
Real-Time Systems (2022) 58:189–232
https://doi.org/10.1007/s11241-021-09375-2

Bounding the execution time of parallel applications on
unrelated multiprocessors

Petros Voudouris1 · Per Stenström1 · Risat Pathan1

Accepted: 29 August 2021 / Published online: 21 October 2021
© The Author(s) 2021

Abstract
Heterogeneous multiprocessors can offer high performance at low energy expendi-
tures. However, to be able to use them in hard real-time systems, timing guarantees
need to be provided, and the main challenge is to determine the worst-case schedule
length (also known as makespan) of an application. Previous works that estimate the
makespan focus mainly on the independent-task application model or the related mul-
tiprocessor model that limits the applicability of the makespan. On the other hand,
the directed acyclic graph (DAG) application model and the unrelated multiprocessor
model are general and can cover most of today’s platforms and applications. In this
work, we propose a simple work-conserving scheduling method of the tasks in a DAG
and two new approaches to finding the makespan. A set of representative OpenMP
task-based parallel applications from the BOTS benchmark suite and synthetic DAGs
are used to evaluate the proposed method. Based on the empirical results, the pro-
posed approach calculates the makespan close to the exhaustive method and with low
pessimism compared to a lower bound of the actual makespan calculation.

Keywords Scheduling · Heterogeneous · Unrelated · DAG · Work-conserving ·
Makespan

1 Introduction

There is a continuously increasing demand for computational power in hard real-time
systems, such as collision avoidance and mitigation function in automotive vehicles.

B Petros Voudouris
petrosv@chalmers.se

Per Stenström
pers@chalmers.se

Risat Pathan
risat@chalmers.se

1 Chalmers University of Technology, Göteborg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-021-09375-2&domain=pdf
http://orcid.org/0000-0002-6664-2028

190 Real-Time Systems (2022) 58:189–232

Such a need for higher computing performance and energy efficiency has turned the
focus both in academia and industry to heterogeneous multiprocessors (Esmaeilzadeh
et al. 2011; Peter Greenhalgh 2011; ARM 2011). Heterogeneous multiprocessors
comprise multiple computational cores with different performance and functional
characteristics. A real-time parallel application can exploit such parallel heteroge-
neous architectures to meet challenging performance and energy efficiency demands.
However, one of the main challenges to using such an architecture in a hard real-
time system is to ensure time predictability; one has to guarantee the timeliness of
a real-time parallel application a heterogeneous platform by designing an effective
scheduling algorithm and doing the offline schedulability analysis. This paper, for
the first time, addresses the problem of determining the worst-case schedule length
(also known as themakespan) of parallel application on heterogeneousmultiprocessor
platform and proposes a scheduling algorithm.

We consider a general model of the application and the processing platform, which
makes the results of this paper applicable to awide variety of applications and hardware
platforms. A parallel application is modeled as a directed acyclic graph (DAG) where
such aDAGhas a collection of nodes, i.e., tasks and directed edges between nodes, i.e.,
dependencies among the tasks. The expressive power of a DAG enables us to model
various applications like a collection of independent tasks (Baruah et al. 2015a) and
synchronous parallel tasks (Lakshmanan et al. 2010).

We consider also a general system model—unrelated heterogeneous multiproces-
sor platforms that consist of different processor types. On an unrelated processing
platform, a task/node τ i of a DAG may execute at a different speed than another task
τ j on a processor of the same type.1 The task-to-processor relationship in an unrelated
heterogeneous platform governs how fast a particular task executes at run time. The
unrelated heterogeneous multiprocessor model is one of the most general processor
models that we consider in this paper (the homogeneous and related heterogeneous
multiprocessor models are special cases of the unrelated multiprocessor model).

Related works on scheduling real-time systems that consider the unrelated multi-
processor model have mainly focused on independent tasks (Andersson and Raravi
2014; Chwa et al. 2015; Andersson and Raravi 2016; Baruah et al. 2019) with no
dependencies and typed DAGs (Yang et al. 2016; Han et al. 2019). Earlier works that
consider a DAG as the application model have focused mainly on the related multi-
processor model (Bender and Rabin 2000; Jiang et al. 2017). Our research bridges the
gap between the work on the related and the unrelated models by considering both a
general application model (DAGs) and a general processor model.

Scheduling algorithms play the central role in guaranteeing time predictability, i.e.,
computing themakespan of parallel applications.Due to the specific speed relationship
that a task of theDAGhaswith a particular processor type, one of themain challenges is
to design an effective scheduling algorithm that can well exploit all the computational
units of a heterogeneous parallel architecture. A second challenge is to perform offline

1 Unlike unrelated heterogeneous multiprocessors, related heterogeneous multiprocessors (also known as
uniform multiprocessors (Baruah et al. 2015a)) have a specific speed for each processor type and all the
tasks execute at that specific speed on any processor of that particular processor type. The homogeneous
multiprocessor model has exactly one processor type, and all the tasks execute at the same speed on all
processors.

123

Real-Time Systems (2022) 58:189–232 191

schedulability analysis by considering the execution of the tasks under the scheduling
algorithm so that a safe and tight upper bound on the worst-case schedule length
(makespan) can be computed. Such amakespan can be used, for example, to determine
whether the deadline of an application will be met or not when the system is actually
put in mission.

Many of the well-known schedulability analysis techniques for homogeneous mul-
tiprocessors cannot be trivially applied to heterogeneous multiprocessors (Gupta et al.
2012). One of the fundamental problems is the presence of timing anomalies (Graham
1969). Note that a timing anomaly is already known to exist for the homogeneous
multiprocessor model, which is a special case of the unrelated multiprocessor model
(Voudouris et al. 2017; Pathan et al. 2018; Chen et al. 2019). Therefore, an exam-
ple of a DAG—similar to that of (Voudouris et al. 2017) can also be constructed to
demonstrate the presence of timing anomalies in the unrelated multiprocessor model.
A method to avoid such anomalies for homogeneous multiprocessors is to preserve
strictly, also at run-time, the order of start time of the execution of the tasks that was
determined at analysis time (Voudouris et al. 2017; Pathan et al. 2018; Chen et al.
2019). Unfortunately, enforcing such an order of starting the tasks’ execution is not
enough to guarantee anomaly-freedom on unrelated machines because of the different
speed relationships that each task has with each processor type.

This paper proposes a scheduling algorithm called the Greedy scheduler for unre-
lated HEterogeneous platform (GHE) that can schedule the tasks of a DAG on an
unrelated heterogeneous platform. One of the salient features of GHE is that it iswork-
conserving (a.k.a. greedy) (Graham 1969; Brent 1974; Blumofe and Leiserson 1999;
Melani et al. 2015; Jiang et al. 2017) meaning that it always dispatches an available
task whenever there is an idle processor. The scheduler GHE is also very general in the
sense that it does not assume any specific policy like fixed or dynamic priority-based
scheduling used in the literature. Since many of the fixed- and dynamic-priority-based
scheduling algorithms are also work-conserving, the analysis of this paper is also
applicable for such schedulers. Another facet of GHE is that it allows the migration
of a task to some other processor to execute it at a higher speed. It will be evident
later that the fact that the scheduler is work-conserving and the migratory nature of
GHE allows us to formally derive the makespan of a parallel application and prove its
correctness.

A rigorous formal analysis is conducted in this paper to tackle and understand the
complex relationships the tasks of a DAG have with the unrelated processors’ types.
Two different approaches—namely Comb and Fast —are proposed to determine
in two different ways the makespan of a DAG executing on an unrelated hetero-
geneous multiprocessor under the GHE scheduler. The two approaches Comb and
Fast mainly differ in terms of making the tradeoff between the computational com-
plexity and tightness of the computed makespan. The first approach, Comb, is based
on an exhaustive search by considering all the possible ways the tasks of a DAG may
execute on different processors. On the other hand, the second approach, Fast, is
based on considering one pessimistic worst-case regarding how the tasks can execute
on the processors. The Comb approach computes a tighter makespan in comparison
to that of using the Fast approach, but Comb has exponential time complexity while
Fast can find the makespan in polynomial time.

123

192 Real-Time Systems (2022) 58:189–232

To evaluate the proposed approaches, Fast, and Comb, we use real-world parallel
applications from the BOTS benchmark suite (Duran et al. 2002) as well as randomly
generated synthetic DAGs. We also compare the proposed approaches to similar work
in the literature for homogeneous (Graham 1969), related (Jiang et al. 2017) multipro-
cessors, and typed DAGs (Han et al. 2019) to demonstrate howmuch we pay for using
more generalized models of the application, hardware, and the scheduler with respect
to that of state-of-the-art. One of the major findings we have from this empirical study
is that the makespan computed using the efficient Fast approach is very close to that
computed using the Comb, i.e., our analysis using the polynomial-time approach does
not significantly compromise the tightness of the computed makespan. To this end,
this paper makes the following contributions:

– This paper considers a general application model using DAGs, and a general
hardware model for unrelated machines, to propose a general work-conserving
scheduler GHE . Consideration of such general models makes the results of this
paper widely applicable to a variety of real-time systems.

– Comb: An exhaustive search-based approach Comb is proposed to find the
makespan using a high computational complexity in order to find a tightmakespan.
This approach is suitable for applications that have tight deadlines.

– Fast: In order to reduce the computational complexity to find the makespan
using the exhaustive approach of Comb, this paper proposes the polynomial-time
approach Fast that can be used to find the makespan for large applications with
a less tight makespan.

– The experimental evaluation presents empirical results for real-world applica-
tions based on the OpenMP applications from the BOTS benchmark suite (Duran
et al. 2002), which shows the applicability of our approach to practical applica-
tions. Moreover, synthetic DAGs are used to show the sensitivity of our proposed
approach to different real-world parameters. Thedegree of tightness that Fast sac-
rifices to find the makespan of the OpenMP applications in polynomial time is no
more than 3% that of Comb, which shows that our proposed analysis for Fast does
not introduce too much pessimism.

The rest of the paper is organized as follows: Initially, Sects. 2–4 introduce the
system model, the details of the proposed GHE scheduler, and necessary definitions
for the makespan calculation. Next, Sect. 5 provides the details of our two proposed
approaches to compute makespan. Then, Sect. 6 evaluates the time complexity of the
proposed approaches. We then evaluate the proposed methods in Sect. 7 quantita-
tively. Section 8 compares our approach with related work that uses more specialized
assumptions regarding the platform and application models. Section 9 presents the
related work before we conclude the paper in Sect. 10.

2 Systemmodel

Weconsider an unrelated heterogeneousmultiprocessor platformwith a total ofM pro-
cessors with different types of processors. Each of theM processors belongs to exactly
one of the processor types. The type of processor specifies the specialty or unique-

123

Real-Time Systems (2022) 58:189–232 193

ness of the processor. For example, the big.LITTLE multiprocessor chip from ARM
has two different processor types with multiple processors that belong to each such
processor type (Peter Greenhalgh 2011; ARM 2011). We assume that an unrelated
platform can have from one up to M processor types.

A parallel application G is modeled as a directed acyclic graph (DAG) such that
G = (V , E), where V = {τ 1, . . . , τ N } is a set of N nodes that designate tasks and
E ⊆ (V × V) is a set of directed edges that designate dependencies among tasks.
If (τ p, τ q) ∈ E , then τ q can start its execution only after task τ p completes. Tasks
with no incoming and no outgoing edges are called source (denoted as τ src) and sink
(denoted as τ sink), respectively. We assume that there is one source node and one sink
node. If the application has multiple sources or sinks nodes, we add dummy nodes
(i.e., nodes without execution time) to model the application.

A task is a sequential piece of code. Each task is characterized by a set of M worst
case execution times (WCET) depending on the processor the task executes. Without
loss of generality we index the processors from 1 to M . The WCET of task τ i on
the xth processor is denoted by cix . If a task cannot execute on the x

th processors, for
example, due to an incompatible instruction set architecture, then cix = ∞. Because
the platform has a total of M processors, each task has M different WCETs ci1, . . . c

i
M .

If the xth and yth processors are of the same type, then cix = ciy for i = 1, . . . N where
1 ≤ x ≤ M and 1 ≤ y ≤ M . In other words, each task τ i has the same WCET on all
the processors of the same type.

We define cimin as the minimum WCET of task τ i for any of the processors in
Eq. (1) as follows:

Definition 1 Minimum WCET of τ i :

cimin := M
min
x=1

{
cix

}
(1)

The workload of a task is the amount of computation that a task needs to complete
when executing from the beginning to completion and is equal to cimin as is given in
Eq. (1). The workload of a DAG G (denoted by W1) is the sum of the workloads of
all the tasks in G and is given as follows:

Definition 2 Total workload of G:

W1 :=
N∑
i=1

cimin (2)

A source-to-sink path or simply a path γ in a DAG is a sequence of nodes γ =
(τ p, τ p+1,…, τ q−1, τ q), where (τ i , τ i+1) ∈ E such that p ≤ i < q and τ p = τ src

and τ q = τ sink . Let paths be the set of all the paths in a DAG G. The workload of a
path γ is the sum of the workload of the nodes on that path and is given as follows:

W(γ) :=
∑

τ i∈γ

cimin (3)

123

194 Real-Time Systems (2022) 58:189–232

Fig. 1 Example of a path with the largest workload A ≺ B ≺ D ≺ E that it is not the path with the longest
time duration

The path with the largest workload among all the paths is called the longest or critical
path (denoted using cp) and is given by Eq. (4):

cp = arg max
γ∈paths

W(γ) (4)

The maximum workload of any path in G is given in Eq. (5):

Definition 3 The largest workload of any path in G:

W∞ = W(cp) (5)

WhileW1 represents the workload of the entire DAG,W∞ is the maximum work-
load of any path of the DAG. The parameters W1 and W∞ can be computed in
polynomial time in the representation of the DAG and capture two important char-
acteristics of the DAG that we will use to derive the makespan using our proposed
approaches Comb and Fast. Since the definition of workload considers the minimum
WCET of the nodes, no DAG can finish execution earlier thanW∞ (i.e., a lower bound
on the makespan of G).

