEEE Computer Society (2005). URL http://dblp.uni-trier.de/db/

conf/rtss/rtss2005.html#DeviA05

8. Devi, U.C., Anderson, J.H.: Tardiness bounds under global edf scheduling on a multiprocessor. Real-
Time Systems 38(2), 133–189 (2008)

9. Eckstein, J., Phillips, C.A., Hart, W.E.: Pico: An object-oriented framework for parallel branch
and bound. In: D. Butnariu, Y. Censor, S. Reich (eds.) Inherently Parallel Algorithms in Feasi-
bility and Optimization and their Applications, Studies in Computational Mathematics, vol. 8, pp.

Parallel Branch-and-Bound Algorithm for Global EDF Tardiness 37

219 – 265. Elsevier (2001). DOI https://doi.org/10.1016/S1570-579X(01)80014-8. URL http:

//www.sciencedirect.com/science/article/pii/S1570579X01800148

10. Erickson, J.P., Anderson, J.H.: Fair lateness scheduling: Reducing maximum lateness in g-edf-like
scheduling. In: ECRTS, pp. 3–12 (2012)

11. Erickson, J.P., Anderson, J.H., Ward, B.C.: Fair lateness scheduling: reducing maximum lateness in
g-edf-like scheduling. Real-Time Systems 50(1), 5–47 (2014). DOI 10.1007/s11241-013-9190-4

12. Erickson, J.P., Devi, U., Baruah, S.K.: Improved tardiness bounds for global edf. In: ECRTS, pp.
14–23 (2010)

13. Experiment-scripts: Code used for experiments. (2014). URL http://algogroup.unimore.it/

people/paolo/harmonic-bound/

14. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press (1978)
15. Kenna, C.J., Herman, J.L., Brandenburg, B.B., Mills, A.F., Anderson, J.H.: Soft real-time on multipro-

cessors: Are analysis-based schedulers really worth it? In: RTSS, pp. 93–103. IEEE Computer Society
(2011). URL http://dblp.uni-trier.de/db/conf/rtss/rtss2011.html#KennaHBMA11

16. Kumar, V., Kanal, L.N.: Parallel branch-and-bound formulations for and/or tree search. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6), 768–778 (1984). DOI
10.1109/TPAMI.1984.4767600

17. Lai, T.H., Sprague, A.: Performance of parallel branch-and-bound algorithms. IEEE Transactions on
Computers C-34(10), 962–964 (1985). DOI 10.1109/TC.1985.6312201

18. Leoncini, M., Montangero, M., Valente, P.: A branch-and-bound algorithm to compute a tighter bound
to tardiness for preemptive global edf scheduler. In: Proceedings of the 25th International Conference
on Real-Time Networks and Systems, RTNS ’17, pp. 128–137. ACM, New York, NY, USA (2017).
DOI 10.1145/3139258.3139277. URL http://doi.acm.org/10.1145/3139258.3139277

19. Li, J., Agrawal, K., Lu, C., Gill, C.: Analysis of global edf for parallel tasks. In: 2013 25th Euromicro
Conference on Real-Time Systems, pp. 3–13 (2013). DOI 10.1109/ECRTS.2013.12

20. Liu, C., Anderson, J.H.: Supporting soft real-time parallel applications on multiprocessors. Journal of
Systems Architecture 60(2), 152 – 164 (2014). DOI http://dx.doi.org/10.1016/j.sysarc.2013.07.001.
URL http://www.sciencedirect.com/science/article/pii/S1383762113001227

21. Maia, C., Yomsi, P.M., Nogueira, L., Pinho, L.M.: Semi-partitioned scheduling of fork-join tasks
using work-stealing. In: 2015 IEEE 13th International Conference on Embedded and Ubiquitous
Computing, pp. 25–34 (2015). DOI 10.1109/EUC.2015.30

22. Megel, T., Sirdey, R., David, V.: Minimizing task preemptions and migrations in multiprocessor op-
timal real-time schedules. 2013 IEEE 34th Real-Time Systems Symposium 0, 37–46 (2010). DOI
http://doi.ieeecomputersociety.org/10.1109/RTSS.2010.22

23. Mills, A., Anderson, J.: A stochastic framework for multiprocessor soft real-time scheduling. In:
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE, pp.
311–320 (2010). DOI 10.1109/RTAS.2010.33

24. Regnier, P., Lima, G., Massa, E., Levin, G., Brandt, S.A.: Run: Optimal multiprocessor real-time
scheduling via reduction to uniprocessor. In: RTSS, pp. 104–115 (2011)

25. SchedCAT: The schedulability test collection and toolkit (2014). URL https://github.com/

brandenburg/schedcat/

26. Valente, P.: Using a lag-balance property to tighten tardiness bounds for global edf. Real-Time Sys-
tems 52(4), 486–561 (2016). DOI 10.1007/s11241-015-9237-9. URL http://dx.doi.org/10.

1007/s11241-015-9237-9

27. Valente, P., Lipari, G.: An upper bound to the lateness of soft real-time tasks scheduled by edf on
multiprocessors. IEEE 26th Real-Time Systems Symposium 0, 311–320 (2005). DOI http://doi.
ieeecomputersociety.org/10.1109/RTSS.2005.8

28. Ward, B.C., Erickson, J.P., Anderson, J.H.: A linear model for setting priority points in soft real-time
systems. In: Proceedings of Real-Time Systems: The Past, the Present, and the Future, pp. 192–205
(2013)

29. Yang, K., Anderson, J.H.: Optimal gedf-based schedulers that allow intra-task parallelism on het-
erogeneous multiprocessors. In: 2014 IEEE 12th Symposium on Embedded Systems for Real-time
Multimedia (ESTIMedia), pp. 30–39 (2014). DOI 10.1109/ESTIMedia.2014.6962343

30. Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L.: Memguard: Memory bandwidth reservation
system for efficient performance isolation in multi-core platforms. In: 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pp. 55–64 (2013). DOI 10.1109/
RTAS.2013.6531079