The workload of a path is constant because it is determined by the minimumWCET
among the processors of the tasks that belong to the path. However, the duration that
it will take to execute a path’s workload can change from execution to execution
at runtime. The WCET of the path’s tasks can be larger than their minimum WCET
because, during runtime, theymay bemapped to slower processors than the processors
that provide the minimum WCET. Consequently, the path with the largest workload
is not necessarily the path with the longest time duration to complete its execution.
This situation is illustrated in Fig. 1.

The left-hand side of Fig. 1 shows a DAG. We use a platform with two processors
of different processor types. Thus, each node has two different WCET. Using Eq. (3)
that finds the workload of a path, the path A ≺ B ≺ D ≺ E has workload four while
the path A ≺ C ≺ E has workload three. At the right-hand side of the figure, we
schedule the tasks based on their names’ lexicographic order. From this example, we
can see that path A ≺ C ≺ E determines the schedule length, which has a smaller
workload than A ≺ B ≺ D ≺ E . Similar examples can also be created for orders
other than the lexicographic order of the tasks. To determine the makespan of a DAG,
the key is to find the worst-case task-processor mapping (next section) that can occur
during runtime for any execution ordering of DAG tasks. We will use the worst-case

123

Real-Time Systems (2022) 58:189–232 195

processor mapping together with the total workload and the critical path’s workload
to find the makespan of a single DAG.

To model the capabilities of the unrelated processors to execute the workload of
a task, we define δix given in Eq. (6) the speed that task τ i can execute on the xth

processor.

Definition 4 Speed of τ i on the xth processor for x = 1, . . . M :

δix :=
⎧⎨
⎩

cimin
cix

if cix �= ∞
0 otherwise

(6)

If a task τ i cannot execute on the xth processor, we set the speed δix = 0. Note that
0 ≤ δix ≤ 1 for any task τ i . The smaller the WCET of τ i on a particular processor,
the larger the speed that task τ i can execute on that processor is.

We define Oi
y as the yth fastest speed that task τ i can execute on some processor.

For example, Oi
1 for y = 1 specifies the fastest speed that task τ i can execute (recall

that the fastest speed is 1), Oi
3 for y = 3 specifies the third highest speed that task τ i

can execute, and finally Oi
M for y = M specifies the lowest speed that task τ i can

execute on some processor. It will be evident shortly that the design of GHE scheduler
is such that it always prefers a relatively higher speed processor to execute a task.
To that end, we specify the preference for speed of a task τ i using a sequence Oi in
Definition 5.

Definition 5 Let Oi be the sequence of a non-increasing order of speeds such that
Oi =< Oi

1,Oi
2 . . .Oi

M > where Oi
y is the yth fastest speed that task τ i can execute

on a processor of the platform for y = 1, . . . M .

In the next section, the scheduler will use the preference for speed (Oi) to deter-
mine at which processor a task can execute. We will use Oi

y to specify the minimum
preference of speed, i.e., the maximum speed, at which the task τ i can execute if all the
processors that can execute task τ i with higher speeds Oi

1,Oi
2, . . .Oi

(y−1) are busy.

The Oi is a key component of our approach because it allows us to determine the
preference of the processor for every task. Intuitively, in contrast to homogeneous and
relatedmultiprocessors in which all the tasks have the same view of the platform (same
speeds), for unrelatedmultiprocessors, theOi shows that every task views the platform
differently because every task can have different speeds on the same processors.

3 SchedulerGHE
We present in Sect. 3.1 the details of our proposed GHE scheduler. An important
property ofGHE , called the Greediness Property, is stated in Lemma 1. Finally, we use
an example in Sect. 3.2 to illustrate the working of the scheduler using the parameters
of the system model.

123

196 Real-Time Systems (2022) 58:189–232

3.1 Scheduler description

The GHE scheduler dispatches a new task awaiting execution in the ready queue
when some other task finishes its execution (i.e., when some processor becomes idle).
GHE is a work-conserving scheduler in the sense that it always dispatches a ready task
if there is an idle processor. More precisely, the tasks are scheduled using GHE based
on the next two steps: (i) Migration and (ii) Dispatching.

– Step 1—Migration If a processor becomes idle, the GHE scheduler first checks
if the processor that becomes idle can execute some already executing tasks at
a relatively higher speed. Without loss of generality, assume that τmig executes
on the processor to which it has been migrated at its yth fastest speed Omig

y . It is
necessary for migrating τmig that no other executing task can execute at its kth

fastest speed for k < y (please note that a lower index specifies a higher speed)
on that idle processor.

– Step 2—Dispatching If there are tasks in the ready queue and there are idle
processors, the GHE scheduler starts dispatching one-by-one new tasks await-
ing execution in the ready queue on the fastest idle processor among all the idle
processors.

The GHE scheduler is given in Algorithm 1. The scheduler is invoked each time
some tasks finish their execution. The set of ready tasks and the indices of the proces-
sors that are idle are determined in variables readyTasksSet and idleProcSet
(line 2–3), respectively. The set of tasks currently in execution is determined in vari-
able potenMigTasksSet (line 4), and we consider these tasks for migration to an
idle processor so that they can enjoy a higher speed. The set of indices of the busy
processors executing the tasks in set potenMigTasksSet is determined in variable
busyProcSet (line 5).

The while loop in lines 6–27 continuously checks if any of the currently executing
tasks in set potenMigTasksSet can be migrated. If no such task can be migrated
to any idle processor so that the task enjoys a higher speed, the while loop exits (line
24–26), and new tasks are dispatched using the second while loop in line 28–36.

The while loop in line 7 initializes the variable anyMigration to false. Line 8
initializes a set noMigTasksSet as an empty set that will be used to store the subset
of the tasks of set potenMigTasksSet that are not selected for migration in the
current iteration of the first while loop. The for loop in line 9–23 in each iteration
considers a task τmig from set potenMigTasksSet for migration from its current
processor to an idle processor on which it would run relatively faster.

Line 10 determines the index indexMigProc of the processor such that task τmig

is executing at its j th highest speed on that processor with index indexMigProc.
Line 12 determines the task τ f ind among all the potential tasks for migration from
set potenMigTasksSet that can be migrated to an idle processor with index
indexMigProc such that task τ f ind executes at the kth highest speed and there
is no other task from set potenMigTasksSet that can execute at hth highest speed
for some h < k. In other words, τ f ind can execute on its most preferred processor in
comparison to any other task in set potenMigTasksSet.

123

Real-Time Systems (2022) 58:189–232 197

The condition in line 14 determines if the task τmig is the same as task τ f ind

and τmig can be executed at higher speed after migration, then τmig is migrated to
the processor with index indexMigProc in line 15. The set of indices of the idle
processors is updated in line 16–17 and the flag anyMigration is set to true to
specify that migration has occurred during the current iteration of the while loop. If
the condition in line 14 is false, then task τmig is not migrated in the current iteration
of the while loop and stored in set noMigTasksSet in line 20 to consider for
migration during the next iteration of the while loop. Regardless of whether migration
occurs or not, task τmig is removed from set potenMigTasksSet and the for loop
continues to consider another task from set potenMigTasksSet for migration. In
other words, the flag anyMigration is set to true if one or more tasks from set
potenMigTasksSet are selected for migration; otherwise, flag anyMigration
will remain false.

When the for loop in line 9–23 completes, it is checked if migration occurred during
the current iteration of the while loop or not based on the flag anyMigration. If
the flag anyMigration is false, then the while loop is exited; otherwise, the while
loop tries to migrate another task.

After the first while loop in line 6–27 completes, the second while loop in line
28-36 assigns the ready queue tasks to the idle processors. In line 29, an arbitrary task
τ dis from set readyTasksSet is selected, and it is assigned to the idle processor
on which it would run the fastest.

In line 30, the index of the processor indexNewProc is searched such that
indexNewProc ∈ idleProcSet and task τ dis executes on its kth fastest pro-
cessor and cannot execute faster on any of the processors in set idleProcSet.
Finally, we update the set of idle processors, and we remove the task from the ready
queue. One by one, a new task from set readyTasksSet is dispatched to an idle
processor as long as there are new tasks in the ready queue and there is at least one
idle processor.

Next, we present a property, called the Greediness Property, of the scheduler in
Lemma 1. A scheduling point is a time instant when the scheduler needs to make
some new decision. Such a trivial scheduling point is at time zero. In addition, there
is a scheduling point every time some task finishes its execution. We denote a time
interval [a,b] a stable time interval such that there is no scheduling point inside the
interval except at the endpoints in [a,b]. Lemma 1 proves the worst-case speeds that
the tasks can execute during any stable time interval [a,b] when scheduled using the
GHE scheduler.

123

198 Real-Time Systems (2022) 58:189–232

Algorithm 1: The GHE Scheduler
1 if some task completes execution then
2 readyTasksSet = Set of task that are in the ready queue
3 idleProcSet = Set of indices of processors that are idle
4 potenMigTasksSet = Set of unfinished tasks in execution
5 busyProcSet = Set of indices of processors that is currently executing some unfinished task

6 while true do
7 anyMigration = false
8 noMigTasksSet = ∅
9 for each τmig ∈ potenMigTasksSet do

10 (j, indexCurProc) = τmig is currently executing at its j th fastest speed on
processor with index indexCurProc

11

12 (k, indexMigProc, τ f ind) = Find the smallest index k and task τ f ind from set

potenMigTasksSet such that (i) τ f ind can execute on its kth highest processor
that has index indexMigProc where indexMigProc ∈ idleProcSet and
(ii) no other task in potenMigTasksSet can execute on a processor in
idleProcSet at its hth highest speed where h < k.

13

14 if k < j and τmig = τ f ind then
15 Migrate task τmig from indexCurProc to indexMigProc
16 idleProcSet = idleProcSet − {indexMigProc}
17 idleProcSet = idleProcSet ∪ {indexCurProc}
18 anyMigration = true;
19 else
20 noMigTasksSet = noMigTasksSet ∪ {τmig}
21 end
22 potenMigTasksSet = potenMigTasksSet − {τmig}
23 end
24 if anyMigration == false then
25 break and exit the while loop in line 6–28
26 end
27 end
28 while idleProcSet �= ∅ and readyTasksSet �= ∅ do
29 τdis = any task from set readyTasksSet
30
31 indexNewProc = Find the index of the processor such that

indexNewProc ∈ idleProcSet on which task τdis would execute fastest among
all other processors in set idleProcSet

32

33 Dispatch task τdis to indexNewProc
34 idleProcSet = idleProcSet − {indexNewProc}
35 readyTasksSet = readyTasksSet − {τdis }
36 end
37 end

123

Real-Time Systems (2022) 58:189–232 199

Lemma 1 Greediness Property If there are a total of p processors busy executing
some tasks during any stable time interval under the GHE scheduler, then there is
some task executing at least at its kth speed for k = 1, 2, . . . p and 1 ≤ p ≤ M.

Proof Let k, where 0 ≤ k ≤ M , be the set of tasks that continues execution from one
stable time interval to the immediately next stable time interval. Also, assume that for
some n, where 0 ≤ n ≤ M − k, there are n tasks that are newly scheduled at the
beginning of the next stable time interval. Let k + n = p, where 0 ≤ p ≤ M , be all
tasks that we need to consider for execution in the new stable time interval. Let O∗

x
denote the xth highest speed of some task.

We will prove this lemma considering two cases: (1) all the processors are idle,
or (2) some processors are busy (i.e., some tasks from previous stable time interval
continue their execution).

Case (1)—All processors are idle If M processors are idle (i.e., k = 0, n = p),
then the first task that we select can be scheduled to its fastest processor that has speed
one (O∗

1) because all the processors are available. Next, the second task that we select,
in the worst-case, is scheduled on its second-fastest processor (O∗

2) because the first
task may occupy the processor that provides to the second task a faster speed. Finally,
the pth task (τ p) in the worst-case is dispatched with speedO p

p . Because all the p−1
processors that provide higher speed (O p

1 , O p
2 , . . . , O p

p−1) for τ p may be occupied
by other tasks. So for this stable time interval the p tasks are executing with O∗

x ,
1 ≤ x ≤ p, respectively.

Case (2)—Some tasks are still in execution We separate two sub-cases: In sub-
case (2.a), the tasks that are still in execution do not migrate, and in sub-case (2.b),
some of the tasks that are in execution would migrate.

Sub-case (2.a)—Nomigration In this sub-case, only the new n tasks are scheduled
on the idle processors while the k already-executing tasks continue executing on the
processor on which they were executed in the previous stable interval. The first new
task is going to execute at least with speed O∗

k+1 because, in the worst-case, the k
faster processors are occupied. Similarly, the remaining tasks from the n scheduled
tasks are going to execute with speeds O∗

k+2, . . . , O∗
k+n . Therefore, the k + n = p

tasks are executing with speeds O∗
x , 1 ≤ x ≤ p in this stable time interval.

Sub-case (2.b)—Migration Let τ i complete its execution at time a which is at
the beginning of the stable time interval [a,b]. Let τ j be among the k tasks that still
continue executing during the stable time interval [a,b]. Please recall that GHE first
selects for migration the task that can enjoy its most preferred processor compared to
other tasks. Let τ j , if it migrates, has the most preferred processor among the k tasks
that are still in execution. In the worst-case, τ i was executing before its completion on
a processor that is also for τ j a faster processor. So τ j can migrate to a processor that
has at leastO j

k speed because there are k tasks that can occupy the faster processors for
τ j . By following the GHE scheduler, the speeds at which tasks would start executing
from the beginning of the stable interval in the worst case are O∗

1, O∗
2, . . . , O∗

k . The
n tasks that we need to dispatch will have the speeds2 in the worst-case O∗

k+1, O∗
k+2,

. . . ,O∗
k+n (follows directly from the same argument as sub-case (2.a)). Therefore, the

2 The asterisk is used as a wildcard task executing at its preferred processor.

123

200 Real-Time Systems (2022) 58:189–232

k + n = p tasks are executing with speedsO∗
x , 1 ≤ x ≤ p in this stable time interval.

��
The main idea of the greediness property is that if x − 1 processors are busy, then

in the worst-case a task executes with its xth fastest speed. The scheduler selects an
arbitrary task to dispatch. We prove the scheduler’s greediness without assuming any
priority of the tasks. Because greediness property is oblivious to the priorities of the
tasks, it holds for any priority assignment that would allow us in the next section to
find a makespan computation that also holds for any priority assignment of the tasks.
Finding a priority assignment that would lead to a shorter makespan is an exciting
and challenging problem. However, we do not address it in this paper. In addition,
we can preserve the greediness property if the scheduler is extended with preemption
capability by doing the preemption before we do migration and dispatch steps because
the greediness property holds for any priority assignment. Preemptive scheduling may
improve themakespan, butweneed to consider the preemption cost and a larger number
of migrations, as we explain next.

A note on migration We assume that the cost of migrations is already included in
the WCET of the task. The total cost of migration that a task needs to consider in the
worst-case depends on the total number of migrations and the cost of each migration.
Initially, in the worst-case based on the GHE schedule, the number of migrations for
a task is bounded by (M − 1) because the task can migrate from its slowest processor
to its fastest processor by migrating at most (M − 1) times. In the worst-case, a task
needs to wait for (M − 2) other migrations by other tasks before it can migrate by
considering the case where all the tasks that are in execution also need to migrate. So,
in the worst case for each task we need to consider (M − 1) · (M − 2) migrations.

In case the scheduler is preemptive, which is equivalent to temporarily removing
the tasks that are already in execution and consider them all for dispatching based on
some priority order, the number of migrations that we need to consider for each task
is higher compare to non-preemptive scheduling. Because when a task continues its
execution after being preempted, it may be scheduled to a slower processor compared
to the processor where it was executing before it was preempted. As a result for
preemptive scheduling, the maximum number of migrations is (N − 1) · M . So by
including the maximum number of migrations that a task may need to await before it
migrates, the total number of migrations is (N − 1) · M · (M − 2).

Since we can bound the maximum number of migrations, the proposed scheduler
is suitable for worst-case timing analysis. Finding the cost of each migration for
heterogeneous multiprocessors is a challenging problem that we do not address in
this paper. The migration cost is platform-dependent, and the platform architectural
characteristics are known during theWCET analysis.We assume that eachmigration’s
cost can be computed and included within the task’s WCET.

3.2 An example

This section presents an example of the application, platform, and scheduler using the
parameters that we have defined in earlier sections. We are also going to refer to this
example in later sections of this paper.

123

Real-Time Systems (2022) 58:189–232 201

Fig. 2 The DAG of an
application with six nodes and
seven dependencies

Table 1 The WCET of the nodes
in Fig. 2 for two processors

c1i c2i

A 1 2

B 1 10

C 10 1

D 2 1

E 1 2

F 1 2

Figure 2 shows an application thatwemodel as aDAGwith six nodesA–F and seven
dependencies. We assume an unrelated multiprocessor platform with two processors
where each processor belongs to one unique type. The set of theWCETs of the tasks are
shown in Table 1. Note that c1i �= c2i for some (in this case for all) tasks, which implies
that the types of the two processors are different. There are two types of processors
denoted as type 1 and type 2.

In Table 2, we calculate the total workload and the workload of the critical path for
three cases. The column labeled as “Both type 1” is used to specify a homogeneous
multiprocessor platform with two processors where both processors are of type 1.
Similarly, the column labeled as “Both type 2” is used to specify a homogeneous
multiprocessor platform with two processors where both processors are of type 2.
Finally, the column labeled as “Unrelated: one type 1 and one type 2” is used to specify
a heterogeneous multiprocessor platform with two processors where one processor is
type 1, and the other is type 2.

With Eqs. (2) and (5), we calculate the total workload W1 in the second row and
the workload of the critical path W∞ in the third row for all the three cases. Please
note that Eqs. (2) and (5) can also be applied to homogeneous multiprocessors as there
is only one WCET for homogeneous multiprocessors that is equal to the minimum
WCET. Eq. (7) is widely used in previous works (Graham 1969; Brent 1974; Blumofe
and Leiserson 1999; Melani et al. 2015) to compute the makespan for homogeneous
multiprocessors of tasks that are scheduled by a work-conserving scheduler.

TM(1) = W1 + (M − 1) · W∞
1

M
(7)

For the platform with two homogeneous type 1 processors, we get a makespan equal
to 13.5, and for the platform with two homogeneous type 2 processors, we get a
makespan equal to 17.

However, Eq. (7) cannot be trivially applied to heterogeneous multiprocessors
because it does not take into account the heterogeneity of the processors. The related

123

202 Real-Time Systems (2022) 58:189–232

Table 2 Total workload, workload of the longest path and the makespan of the DAG are presented in Fig. 2
for two homogeneous platforms and one unrelated platform

Both type 1 Both type 2 Unrelated: one type 1 and one type 2

W1 16 18 6

W∞ 11 16 4

Makespan 13.5 17 to be determined

In Sect. 5, we will discover the makespan with the unrelated multiprocessor platform is equal to 7.28

Fig. 3 Case (a) presents the simulation of the execution on the unrelated platform if all the tasks execute
for their WCET, case (b) presents the simulation if τ B completed its execution earlier without migration,
and case (c) presents the simulation with task migration

multiprocessors (Jiang et al. 2017) take into account the heterogeneity of the processors
but assume that all the tasks can benefit equally from the architectural characteristics
of the available processors, which is not realistic because they can benefit differently
from the different processor types.

Before we determine the makespan for unrelated multiprocessors we first analyze
the simulation of the execution of the DAG at Fig. 2 for three different scenarios.

Figure 3a presents the simulations of the execution if all the tasks execute for their
WCET on the unrelated platform based on our proposed GHE scheduler. It can be
seen that the schedule length is 4 time units. So the unrelated multiprocessor platform
can execute the tasks by taking advantage of the heterogeneity of the platform and can
benefit from the different architectural characteristics of the processors.

In Fig. 3b, τ B completes its execution earlier than its WCET. Since the scheduler
is work-conserving, task τ D is dispatched to the processor of type 1 with speed 0.5.
Similarly, τ E is dispatched to the processor of type 2 that also has the speed 0.5, and
schedule length is 5. This schedule does not allow migration.

In Fig. 3c, we assume that the scheduler migrates a task to the other processor
to enjoy faster speed. So, after the completion of τC , task τ D migrates to a type 2
processor to continue at a higher speed. Next, τ E is dispatched to type 1 to execute
with speed one, and the schedule length is 4.

The simulations of the execution of Fig. 3a and c show the expected behavior of
GHE . However, Fig. 3b does not represent the expected behavior of GHE because
between time 2 to 4 task τ D and τ E are both executing with their second-highest
speed that violates the greediness property of Lemma 1. The simulation of the execu-
tion assuming that all tasks execute for their WCET cannot be used to calculate the
makespan because of timing anomalies. We are trying to provide a safe upper bound
of the worst-case schedule length (makespan).

123

Real-Time Systems (2022) 58:189–232 203

4 Formal tools to compute themakespan

The schedulability analysis of DAGs on an unrelated multiprocessor platform in con-
trast to homogeneous and related platforms cannot be donewithout taking into account
the application. We can analyze a homogeneous platform for any DAG by knowing
only the number of processors. For a related platform that has processors of different
speeds, based on Funk et al. (2001), Jiang et al. (2017) we need two parameters. First,
the capacity of the platform is the sum of the processors’ speeds and shows the rate that
the workload of the application is executed for a given number of processors. Second,
the uniformity intuitively shows how much the processors’ speed differs compared
to a homogeneous platform with the same number of processors. The capacity and
uniformity of a platform are fixed for any DAG for which we want to estimate the
makespan. However, for an unrelated platform, theWCET of the tasks depends on the
task-processor mapping; the platform characteristics can be different for every DAG.

Our approach to characterize a platform is to extend the concept of capacity and
uniformity from Funk et al. (2001), Jiang et al. (2017) by taking into account the
scheduler and the speeds that are derived by the task-processor mappings. Section 4.1
presents preliminary definitions and the motivation behind defining the minimum
capacity and heterogeneity that we formally present in Sects. 4.2 and 4.3, respectively.

4.1 Motivation and preliminary definitions

Computing the actual makespan of a DAG executed on unrelated multiprocessors is
intractable (Garey and Johnson 2002), so we focus on computing an upper bound on
the makespan. This section presents the motivation for formal analysis tools that we
will use in the next section to find a safe upper bound on the makespan.

Initially, let us focus on the execution of a single task τ i and visualize its execution
as rectangles. The vertical side is the speed at which the task is executing, and the
horizontal side its execution time. The rectangle’s surface area shows the workload of
the task given by Eq. (1).

Let τ i have a workload equal to two. Fig. 4 shows an abstract view of the execution
of τ i for three scenarios. First, (a) shows the cases that τ i is mapped to a processor
that provides to τ i speed one, so τ i completes its execution after two time units. By
computing the area of the rectangle, we find the workload of τ i which is two. At (b),
the τ i is mapped to a processor that offers speed 0.5 to τ i and as a result, the execution
time is four, which is greater compared to (a). Again the workload is two by computing
the area of the rectangle. At (c) τ i initially is mapped to a processor that offers speed
0.5 for two time units, and then it migrates to a processor that provides speed one for
one time unit. The execution time for τ i for the (c) case is three time units, but again
the sum of the area of the rectangles is two, which is equal to the workload of the τ i .

This example illustrates that the task-processor mapping can lead to different exe-
cution times. However, we observe that the workload of the task remains constant
regardless of the task-processor mapping. Based on this observation, we will inflate
the DAG’s workload to bound all the schedule lengths that we can get for all the pos-
sible task-processor mappings. The inflation will introduce pessimism to the schedule

123

204 Real-Time Systems (2022) 58:189–232

Fig. 4 Visualization of the execution of a task τ i with workload equal to two, when (a) is mapped to a
processor with speed 1, (b) with speed 0.5 and (c) initially with speed 0.5 and then it migrates to a processor
with speed 1. Whatever is the task-processor mapping the sum of the area of rectangles for all the cases is
constant and equal to the workload

Fig. 5 Visualization of the B and B̄

length of the DAG that captures all the possible task-processor mappings in order to
find a safe estimation of the makespan.

Next, let us try to visualize with Fig. 5 the schedule of a DAG on an unrelated
multiprocessor platform as a two-dimensional area. Let the Capacity be the sum of
the speeds based on the task-processor mapping of the tasks that are in execution. The
vertical axis shows the capacity. The horizontal axis is the time duration the application
takes to complete its execution. Let B be the area where processors are busy executing
some workload, and B̄ be the area that the processors are idle. So the makespan is
given by:

Makespan = B + B̄

Capacity
(8)

To compute the makespan for unrelated multiprocessors, we need to find the terms
of Eq. (8) that maximize the numerator and minimize the denominator.

First, regardless of the execution time of the application, the total workload (W1) is
equal to the area in B. At run-time, a node can run with a speed that is lower than one
(smaller vertical-value), which would have a proportionately longer duration (larger
horizontal value), as we explained in Fig. 4. So, the area of B, which is composed of
the workload of all the tasks, remains constant and is equal to the total workload of
the DAG.

We can have different capacities during different stable time intervals because the
speeds depend on the task-processor mapping. The largest possible capacity of the
platform is M when all the processors execute tasks with speed one. The smallest
value is one, which is the case when one task is executing, and because the scheduler
has the property of Lemma 1, it will schedule or migrate a task to its fastest (speed
equal to one) available processor. To determine the capacity that would lead to the
estimation of the makespan, we define as S̃m the minimum capacity among all the

123

Real-Time Systems (2022) 58:189–232 205

task-processor mappings that we can have based on scheduling decisions of GHE for
m ≤ M processors.

To determine B̄, we need the duration (horizontal value) that there are idle proces-
sors and the capacity of the unused processors (vertical value). Because we assume a
work-conserving scheduler, we know that if there are idle processors and the applica-
tion is not finished, there are still tasks that we need to execute, but they are restricted
by their dependencies. LetWγ denote the workload of an arbitrary path of the applica-
tion. The workload of any path in the DAG can be at most the workload of the critical
path. The critical path length is different depending on the task-processor mapping
of the tasks that belong to the critical path. The shortest length of the critical path is
W∞, which is the case if all task-processor mappings have speed one. Let Õ denote
the speed that leads to the worst-case (i.e., maximum) unused capacity for all the
tasks. Thus, the W∞

Õ shows the length of the critical path. Let ˜idle denote the unused
capacity, and by replacing the terms to Eq. (8), we get:

TM ≤
W1 + ˜idle · Wγ

Õ
˜SM

⇒ TM ≤
W1 + ˜idle · W∞

Õ
˜SM

TM ≤
W1 + ˜idle

Õ · W∞
˜SM

It can be seen from Eq. (7) that the values of Õ and ˜idle for a homogeneous
multiprocessor platform are one and (M − 1), respectively. However, the values of
Õ and ˜idle are unknown for unrelated multiprocessors. Because the scheduler is
work-conserving ˜idle depends on Õ . We combine these two parameters, and we call
this expression heterogeneity. To find the maximum heterogeneity, we need to search
among the different task-processor mappings that are determined by the GHE sched-
uler. To enumerate all possible task-processor mappings, we introduce:

Definition 6 Let π be one permutation of p tasks selected from N tasks of the appli-
cation. The set of all the permutations of size p selected from N different tasks is
denoted by σp. The total number of permutations of size p selected from N tasks is

N !
(N−p)! .

In Sect. 4.2, we define two ways to calculate the minimum capacity that takes into
account the processor preference order of every task determined by the scheduler. In
Sect. 4.3, we define heterogeneity among all the tasks and all the processors throughout
the execution.

123

206 Real-Time Systems (2022) 58:189–232

4.2 Minimum capacity

For any stable time interval (based on Lemma 1), if (x − 1) processors are busy, then

a task is executed at least on its xth faster processor. LetOπ (k)
k denote the kth speed of

the kth task in permutationπ . During a stable time interval when x processors are busy,
we define in Eq. (9) the minimum capacity of the platform that tasks in permutation
π ∈ σx can execute with:

Definition 7 Capacity of x processors for permutation π :

S
π
x :=

x∑
k=1

Oπ (k)
k (9)

The minimum capacity over all possible permutations π ∈ σM , denoted by SM , is
given by:

Definition 8 Minimum capacity of the platform among all permutations:

SM := min
π∈σM

{Sπ

M } (10)

The time complexity to evaluate Eq. (10) is exponential because we need to search
through all the permutations. To avoid the high complexity, we trade off precision, and
we define in Eq. (11) an alternative approach to calculating the minimum capacity for
1 ≤ m ≤ M processors. Instead of searching among all the permutations, we search
among all the tasks to find the minimum capacity. This approach is always more or
equally pessimistic compared to Eq. (10), and the proof is presented in Appendix A.1.

Definition 9 Minimum capacity of the platform among all tasks and processors:

S
′
m :=

m∑
x=1

N
min
i=1

{Oi
x } (11)

While the capacity of the hardware platform for homogeneous and related machine
models does not change from one task to another, the capacity for unrelated machines
changes from one DAG to another, the definitions of capacity in Eqs. (10) and (11)
are measures of the unrelated platform concerning the tasks, and they will be used in
deriving themakespan of a DAG. Intuitively, the capacity shows theminimum rate that
the workload of a DAG is executed for a given number of processors of the unrelated
platform.

4.3 Heterogeneity

In this subsection, we use the notion of heterogeneity to capture howmuch capacity of
the platform could be wasted (recall the area of unused capacity), which will be used
to find the makespan. For a permutation π , based on Lemma 1, if (x − 1) processors

123

Real-Time Systems (2022) 58:189–232 207

are busy, a task in the worst-case will execute with speed Oπ (x)
x . Based on the GHE ,

the unused capacity is given by S
π

M -S
π
x that depends on the speed Oπ (x)

x . To find
the maximum unused-capacity area, for a permutation π we define with Eq. (12) the
heterogeneity. It finds for a specific permutation the maximum heterogeneity among
the different processors.

Definition 10 Heterogeneity for permutation π :

λπ := M
max
x=1

{
S

π

M − S
π
x

Oπ (x)
x

}
where, Oπ (x)

x �= 0 (12)

To identify the maximum permutation-based heterogeneity (λ) we define Eq. (13),
where we search among all the permutations.

Definition 11 Maximum heterogeneity among all permutations:

λ := max
π∈σM

{λπ } (13)

Similarly, with the permutation-based capacity, from Eq. (10), the calculation of
the maximum heterogeneity, from Eq. (13), has exponential time complexity because
we need to search through all of the permutations. To avoid the high complexity, we
define heterogeneity by searching through all of the tasks and all the processors instead
of searching among all the permutations. If the workload on the critical path (W∞) is

executed with speed Oi
x then the unused capacity is given by Eq. (14), where Oi

x is
the subset of Oi , whose speed is lower than the xth fastest processors for task τ i .

Definition 12 Unused capacity if τ i is scheduled on processor x :

idleix :=
∑

y∈Oi
x

N
max
j=1

{O j
y} (14)

To find the heterogeneity (λ
′
), we combine Eq. (14) with its corresponding busy

speed Oi
x , and we maximize among the different tasks and different processors. The

second version of heterogeneity is always more or equally pessimistic compared to
Eq. (15), and we present the proof in Appendix (A.2).

Definition 13 Maximum heterogeneity among all tasks and processors:

λ
′ := N

max
i=1

{
M

max
x=1

{
idleix
Oi

x

}}
where, Oi

x �= 0 (15)

For unrelatedmultiprocessors, it is not clearwhichpath of theDAGwould lead to the
worst-case schedule length.However, in both approaches, to identify the heterogeneity,
all the tasks and not just the tasks that belong to the critical path are considered. So
the main idea is to combine heterogeneity, which takes into account all the possible

123

208 Real-Time Systems (2022) 58:189–232

ci1 ci2
A 1 2
B 1 10

δi1 δi2
A 1 0.5
B 1 0.1

Oi
1 Oi

2
A 1 0.5
B 1 0.1

Fig. 6 Permutation 〈A, B〉. SA,B

M = 1 + 0.1 = 1.1 and λA,B = 1.1−1
1 = 0.1

ci1 ci2
A 1 2
C 10 1

δi1 δi2
A 1 0.5
C 0.1 1

Oi
1 Oi

2
A 1 0.5
C 1 0.1

Fig. 7 Permutation 〈A,C〉. SA,C

M = 1 + 0.1 = 1.1 and λA,C = 1.1−1
1 = 0.1

ci1 ci2
A 1 2
D 2 1

δi1 δi2
A 1 0.5
D 0.5 1

Oi
1 Oi

2
A 1 0.5
D 1 0.5

Fig. 8 Permutation 〈A, D〉. SA,D

M = 1 + 0.5 = 1.5 and λA,C = 1.5−1
1 = 0.5

ci1 ci2
A 1 2
E 1 2

δi1 δi2
A 1 0.5
E 1 0.5

Oi
1 Oi

2
A 1 0.5
E 1 0.5

Fig. 9 Permutation 〈A, E〉. SA,E

M = 1 + 0.5 = 1.5 and λA,E = 1.5−1
1 = 0.5

tasks-processor mappings, with the critical path that has the largest workload among
all the paths (Eq. (5)) to identify the maximum unused capacity area. Intuitively, the
heterogeneity shows if the unrelated platform is appropriate for a DAG concerning
an "ideal platform" with the same number of processors that all tasks will execute for
their minimum WCET among the heterogeneous processors.

Next, we use the example of Fig. 2 to calculate the two versions of the capacity and
the heterogeneity of the platform. First, we present the permutation-based approach.
Each permutation is composed by two tasks that are executing to two processors, and
let 〈A, B〉 denotes the permutation with tasks τ A and τ B that execute on two pro-
cessors. For the application and the platform presented in Fig. 2, the total number of
permutations is N !/(N − M)! = 6!/4! = 30. We present the calculation for permuta-
tions: 〈A, B〉, 〈A,C〉, 〈A, D〉, 〈A, E〉, and 〈D,C〉 and we omit the calculations of the
remaining permutations.We select these permutations because there are representative
since the tasks have similar WCET. For example, the calculations of the permutations
〈A, E〉 and 〈A, F〉 are the same because τ E and τ F have the same WCETs.

First, for each permutation, we present the table with the WCET of the tasks (cix)
that we consider for the specific permutation, presented at the left-hand side table at
Figs. 6, 7, 8, 9 and 10. Next, at the tables which are at the center of Figs. 6–10 we
compute the speed of the tasks (δix) for all the processors, based on Eq. (6). Next, based
on the speeds of the tasks for the processors, at the right-hand side table of Figs. 6–10
we calculate the speed-preferences (Oi

x) of the tasks that belong to the permutation
for each processor based on Definition 5.

For every permutation, we calculate the permutation-based capacity (SM) and the
heterogeneity (λ) based on Eqs. (9) and (12), respectively. The calculations to compute

123

Real-Time Systems (2022) 58:189–232 209

ci1 ci2
B 1 10
C 10 1

δi1 δi2
B 1 0.1
C 0.1 1

Oi
1 Oi

2
B 1 0.1
C 1 0.1

Fig. 10 Permutation 〈B,C〉. SB,C

M = 1 + 0.1 = 1.1 and λB,C = 1.1−1
1 = 0.1

ci1 ci2
A 1 2
B 1 10
C 10 1
D 2 1
E 1 2
F 1 2

δi1 δi2
A 1 0.5
B 1 0.1
C 0.1 1
D 0.5 1
E 1 0.5
F 1 0.5

Oi
1 Oi

2
A 1 0.5
B 1 0.1
C 1 0.1
D 1 0.5
E 1 0.5
F 1 0.5

Fig. 11 The three tables areWCETs (left-hand side), speeds (center), and preference of speeds (right-hand-
side) of all the application tasks that we need for the fast approach

the capacity and the heterogeneity are presented at the captions of Figs. 6–10. By
investigating all the permutation including the ones that we omitted for brevity, the
minimum permutation-based capacity given by Eq. (10) is 1.1 and the maximum
permutation-based heterogeneity given by Eq. (13) is 0.5.

To avoid the high time complexity of enumerating all the permutations, we apply
Eqs. (11) and (15) to find the capacity (S

′
M) and the heterogeneity (λ

′
) in polynomial

time complexity. At Fig. 11, we present the table with the WCET (cix), the speed (δ
i
x)

and the preference of speeds (Oi
x) for all the tasks of application that is presented in

Fig. 2.
Tofind the capacity of the twoprocessors first,we compute theminimumspeeds that

the tasks have based on the greediness property for the two processors that can execute.
We compute the minimum speed of the first speed preference minNi=1{Oi

1} = 1, and
the second speed preference minNi=1{Oi

2} = 0.1 among all the tasks and the capacity

is given by: S
′
M = 1+0.1 = 1.1. To find the heterogeneity (recall that the scheduler is

work-conserving), we need to check only the case that one out of the two processors
is idle. Also recall that the scheduler has the greediness property, and therefore, we
need to find the maximum speed that remains idle among the processors that are in
the list of second-speed preference of the task (last column, right-hand side table in
Fig. 11). We compute the maximum speed that is not used in case one processor is
idle as follows maxNi=1{Oi

2} = 0.5 and we get idlemax
2 = 0.5. Since the speed of the

first speed preference of all the tasks is one, the heterogeneity is λ
′ = 0.5

1 = 0.5.

5 Makespan calculation

This section presents two approaches to calculate themakespan of a DAG on unrelated
multiprocessor platforms. Initially, Sect. 5.1 provides the proof sketch of the proposed
approaches. The first issue (Sect. 5.2) for both approaches is how to determine a for-
mally proven upper bound on the execution time of the DAG (a requirement on safety).
Amakespan computationmust never underestimate the length of the schedule to ensure

123

210 Real-Time Systems (2022) 58:189–232

that the real-time constraints are satisfied. Lemma 2 presents an exhaustive search-
based combinatorial approach to calculate such an upper bound on the makespan. A
safe upper bound on the makespan is determined by identifying all the permutations
of possible task-processor mappings. This approach has exponential time complexity
but provides a tight makespan estimation (as will be evident later in our experiments).
As a result, such an approach can be used only for a small number of processors and
tasks.

The second issue (Sect. 5.3) is to provide a tight estimation of the makespan that
avoids exhaustive approaches and can be calculated efficiently. Theorem 1 proposes
a polynomial time complexity makespan calculation. Based on Lemmas 3 and 4, it is
proven that the makespan calculated by Theorem 1 is always greater or equal than the
(exhaustive) makespan given by Lemma 2 but still quite tight. As a result, the second
approach is shown to be always a safe estimation of the makespan.

5.1 Overview

To find a safe and tight bound on the makespan, we partition an arbitrary schedule
across different time intervals such that the number of busy processors in each such
interval is constant. We use an exhaustive approach, and for every interval, we search
through all of the permutations of task-processor mappings. To identify for every
interval the permutation that leads to the worst-case schedule length, we adapt for the
unrelated model (minimum capacity and heterogeneity) two well-known parameters
used earlier in the context of related multiprocessors (Funk et al. 2001; Jiang et al.
2017). These two parameters that try to maximize the schedule length are combined
with the total workload and the workload of the critical path of the DAG to compute
the makespan.

The initial, exhaustive approach has exponential time complexity since all the per-
mutations need to be searched.As a result, it is applicable to a restricted number of tasks
and processors. To address this limitation, we propose a polynomial time-complexity
version of the heterogeneity and capacity that is independent of the permutations and
formally proven to be always more pessimistic compared to the permutation-based
version of the parameters.

5.2 Exhaustive searchmakespan

In this section, we present our first result in Lemma 2 that can be used to compute
the makespan. The final formula of the makespan uses the total workload and the
workload of the longest path presented in Sect. 2 and the permutation-based minimum
capacity and heterogeneity introduced in Sects. 4.2 and 4.3, respectively.

Lemma 2 Exhaustive makespan (Comb): The makespan of a DAG executed on an
unrelated multiprocessor platform is given by:

T Comb

M ≤ W1 + λ · W∞
SM

(16)

123

Real-Time Systems (2022) 58:189–232 211

Proof Let Bp denote the sum of the lengths of the time intervals where exactly p
processors are busy. BecauseGHE is work-conserving, we know that there will always
be at least one processor busy during the execution of the application. So for the
makespan T Comb

M , we have:

T Comb

M =
M∑
p=1

Bp (17)

For an application that is executed on an unrelated multiprocessor platform, the
different task-to-processormappings can lead to different schedule lengths.Todescribe
all the task-processor mappings when exactly p processors are busy, we introduce B

π
p ,

which denotes the time interval when exactly p processors are busy by the tasks of
permutation π of size p. Since we can have different permutations that occupy p
processors, it holds that:

Bp =
∑
π∈σp

B
π
p (18)

where σp is the set of all permutations of size p. If during run-time a permutation π ′

does not appear in the schedule, then it holds that B
π ′
p = 0.

Consider an arbitrary schedule and an arbitrary busy interval B
π
p . Based on Lemma

1, during B
π
p , the pth task belonging to π in the worst-case will be executed with

speed Oπ (p)
p where Oπ (p)

p �= 0. Let W p,π (γ) denote the total amount of workload

completed at speed Oπ (p)
p from task τπ (p) that belongs to an arbitrary path γ and at

the pth position of permutation π and we have:

B
π
p · Oπ (p)

p ≤ W p,π (γ)

We break up the workload of the tasks that belong to the critical path W∞ into
fragments that depend on the task-processor mappings; that is, fragments that depend
on permutations π of size p denoted by W p,π

∞ . If for a permutation π , it holds that
B

π
p = 0, then it also holds thatW p,π

∞ = 0 because this permutation did not appear in
the schedule, so it does not have any workload. WithW p∞, we denote the workload of
the critical path of all permutations executed by the same number of processors. To
collect the workload from all the permutations, we define:

W∞ ≥
M∑
p=1

W p∞ =
M∑
p=1

∑
π∈σp∧
B

π
p �=0

W p,π
∞ (19)

123

212 Real-Time Systems (2022) 58:189–232

Since the critical path is cp with total workloadW p,π
∞ belonging to permutation π ,

the actual workload is bounded as follows: W p,π (γ) ≤ W p,π
∞ and we have:

B
π
p · Oπ (p)

p ≤ W p,π
∞

If there is at least one processor idle (p < M) and there are still tasks that we
need to execute, then they must be restricted by their dependencies. On unrelated
multiprocessors, due to the different task-processor mappings, the execution time of
any path can vary. So it is not clear which path is going to determine the makespan
of the DAG. To identify the worst-case scenario to find a safe upper bound on the
makespan, we consider two pessimistic but safe characteristics of the DAG. First, we
consider the path with the largest workload that will guide the length of the schedule.
Second, with the use of heterogeneity, we consider the worst-case mapping among
all the tasks that would lead to the largest unused capacity throughout the execution.
The largest unused capacity throughout the execution depends on two factors: 1) the
unused processors and 2) the duration that these processors are idle. More precisely, to
find the duration of the critical path workload, we assume, based on Lemma 1, that a

task that belongs to the critical path is executing at speedOπ (p)
p . IfOπ (p)

p is busy then
the unused capacity is given by S

π

M − S
π
p . With the heterogeneity given by Eq. (12),

we can find the worst-case for a specific permutation because it maximizes these two

factors among all the task-processor mappings. By replacing the Oπ (p)
p we have:

⇒ B
π
p · S

π

M − S
π
p

λπ
≤ W p,π

∞ (20)

By Eq. (19) and since for an arbitrary π it holds that λπ ≤ λ we have:

M∑
p=1

∑
π∈σp

B
π
p · S

π

M − S
π
p

λ
≤

M∑
p=1

∑
π∈σp∧
B

π
p �=0

W p,π
∞

M−1∑
p=1

∑
π∈σp

B
π
p · S

π

M − S
π
p

λ
≤ W∞

Equivalently,

M−1∑
p=1

∑
π∈σp

B
π
p · (S

π

M − S
π
p) ≤ λ · W∞ (21)

During B
π
p the p processors are busy with platform capacity S

π
p , which means

that after B
π
p time units, the amount of workload that is done is B

π
p · Sπ

p . Since
the application completes when no processor is busy, the total workload is given by

123

Real-Time Systems (2022) 58:189–232 213

W1 = ∑M
p=1

∑
π∈σp

B
π
p · Sπ

p . By adding this term in both sides in Eq. (21), we get:

M−1∑
p=1

∑
π∈σp

[Bπ
p · (S

π

M − S
π
p) + B

π
p · Sπ

p] +
∑
π∈σp

B
π
p · Sπ

M ≤ W1 + λ · W∞

M−1∑
p=1

∑
π∈σp

B
π
p · Sπ

M +
∑
π∈σp

B
π
p · Sπ

M ≤ W1 + λ · W∞

M∑
p=1

∑
π∈σp

B
π
p · Sπ

M ≤ W1 + λ · W∞

Based on the definition of SM , given by Eq. (10) we have S
π

M ≥ SM and by the
definition of Bp given by Eq. (18), we have:

⇒
M∑
p=1

Bp · SM ≤ W1 + λ · W∞

M∑
p=1

Bp ≤ W1 + λ · W∞
SM

Since the scheduler is work-conserving it holds that T Comb
M = ∑M

p=1 Bp and conse-
quently:

T Comb

M ≤ W1 + λ · W∞
SM

This completes the proof of Lemma 2. ��
For the example that is given in Fig. 2 we replace the parameters to the equation

given in Lemma 2 and we get the makespan T Comb
M = 7.28.

5.3 Efficient makespan

The calculation of the capacity and heterogeneity of the platform using the
permutation-based parameters has exponential time complexity. With Lemmas (3)
and (4), we prove that the permutation-independent parameters always provide more
pessimisticminimum capacity and heterogeneity. The proofs are given in AppendixA.
The final formula of the efficient makespan uses the total workload and the workload
of the longest path presented in Sect. 2 and the minimum capacity and heterogeneity
that are independent of the permutations that were presented in Sects. 4.2 and 4.3,
respectively.

123

214 Real-Time Systems (2022) 58:189–232

Lemma 3 The S
′
M is always less or equal to the minimum capacity SM between the

different permutations.

SM ≥ S
′
M (22)

Lemma 4 The λ
′
is always greater or equal to the maximum heterogeneity λ between

the different permutations.

λ ≤ λ
′

(23)

Theorem 1 Efficient makespan (Fast): The makespan of a DAG executed on an unre-
lated multiprocessor platform is given by.

T Fast

M ≤ W1 + λ
′ · W∞

S
′
M

(24)

Proof From Lemmas 3 and 4 it follows that the makespan calculated by using λ
′
and

S
′
M is always larger in comparison to the makespan calculated from Lemma 2. Since

the makespan T Comb
M from Lemma (2) is safe, the makespan T Fast

M given by Eq. (24) is
also safe (i.e., an upper bound). ��

We compare the upper bound on the makespan that we computed to the optimal
schedule length, i.e., minimum completion time, denoted by OPT to theoretically
evaluate how much pessimism is introduced to our makespan computation compared
to OPT. Finding the OPT is intractable (Garey and Johnson 2002), and we com-
pute a lower bound on the OPT as follows. First, we optimistically assume that the
GHE finds a processor that provides speed one for every task of the DAG. Thus, each
task is executed for its minimum WCET. Let an upgraded DAG, denoted by Ĝ, be
an isomorphic DAG to G, meaning that V = V̂ and E = Ê , where for every task
instead of having M WCETs, each task has only one WCET, the cimin . Because its
task has one WCET, the homogeneous setup Graham (1969); Brent (1974); Blumofe
and Leiserson (1999) can be applied. A lower bound on the optimal schedule length is

computed by LB = max{Ŵ∞, Ŵ1
M } for the upgraded DAG Ĝ, which is also a lower

bound for the original DAG G.

Corollary 1 Themakespan given by Theorem 1 is (
M+λ

′

S
′
M

) times larger than the optimal

schedule length (OPT):

Proof From Eq. (24), given by Theorem 1, we have:

T Fast

M ≤ W1 + λ
′ · W∞

S
′
M

T Fast

M ≤ W1

S
′
M

+ λ
′ · W∞
S

′
M

123

Real-Time Systems (2022) 58:189–232 215

T Fast

M ≤ M

S
′
M

· W1

M
+ λ

′

S
′
M

· W∞

By definition LB ≤ OPT, so it holds that W∞ ≤ OPT and W1
M ≤ OPT.

⇒ T Fast

M ≤ M

S
′
M

· OPT + λ
′

S
′
M

· OPT

T Fast

M ≤
(
M + λ

′

S
′
M

)
· OPT (25)

��

The value of (
M+λ

′

S
′
M

) depends on the WCETs of the tasks for the processors of the

platform. If all the speeds for all the tasks are one, the platform specialize to homoge-
neous multiprocessors (Eq. (7)) (Graham 1969; Brent 1974; Blumofe and Leiserson
1999) and the value (a.k.a approximation, speed-up, and resource augmentation factor)
is (2 − 1

M). In conclusion, the upper bound on the makespan computed by Eq. (24)

is (
M+λ

′

S
′
M

) times larger compared to the optimal schedule length of any scheduling

heuristic that has the work-conserving property and the greediness property.

5.4 Summary

This section presents two approaches to calculate themakespan of a DAG on unrelated
heterogeneous multiprocessors. Initially, we present an exhaustive permutation-based
approach (Comb) that safely calculates the makespan and has exponential time com-
plexity (Lemma 2). Then we use Comb as the stepping stone to develop Fast that is
given in Theorem (1) to find the makespan in polynomial time. The main advantage of
the approach is its generality. The assumptions regarding the platformmodel can cover
a wide range of heterogeneous multiprocessors. The DAG model can be applied to a
broad range of parallel applications, such as OpenMP task-based parallel applications.
Finally, keeping the scheduler general, assuming only that it is work-conserving also
allows us to cover a broad class of schedulers and not just one scheduling policy.

6 Complexity analysis

Initially, we analyze the parameters that are common for all the proposed bounds. Next,
we show that the Comb has exponential time complexity and Fast has polynomial
time complexity.

Common: For a specific task, the minimum WCET between the processors can
be calculated in O(M). The critical path can be calculated in O(|V | + |E |) with
the use of topological sort (West et al. 2001). As a result,W∞ can be calculated with

123

216 Real-Time Systems (2022) 58:189–232

O(max{(|V |+|E |), (M))} time complexity. The total work is the sumof theminimum
WCET of all tasks, so W1 is computed with O(max{N , M}) time complexity.

Comb : The parameter σp of λ and the parameter SM are calculated by enumerating
all the permutations of the tasks (N) to processors (M). Thus, σp is of size O(NM)

and as a result Comb, given by Lemma 2, has a time complexity of O(NM). So, the
exhaustive approach has exponential time complexity.

Fast: The makespan T Fast
M is given by Theorem 1 and it uses the parameters

S
′
M and λ

′
that are independent of the permutations and can be calculated in polyno-

mial time. Initially, Oi requires time O(M · log(M)) to sort the array of speeds. We
have to calculate Oi for all the tasks, so the time complexity is O(N · M · log(M))

using an efficient sorting algorithm like Heapsort. However, accessing Oi
x and Oi

x
requires constant time because the array is sorted. Next, the complexity of com-
puting S

′
M is O(max{N , M}) because to identify the minimum requires O(N) and

the sum includes all the processors (M). Furthermore, the calculation of the het-
erogeneity requires the parameter idleix that has time complexity O(max{N · M}),
because the maximum requires O(N) and the sum is over at most M − 1 iterations.
Finally, the heterogeneity λ

′
uses idleix together with two maximum operations, that

can be calculated in O(N) and O(M), respectively. So, λ
′
is calculated with time

complexity O(max{N 2, M2}), which is polynomial. As a result, for the Fast, we
have O(max{(|V | + |E |), (M)} + max{N , M} + max{N , M} + N · M · log(M) +
max{N 2, M2}), that is, O(max{N 2, M2}), which is polynomial in time complexity.

7 Evaluation

To quantitatively evaluate the proposed makespan calculation, Sect. 7.1 presents the
simulation framework, andSect. 7.2 presents the simulation results for different param-
eters of our model for four OpenMP parallel applications and synthetic DAGs.

7.1 Simulation framework

First, we present the method by which we model the DAGs of the applications and
the synthetic workloads. Next, we describe the simulator that is used to calculate the
makespan. Finally, we describe the configuration of the applications and the evaluation
metrics used.

7.1.1 DAGmodeling

The WCET of a task is generated by adding a randomly generated value to the cimin
(minimumWCET between the different processor types). With the parameter Limit ,
we limit the range of the randomly generated values. More formally, the WCET of
every task is given by, cit = cimin + Rand(0, Limit). The exact value of cimin is stated
in the experimental section. We perform two types of experiments where we consider
real applications and synthetic DAGs.

123

Real-Time Systems (2022) 58:189–232 217

ApplicationsWemodel the DAG of four parallel, task-based OpenMP applications
from the BOTS benchmark suite (Duran et al. 2002): Fibonacci, Sort, Strassen, and
FFT. Fibonacci has a tree-like structure and is a good representative of many recursive
applications. It is simple and is very helpful for the understanding of the parallel
execution of the tasks. Sort is a common operation in almost all fields of computing.
Strassen is an efficient matrix-multiplication algorithm that is used in many scientific
applications. Finally, FFT is used in signal and image processing. The analysis of the
OpenMP code for each application is performed manually. Then the applications are
implemented in our simulation framework to generate theDAGautomatically. Initially,
we categorize the parts of the code based on their functionality, and we introduce three
nodes:

– Spawn nodes The keyword #omp pragma task of a loop generates multiple tasks.
The spawn node models the cost of parallel work generation.

– Basic nodes It models the execution time of a sequentially executed code, which
is the actual work of the parallel application.

– Synchronization nodesWeuse synchronization nodes tomodel the #omp pragma
taskwait. A Synchronization nodemodels the cost (in time) of the synchronization.

ForFibonacci, Strassen, andFFT, the structure of theDAGdepends on the input size.
The structure of the DAG for Fibonacci depends on the actual value, and for Strassen
and FFT, it depends on the array size. For Sort, the DAG structure is data-dependent;
for the same array size but different actual data, we can have different DAGs. Previous
work introduced conditional nodes to express the alternative execution paths. We use
the method in Baruah et al. (2015b) to transform the conditional DAG to a non-
conditional worst-case DAG for Sort. An example of DAG modeling can be found in
Voudouris et al. (2017).

The applications under analysis have thousands of tasks. However, we note that the
applications have only a few different tasks that perform the same function, and, as a
result, they have the same set of WCETs. Tasks with the same WCET for the various
processors will lead to the same permutations. Consequently, we need to calculate all
the permutations only based on the unique tasks, which, in practice, has exponential
time complexity to the number of unique tasks rather than the number of tasks. For
example, Fibonacci has 32836 tasks for input 20, but there is only one unique task
that calculates the Fibonacci numbers. Similarly, for Sort, FFT, Strassen, there are 2,
3, and 1 unique task, respectively. In Chronaki et al. (2015), they consider OmpSs
applications, which are similar to the OpenMP applications. These applications have
few unique tasks compared to the total number of tasks: Cholesky factorization, QR
factorization, Heat diffusion, and Integral Histogram have 4, 4, 3, and 2 unique tasks,
respectively, for DAGs with a few thousands of tasks. Although there are three cate-
gories of each node (spawn, base, and synchronization), the total number of possible
pairs of tasks and node categories is significantly fewer than the total number of tasks.

Synthetic DAGs A synthetic DAG is modeled by following a similar structure of
the applications. We generate a fully-balanced tree together with the mirror tree for
the Sync nodes. The maximum degree of the Spawn nodes, and the maximum height
of the DAG can be set as parameters. A time budget is assigned to every Spawn node,
which is responsible for distributing it to its child nodes and the corresponding Sync

123

218 Real-Time Systems (2022) 58:189–232

node to get the desirable W1 and W∞ characteristics of the DAG. Next, the number
of task types is given as a parameter to the DAG. We randomly generate WCETs
with the use of the Limit parameter with the same approach that we use for the real
applications.

7.1.2 Simulator

The simulator is event-based, where an event is considered the completion of the
execution of the tasks, and we implement the scheduler described in Sect. 2. The real
applications have many tasks, so to avoid state-space explosion, we generate the DAG
gradually. We follow the schedule of the DAG, assuming that all tasks are executed
for their WCET, and we monitor its execution for two independent schedules/runs.
First, we schedule the DAG under consideration with infinite processors (in practice:
I NT _MAX , in C++) to calculate theW1 andW∞ parameters given in Sect. 2. Next,
for the second schedule/run, we set the number of processor types and the total number
of processors that we want to test. We make sure that there is at least one processor
of each type, and we use random assignment of the processors to the processor types.
We schedule the DAG, and we monitor the unique tasks to determine the capacity and
the heterogeneity for the Fast given and for Comb makespan given in Sects. 4.2
and 4.3. Based on Lemma (2) and Theorem (1), we use the parameters provided by
the simulator to calculate the makespan for T Comb

M and T Fast
M . The schedule-length of

the second run (Sim) is an instance of the DAG execution and cannot be used as a
safe estimation of the makespan due to timing anomalies; however, it can be seen as
a lower bound on the best achievable makespan.

7.1.3 Configuration and evaluation metrics

Table 3 presents the configuration of the applications. Initially, the cimin of the Spawn,
Base and Sync are set to 300, 400 and 100 time units. The columns are the applications
(Fibonacci, Sort, Strassen, and FFT). The first row is the input of the applications and
the second row is the total number of nodes that the applications have. The third row
is the total work (W1), and the fourth row is the workload of the critical path (W∞)
of the applications. The fifth row shows the ratio of the workload of the critical path
to the total workload, and the last row shows the number of unique tasks.

To the best of our knowledge, no other related work provides a closed-form solution
for the makespan calculation and an exact makespan of parallel applications modeled
as DAGs on an unrelated multiprocessor platform. For our simulations, we use the
following evaluation metrics:

TightnessThe tightness is defined as the ratioT Comb
M /T Fast

M . The exhaustivemakespan
calculations T Comb

M given by Lemma 2 is compared to the T Fast
M makespan given by

Theorem 1.
Pessimism We derive a lower bound on the makespan by simulating the parallel

applications’ actual executionwith theGHE scheduler, where all the tasks are executed
for their WCET. Let Sim be the schedule length of the execution. The pessimism of
our approach is defined as the ratio of Sim/T Fast

M . Note that even the optimal way to
find the makespan has a length not smaller than Sim.

123

Real-Time Systems (2022) 58:189–232 219

Table 3 Application configurations

Fib Sort Strassen FFT

Input 20 32,768 512 8192

#Nodes 32,836 16,043 22,410 23,748

W1 8,756,400 4,403,300 7,843,300 6,221,400

W∞ 8000 14,900 2500 5,1020
W∞W1

0.0009 0.003 0.0003 0.008

#Unique tasks 3 6 3 9

All the experiments are performed 100 times, and we report the average.

7.2 Quantitative results

T Fast
M is proven to be a safe makespan by showing that it is always greater than T Comb

M .
As a result, our evaluation needs to quantify the overestimation introduced to avoid
the exponential time complexity of the T Comb

M approach. Consequently, the closer the
estimation of T Fast

M is to the estimation of T Comb
M , the better is the estimation. Next, by

comparing our proposed approach with that of the simulation of the execution, we try
to quantify the pessimism that is introduced compared to the best achievablemakespan
estimation. Ideally, T Fast

M and T Comb
M are equal and as close as possible to the lower

bound of the best achievable makespan. By using the evaluation metrics defined in
Sect. 7.1.3, we present the simulation results concerning different parameters of our
model. Sections 7.2.1–7.2.3 show the results considering the DAG of the applications.
Sections 7.2.4 and 7.2.5 present the result of synthetic DAGs.

7.2.1 Impact of changing the number of processors

Figure 12a presents the tightness (Y-axis on the left-hand side) and the pessimism (Y-
axis on the right-hand side) of Fibonacci, Sort, Strassen, and FFT as a function of the
number of processors (M), where the number of processor types is up to min{8, M}.
The points without a dashed line correspond to the tightness of the makespan. The
points with a dashed line correspond to the pessimism. In this graph, the closer to one
the values are, the better is the tightness, and the less is the pessimism.

The makespan calculation of T Fast
M has polynomial time complexity, so we gen-

erate the results for up to a total of 1024 processors. On the contrary, the makespan
calculation of T Comb

M is the permutation-based approach which has exponential time
complexity. With our simulation setup, we can simulate only up to 8 processors. The
Limit is set to 100 for this experiment.

Initially, it can be seen that for one processor, all the approaches are equal to W1.
Furthermore, we can see that for up to eight processors, the tightness (the overestima-
tion of the makespan) of T Fast

M compared to T Comb
M is less than 1% on average and up

to 1.2% greater for all the applications. We have performed the same simulations, but
with Limit equal to 500 and 1000 (not shown in the plots). The average tightness of

123

220 Real-Time Systems (2022) 58:189–232

(a
)

T
ig

ht
ne

ss
an

d
p
es

si
m

is
m

of
th

e
F
a
s
t

m
ak

es
pa

n
fo

r
di

ff
er

en
t

nu
m

b
er

of
pr

oc
es

so
rs

,
w

he
re

th
e

nu
m

b
er

of
pr

oc
es

so
r

ty
p
es

is
m

in
{8

,M
}

(b
)

T
ig

ht
ne

ss
an

d
p
es

si
m

is
m

of
th

e
F
a
s
t

m
ak

es
pa

n
fo

r
di

ff
er

en
t

pr
oc

es
so

r
ty

p
es

,
w

he
re

M
=

8.

(c
)

Im
pa

ct
of

m
ak

in
g

ta
sk

s
in

co
m

pa
ti

bl
e

to
a

pr
oc

es
so

r
ty

p
e

th
at

ha
ve

sp
ee

d
sm

al
le

r
th

an
a

th
re

sh
ol

d
(M

=
32

)
se

le
ct

fr
om

4
di

ff
er

en
t

pr
oc

es
so

r
ty

p
es

.
E

ac
h

ta
sk

ha
s

fo
ur

di
ff
er

en
t

W
C

E
T

s.

Fi
g.
12

Si
m
ul
at
io
n
re
su
lts

of
th
e
ap
pl
ic
at
io
ns

123

Real-Time Systems (2022) 58:189–232 221

the makespan is slightly higher than 1% and up to 3%. Next, it can be noted that by
increasing the number of processors exponentially, the pessimism increases linearly.
Compared to Sim, the pessimism we have averaged from 25% up to 62%.

7.2.2 Impact of changing the number of processor types

Figure 12b presents the tightness and the pessimism for the different number of pro-
cessor types for eight processors and the four applications. The horizontal axis is the
number of processor types for the four applications, the left vertical axis is the tight-
ness, and the right vertical axis is the pessimism. The Limit for the random generation
of the WCET is set to 100.

The tightness of T Fast
M , compared to the two permutation-based approaches, is, on

average, 1% and maximally 1.3%. Consequently, the margin between the polynomial
and the exponential approach is not significant. Since we do not distinguish between
the processor types for the calculation of heterogeneity and capacity in the polynomial
approach but we consider the total number of processors, and it is expected to have
similar behavior with the results shown in Fig. 12a. Next, we note that by increasing
the number of processor types while the total number of processors remains the same,
the pessimism increases since a relatively smaller number of tasks are now executing
with a speed of one, which leads to a longer makespan.

Compared to Sim, we have, on average, 13% and up to 23%more pessimism. Sim is
a lower bound on the optimal makespan, so if an exact makespan can be calculated for
parallel applications, which is very unlikely to happen, our analysis can still provide
an upper bound onmakespan, which is at most 23% longer than the optimal makespan.
Therefore, we think our approach to finding themakespan using T Fast

M is quite effective
for applications that we have considered from the BOTS benchmark suite.

7.2.3 Impact of task-processor compatibility

Whether a task is compatible with a processor type or not is determined using a
threshold speed for each experiment. If the initial speed of a task on a given processor
is smaller than the threshold, its speed on that processor is set to zero (δit = 0).

Figure 12c shows the compatibility of the tasks to the processors. The horizontal
axis presents the speed threshold for Fibonacci, Sort, Strassen, and FFT. The vertical
axis shows the pessimism of T Fast

M with respect to Sim. The platform has 32 processors
and four processor types. Limit is set to 100 for this experiment.

Initially, for threshold 0.1, all the applications have pessimism only around 1/0.8 =
25%, i.e., the computed makespan is no more than 1.25 times greater than the optimal.
In such a case, the scheduler can almost alwaysfind somecompatible idle processor due
to a relatively low threshold speed. Next, it can be seen that for all the applications, as
the threshold increases, i.e., relativelymore incompatible tasks, the pessimism initially
remains constant and then increases since fewer compatible processors are available
for the tasks to execute.

Next, we note that the pessimism starts to increase for Fibonacci and Strassen
from speed threshold 0.5 while for Sort and FFT, the tightness begins to decrease
after 0.8 and 0.7, respectively. Since Fibonacci and Strassen have fewer task types,

123

222 Real-Time Systems (2022) 58:189–232

Fig. 13 Tightness and pessimism for different variations of the WCET

3 task types each, compared to Sort and FFT that have 6 and 9, respectively, more
tasks are characterized as incompatible for Sort and FFT. As a result, more tasks
have fewer processors to be executed for Sort and FFT. For Fibonacci and Strassen,
tightness reaches its minimum value at 0.8 and for Sort and FFT at 0.9. There are many
incompatible processors at that point, but because the platform has many processors,
the scheduler can find available processors to schedule the tasks in parallel. However,
we can see that the pessimism decreases for high thresholds since the scheduler (i.e.,
simulated schedule) cannot find available processors to schedule the tasks, and the
total execution of the schedule increases. Consequently, the pessimism compared to
Sim decreases.

7.2.4 Impact of processor heterogeneity

To analyze in more detail the variation of the WCET of a task among the different
processor types, we consider a synthetic DAG, and we vary the Limit factor. Figure
13 presents the tightness and the pessimism for different values of the Limit . The
horizontal axis is the Limit , the left vertical axis presents the tightness, and the right
vertical axis is the pessimism. The platform has four processors and two processor
types. The synthetic DAG has W1 = 191400 and W∞ = 5800 for 938 nodes and 3
task types with ratio W∞W1

= 0.03. Note that this ratio is one to two orders of magnitude
higher than the BOTS applications, so the impact of heterogeneity should be higher.
Note that with Limit = 1000, we can have a variation on theWCET from 2.5x to 10x
for Spawn and Sync nodes, respectively, that have 400 and 100 time units for their
emin
i values. We intentionally use extreme values to expose the limitations of T Fast

M .
By increasing Limit , which can be seen as making the platform more heteroge-

neous, the tightness of the T Fast
M approach decreases. On average, we have 5% and

a maximum 11% less tight makespan compared to exhaustive approaches. Such an
increase in the makespan is due to the calculation of the heterogeneity λ

′
, which is

calculated between all the tasks. T Comb
M usesλwhich is calculated based on all of the per-

mutations of tasks. We can see that the pessimism of T Fast
M compared to Sim increases

as Limit increases since more processors would have a lower speed. As a result, the
makespan of T Fast

M increases. Compared to Sim, we have on average 51% and up
to 74% more pessimism. Note that although such values may be quite high for our
analysis, we would like to stress that the degree of heterogeneity for higher Limit is
quite pessimistic for many practical heterogeneous platforms.

123

Real-Time Systems (2022) 58:189–232 223

Fig. 14 Comparison of the proposed methods for different characteristic of the synthetic DAG by varying
the W∞W1

ratio

7.2.5 Impact of application characteristic

For this experiment, we characterize a DAG by W1 and W∞ only, and we vary the
characteristic (i.e., W∞W1

) of an application. Note that W∞W1
is within (0, 1). If W∞W1

≈ 0,
then it means that the length of the critical path is much smaller in comparison to that
of the total work (more dense graph). If W∞W1

≈ 1, then it means that the length of the
critical path is very close to the total work (more sparse graph). Figure 14 shows the
tightness for the proposed methods where we keep the value ofW1 constant and vary
the value ofW∞. The horizontal axis shows different W∞W1

ratios (significantly larger
compared to the applications), and the vertical axis shows the tightness.

Initially, for both cases, the makespan increases since the critical path increases.
Next, the tightness decreases as the W∞W1

increases since by increasing the W∞, the
impact of the heterogeneity increases. T Fast

M has, on average, 6% and at maximum
16%, less tight makespan compared to the exhaustive approach.

7.3 Summary

From the simulation results, we can see that T Fast
M provides tight makespan estimation

compared to T Comb
M andwith lowpessimismcompared to the simulation of the execution

Sim. We quantitatively verify the intuition by increasing the number of incompati-
ble processors the makespan increases, which shows that the parallelism is restricted
and leads to a larger estimation of the makespan. Next, we have seen that increasing
the variation of the WCET across the different processor types leads to higher pes-
simism. Finally, by increasing the critical path’s workload and total workload ratio,
the makespan increases because less parallelism is available.

8 Comparison with similar approaches

This section compares our model with models in the literature that make more spe-
cific assumptions regarding multiprocessor platforms and applications. Initially, we
compare our approach to approaches that assume the homogeneous and related mul-
tiprocessor model. Next, we compare our approach to a more specific application and
platform model where Typed DAGs (Han et al. 2019) is assumed.

123

224 Real-Time Systems (2022) 58:189–232

Table 4 Specializations of the (U)nrelate multiprocessor model to (H)omegeneous, (R)elated multiproces-
sor models

U This work H Graham (1969) R Jiang et al. (2017)

Heterogeneity λ
′

M − 1 λR = λ
′

Capacity S
′
M M SRM = S

′
M

Makespan W1+λ
′ ·W∞

S
′
M

W1+ (M−1)
1 ·W∞
M

W1+λR ·W∞
SRM

8.1 Homogeneous and relatedmultiprocessor models

Table 4 shows the specializations of the proposed formula to formulas proposed and
used in related work. If δit = 1, for any task of the application and any processor, the
multiprocessor platform is homogeneous. For the platform capacity and heterogeneity
it holds that S

′
M = M andλ

′ = (M−1), respectively. As a result, the proposed formula

becomes the same formula (
W1+ (M−1)

1 ·W∞
M) developed inGraham (1969), Brent (1974)

and used extensively in previous works, for example Blumofe and Leiserson (1999),
Melani et al. (2015). Similarly, by assuming the same speeds for the processors for all
the tasks, the formula is the same as the formula proposed in the context of the related
multiprocessor model by Jiang et al. (2017).

8.2 Typed DAG applicationmodel

In the work of Han et al. (2019), typed DAGs (i.e., every task is compatible with one
processor type) are assumed, and two bounds are proposed to estimate the makespan.
The proposed bounds strictly dominate the used baseline in Jaffe (1980) and, through
simulation, outperforms thework byYang et al. (2016) significantly. The first approach
(NEW-B-1) is a generalization of the Graham (1969) for typed DAGs. The second
bound (NEW-B-2) explores the structure of the DAG and provides a tighter makespan.

By restricting the compatibility of the tasks, the parallelism is reduced because
fewer processors are available to execute every task. Also, the critical path may be
spread to different processor types. As a result, all the nodes that belong to processor
type t1 can interfere with tasks that belong to the critical path and are executed on
processor type t2. The proposed analysis (Jaffe 1980; Han et al. 2019) reflects this
problem by assuming no parallelism between tasks executed on different processor
types. It sums, i.e., serializes, the execution of the nodes that belong to different
types. This assumption limits parallelism significantly. For example, for any number
of processors that a multiprocessor has, if there is only one processor of each type, all
the approaches are equal to the sequential execution.

We can model Typed DAGs with our settings by assuming for a task τ i that δit = 1
for the compatible processors and δit = 0 for the non-compatible processors. Let Mt

denote the number of processors of type t and let Mmin be the minimum number of
processors between the different processor types. Table 5 presents the calculations

123

Real-Time Systems (2022) 58:189–232 225

Table 5 Specializations of the unrelated to the typed-DAG application model

T Fast
M This work T max(π)

M This work NEW-B-1 Han et al. (2019)

Makespan W1+(M−1)·W∞
Mmin

W1+(Mmin−1)·W∞
Mmin

∑
t∈S

W t
1+(Mt−1)·W t∞

Mt

for the typed DAG model. By trivially applying the T Fast
M approach, for any typed

DAG the platform capacity is S
′
M = Mmin and heterogeneity is λ

′ = M − 1. So, the
makespan of T Fast

M is more pessimistic than Jaffe (1980) and, as a result, also than
the (NEW-B-1) and (NEW-B-2) from Han et al. (2019). To reduce the pessimism,
we can find the makespan by computing the capacity and the heterogeneity from the
same permutation. More precisely, first, we compute the makespan for all the possible
permutations. Then we find the maximum makespan among all the permutations,
denoted as T max(π)

M , and the platform capacity is Mmin and heterogeneity is Mmin − 1.
This approach has exponential time complexity since all the permutations need to be
searched. The T max(π)

M is better than T Fast
M but still more pessimistic than (NEW-B-1)

and (NEW-B-2). By assuming that themapping of the tasks is known, we can calculate
W t∞ andW t

1 for each Mt . By serializing the execution between the types and applying
our formula, we find the same formula as for (NEW-B-1), which is more pessimistic
than (NEW-B-2).

9 Related work

In Graham (1969), Brent (1974), a makespan calculation is presented for parallel
applications modeled as DAGs executed on homogeneous multiprocessors. The work
in Blumofe and Leiserson (1999) extends this bound in the Cilk programming model
context. The Cilk-based parallel applications are modeled with a restricted version of
DAGs, and the bound is extended to cover the work-stealing scheduler. In Voudouris
et al. (2017), Chen et al. (2019) a formally proven timing anomaly-free dynamic
scheduler is introduced that provides tighter and more scalable, for the number of
tasks and number of processors, makespan estimations. The results of Voudouris et al.
(2017), Chen et al. (2019) cannot be trivially applied to unrelated multiprocessors
because the DAG can have different schedule lengths depending on the task-processor
mapping.

In Bender and Rabin (2000), the scheduler of Cilk (Blumofe and Leiserson 1999)
is adapted for related heterogeneous systems. They provide a makespan calcula-
tion methodology for Cilk-based applications that can be modeled as DAGs, and a
makespan is introduced. Our approach considers the unrelated multiprocessor model,
which is a more general model for the underlying platform.

Thework in Sih and Lee (1993), Topcuoglu et al. (2002) considers static scheduling
of applications modeled as DAGs on unrelated multiprocessor platforms, and the goal
is to minimize the schedule length. An extensive comparison of different heuristics
for static scheduling on heterogeneous systems can be found in Braun et al. (2001).

123

226 Real-Time Systems (2022) 58:189–232

In contrast, our approach considers dynamic scheduling that can utilize the platform
more efficiently to achieve load balance among the processors.

In Lawler and Labetoulle (1978), global scheduling of independent tasks for unre-
lated multiprocessor scheduling is formulated and solved as an integer linear problem.
In Andersson et al. (2010), Raravi et al. (2013) the problem of scheduling independent
tasks on two types of unrelated heterogeneous multiprocessor platforms is considered,
and further extension of theworks inAndersson et al. (2010),Raravi et al. (2013) can be
found inRaravi (2014).Next,Andersson andRaravi (2014) assumes implicit-deadline,
independent tasks, unrelated multiprocessor platforms, and shared resources, a speed-
up bound of 4 · (1 + ε), where ε depends on the number of shared resources and the
resource requests from the tasks. The assumption of shared resources enriches the
applicability of the model. However, we do not address this problem in this paper, and
we leave it as future work. Furthermore, the work in Andersson and Raravi (2016)
assumes constrained-deadline independent tasks and unrelated platforms but is limited
to two processor types. The problem is formulated as an ILP, and a speed-up bound
of 5 is guaranteed. Next, Baruah et al. (2019) with the ILP approach for constrained
deadlines, independent tasks, unrelated multiprocessors, and partitioned scheduling,
a speed-up bound of 7.83 is achieved. Our approach considers a more general appli-
cation model which can exploit the parallelism that exists in the applications. In this
work, we assume a single DAG, and our goal is to find the makespan which is needed
for the analysis for the recurrent execution of DAGs.

Previous work for general-purpose scheduling on unrelated multiprocessors has
focused on special cases of our system model either by limiting the structure of the
DAG (Kumar et al. 2009) or by limiting the execution time of the tasks and their
compatibility to the processors (Page 2019). In this work, we consider DAGs where
each task can execute on any processor and can have any execution time. In addition,
the proposed makespan can be applied to any priority ordering of the task that has
the work-conserving and the greediness property. As a result, in this work, instead of
focusing on finding a carefully optimized scheduler for special cases of the application
or platform models, we opt to find a makespan computation formula that is general
and has broad applicability.

The estimation of themakespan of a singleDAGgives us the tool to analyzemultiple
DAGs with the sporadic DAG model (Baruah et al. 2015a, 2012). In Li et al. (2014),
Melani et al. (2015), Pathan et al. (2018) global scheduling is assumed and analyzed
for homogeneous multiprocessors. Furthermore, federated scheduling, which can be
seen as a generalization of partitioned scheduling, recently has gained attention, and
many recent works focus on this topic (Li et al. 2014; Jiang et al. 2017; Bhuiyan et al.
2018; Ueter et al. 2018). This paper proposes a single DAG analysis on unrelated
multiprocessors, which is the first step towards the analysis of sporadic DAGs.

10 Conclusion

We propose two approaches to calculate the upper bound on the worst-case-schedule-
length (makespan) for applications modeled as DAGs and executed on unrelated
multiprocessors using any work-conserving scheduler. First, with an exhaustive

123

Real-Time Systems (2022) 58:189–232 227

approach, we show that Comb can safely establish an upper bound of the makespan.
Still, its applicability is limited to small platforms and DAGs because it has exponen-
tial time complexity. We use Comb to build the Fast makespan that trades off the
precision, i.e., tightness, of Comb to achieve polynomial time complexity.

To quantitatively evaluate themakespan of Fast, wemodel asDAGs fourOpenMP
task-based parallel applications and synthetic workloads. We compare Fast to
Comb to determine the tightness. Based on the simulation results, the Fast approach
finds the makespan nearly as tight as the Comb approach. Furthermore, we compare
Fast with the simulation of the assumed scheduler that is a lower bound on the
best-achievable makespan and we show that its estimation has low pessimism.

The main advantage of the proposed approach is its generality because it can be
applied to a broad range of platforms, applications, and schedulers. The unrelated
model is very expressive and can model many available platforms today using a wide
range of processor types and specialized application accelerators. The DAG model
is capable of capturing the behavior of many parallel applications. The scheduler is
dynamic, so it can deal with a large number of fine-grain tasks that, for example, an
OpenMP parallel application can have. The scheduler also supports arbitrary compati-
bility of the tasks to the processors. So, we can model accelerators that are designed to
perform a limited set of operations more efficiently. Furthermore, the scheduler does
not assume any scheduling policy, so our analysis can be applied to many well-known
work-conserving schedulers from the relatedwork. By fixing theWCET relation of the
tasks to the processors, we show that the proposed makespan specializes (derives the
same closed-form solution) to well-known bounds for homogeneous multiprocessors
and recently developed related multiprocessors and typed DAGs.

The main limitation of the paper is the abstraction of the platform’s architectural
details. We do not consider any shared resources between the task. However, in prac-
tice, many hardware components, for example, memory and interconnect, are shared.
The use of shared resources significantly complicates the problem, and detailed timing
analysis is needed to determine the interference of the tasks. We do not address the
issue of shared resources in this paper. However, we expect the shared resource timing
analysis to be orthogonal with our analysis and that it would increase the applicability
of the model.

To the best of our knowledge, no related work covers the combination of assump-
tions: DAG application model, unrelated multiprocessor model, and work-conserving
scheduling. As future work, we plan to develop the analysis of multiple DAGs that
are executed on unrelated multiprocessors with the use of the sporadic DAG model
(Baruah et al. 2015a, 2012)

Acknowledgements Wewould like to thank the anonymous reviewers for their insightful comments. Also,
we would like to thank Professor Wang Yi for his valuable feedback. This research was funded by the
MECCA project under the ERC grant ERC-2013-AdG 340328-MECCA.

Funding Open access funding provided by Chalmers University of Technology.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123

228 Real-Time Systems (2022) 58:189–232

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs of Lemmas 3 and 4

This Section contains the proofs of lemmas that are used for the proof of the efficient
makespan calculation (T Fast

M) given by Theorem (1).

A.1 Proof of Lemma 3

Lemma 3 states that the platform capacity S
′
M is always less or equal to minimum

platform capacity between the different permutations SM . The proof of Lemma (3) is
given as follows:

Proof Let π (x) denotes the xth task that belongs to a permutation π . For an arbitrary
task π (x) that it is executing on its xth fastest processor it holds that:

Oπ (x)
x ≥ N

min
i=1

{Oi
x }

Since the size of the Oi is equal to the number of processors M it holds that:

M∑
x=1

{Oπ (x)
x } ≥

M∑
x=1

N
min
i=1

{Oi
x }

Since it holds for an arbitrary permutation π , it also holds for the permutation that
provides the minimum value.

min
π∈σM

{
M∑
x=1

Oπ (x)
x

}
≥

M∑
x=1

N
min
i=1

{
Oi

x

}

From the definitions of SM and S
′
M given by Eqs. (10) and (11) respectively, the

statement of the lemma holds. ��

A.2 Proof of Lemma 4

Lemma 4 states that the heterogeneity λ
′
is always greater or equal to the maximum

heterogeneity λ between the different permutations. The proof of Lemma 4 follows.

123

http://creativecommons.org/licenses/by/4.0/

Real-Time Systems (2022) 58:189–232 229

Proof LetOπ (x)
x be the subset of speeds that are smaller than the xth fastest processor

of the xth task that belongs to permutation π . For an arbitrary task 1 ≤ π (y) ≤ N
that it is executed on its yth fastest processor, it holds that:

Oπ (y)
y ≤ N

max
j=1

{O j
y}

Equivalently,

∑

y∈Oπ (x)
x

{
Oπ (y)

y

}
≤

∑

y∈Oπ (x)
x

N
max
j=1

{O j
y}

By dividing both sides with the speed of the xth fastest processor Oπ (x)
x �= 0, of

task π (x) we have:

∑
y∈Oπ (x)

x
{Oπ (y)

y }
Oπ (x)

x

≤
∑

y∈Oπ (x)
x

maxNj=1{O j
y}

Oπ (x)
x

Since the inequality holds for any processor x it holds also for the processor that
maximizes the two sides of the inequality:

M
max
x=1

⎧
⎪⎨
⎪⎩

∑
y∈Oπ (x)

x
{Oπ (y)

y }
Oπ (x)

x

⎫
⎪⎬
⎪⎭

≤ M
max
x=1

⎧⎨
⎩

∑
y∈Oπ (x)

x
maxNj=1{O j

y}
Oπ (y)

y

⎫⎬
⎭

Since it holds for an arbitrary task with index π (x) that belongs to an arbitrary
permutation π it also holds for any task of the application 1 ≤ j ≤ N and we have:

M
max
x=1

⎧⎨
⎩

∑
y∈Oπ (x)

x
maxNj=1{O j

y}
Oπ (x)

x

⎫⎬
⎭ = M

max
x=1

⎧⎨
⎩

∑
y∈Ok

x
maxNj=1{O j

y}
Ok

x

⎫⎬
⎭ (26)

Since 1 ≤ k ≤ N it also holds that:

M
max
x=1

⎧⎨
⎩

∑
y∈Ok

x
maxNj=1{O j

y}
Ok

x

⎫⎬
⎭ ≤ N

max
i=1

⎧⎨
⎩

M
max
x=1

{
∑

y∈Oi
x
maxNj=1{O j

y}
Oi

x
}
⎫⎬
⎭ (27)

From (26) and (27) we have:

M
max
x=1

⎧⎨
⎩

∑
y∈Oπ (x)

x
maxNj=1{O j

y}
Oπ (x)

x

⎫⎬
⎭ ≤ N

max
i=1

⎧⎨
⎩

M
max
x=1

{
∑

y∈Oi
x
maxNj=1{O j

y}
Oi

x
}
⎫⎬
⎭

123

230 Real-Time Systems (2022) 58:189–232

Let π ′ be the permutation that provides the maximum value for the maximum
accumulated capacity loss. Since it holds for any π it also holds for the permutation
π ′, we have:

M
max
k=1

⎧
⎪⎪⎨
⎪⎪⎩

∑
y∈Oπ

′
(x)

x

{Oπ
′
(y)

y }

Oπ
′
(x)

x

⎫
⎪⎪⎬
⎪⎪⎭

≤ N
max
i=1

⎧
⎨
⎩

M
max
x=1

⎧
⎨
⎩

∑
y∈Oi

x
maxNj=1{O j

y}
Oi

x

⎫
⎬
⎭

⎫
⎬
⎭

Equivalently,

max
π∈σM

⎧⎪⎨
⎪⎩

M
max
k=1

⎧⎪⎨
⎪⎩

∑
y∈Oπ (x)

x
{Oπ (y)

y }
Oπ (x)

x

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭

≤ N
max
i=1

⎧⎨
⎩

M
max
x=1

⎧⎨
⎩

∑
y∈Oi

x
maxNj=1{O j

y}
Oi

x

⎫⎬
⎭

⎫⎬
⎭

From the definitions of λ, λ
′
and idleix given by Eqs. (13), (15) and (14), we have:

λ ≤ λ
′
. As a result λ

′
is always greater than or equal to λ. ��

References

Andersson B, Raravi G (2014) Real-time scheduling with resource sharing on heterogeneous multiproces-
sors. Real-time systems. Springer, New York

Andersson B, Raravi G (2016) Scheduling constrained-deadline parallel tasks on two-type heterogeneous
multiprocessors. In: Proceedings of the 24th International Conference on Real-Time Networks and
Systems, ACM

Andersson B, Raravi G, Bletsas K (2010) Assigning real-time tasks on heterogeneous multiprocessors with
two unrelated types of processors. In: IEEE RTSS

ARM (2011) big.little technology: the future of mobile. White paper
Baruah S, BertognaM, Buttazzo G (2015a)Multiprocessor scheduling for real-time systems. Springer, New

York
Baruah SK, Bonifaci V, Bruni R, Marchetti-Spaccamela A (2019) Ilp models for the allocation of recurrent

workloads upon heterogeneous multiprocessors. J Scheduling 22:195–209
Baruah S, Bonifaci V,Marchetti-Spaccamela A (2015b) The global edf scheduling of systems of conditional

sporadic dag tasks. In: IEEE ECRTS
Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stougie L, Wiese A (2012) A generalized parallel task

model for recurrent real-time processes. In: IEEE RTSS
Bender MA, Rabin MO (2000) Scheduling cilk multithreaded parallel programs on processors of different

speeds. In: ACM SPAA
Bhuiyan A, Guo Z, Saifullah A, Guan N, Xiong H (2018) Energy-efficient real-time scheduling of dag

tasks. In: ACM TECS
Blumofe RD, Leiserson CE (1999) Scheduling multithreaded computations by work stealing. J ACM

46:720–748
Braun TD et al (2001) A comparison of eleven static heuristics for mapping a class of independent tasks

onto heterogeneous distributed computing systems. J Parallel Distrib Comput 61:810–837
Brent RP (1974) The parallel evaluation of general arithmetic expressions. J ACM 21:201–206
Chen P, Liu W, Jiang X, He Q, Guan N (2019) Timing-anomaly free dynamic scheduling of conditional

dag tasks on multi-core systems. In: ACM Transactions on Embedded Computing Systems (TECS)
Chronaki K, et al. (2015) Criticality-aware dynamic task scheduling for heterogeneous architectures. In:

ACM, ICS
Chwa HS, Seo J, Lee J, Shin I (2015) Optimal real-time scheduling on two-type heterogeneous multicore

platforms. In: IEEE RTSS

123

Real-Time Systems (2022) 58:189–232 231

Duran A, et al. (2002) Barcelona openmp tasks suite: a set of benchmarks targeting the exploitation of task
parallelism in openmp. In: ICPP

Esmaeilzadeh H, Blem E, Amant RS, Sankaralingam K, Burger D (2011) Dark silicon and the end of
multicore scaling. In: IEEE ISCA

Funk S, Goossens J, Baruah S (2001) On-line scheduling on uniform multiprocessors. In: IEEE RTSS
Garey MR, Johnson DS (2002) Computers and intractability. WH Freeman, New York
Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM J Appl Math 17(2):416–429
Gupta A, Im S, Krishnaswamy R, Moseley B, Pruhs K (2012) Scheduling heterogeneous processors isn’t

as easy as you think. In: ACM-SIAM SODA
Han M, Guan N, Sun J, He Q, Deng Q, Liu W (2019) Response time bounds for typed dag parallel tasks

on heterogeneous multi-cores. In: IEEE TPDS
Jaffe JM (1980) Bounds on the scheduling of typed task systems. SIAM J Comput 12:1–17
Jiang X, Guan N, Long X, Yi W (2017) Semi-federated scheduling of parallel real-time tasks on multipro-

cessors. In: IEEE RTSS
Kumar VA, Marathe MV, Parthasarathy S, Srinivasan A (2009) Scheduling on unrelated machines under

tree-like precedence constraints. Algorithmica. Springer, New York
Lakshmanan K, Kato S, Rajkumar R (2010) Scheduling parallel real-time tasks on multi-core processors.

In: IEEE RTSS
Lawler EL, Labetoulle J (1978) On preemptive scheduling of unrelated parallel processors by linear pro-

gramming. J ACM (JACM) 24:612–619
Li J, Chen JJ, Agrawal K, Lu C, Gill C, Saifullah A (2014) Analysis of federated and global scheduling for

parallel real-time tasks. In: IEEE ECRTS
Melani A, Bertogna M, Bonifaci V, Marchetti-Spaccamela A, Buttazzo GC (2015) Response-time analysis

of conditional dag tasks in multiprocessor systems. In: ECRTS
Page DR (2019) Approximation algorithms for problems in makespan minimization on unrelated parallel

machines. The University of Western Ontario (PhD thesis)
Pathan R, Voudouris P, Stenström P (2018) Scheduling parallel real-time recurrent tasks on multicore

platforms. In: IEEE TPDS
Peter Greenhalgh A (2011) Big.little processing with arm cortex-a15 and cortex-a7 improving energy

efficiency in high-performance mobile platforms. White paper, http://www.cl.cam.ac.uk/~rdm34/big.
LITTLE.pdf

Raravi G (2014) Real-time scheduling on heterogeneous multiprocessors. Faculty of Engineering, Univer-
sity of Porto (PhD thesis)

Raravi G, Andersson B, Bletsas K (2013) Assigning real-time tasks on heterogeneous multiprocessors with
two unrelated types of processors. Springer, New York

Sih GC, Lee EA (1993) A compile-time scheduling heuristic for interconnection-constrained heterogeneous
processor architectures. In: IEEE TPDS

Topcuoglu H, Hariri S, My Wu (2002) Performance-effective and low-complexity task scheduling for
heterogeneous computing. In: IEEE TPDS

Ueter N, von der Brüggen G, Chen JJ, Li J, Agrawal K (2018) Reservation-based federated scheduling for
parallel real-time tasks. In: IEEE RTSS

Voudouris P, Stenström P, Pathan R (2017) Timing-anomaly free dynamic scheduling of task-based parallel
applications. In: IEEE RTAS

West DB et al (2001) Introduction to graph theory. Prentice Hall, Upper Saddle River
Yang K, Yang M, Anderson JH (2016) Reducing response-time bounds for dag-based task systems on

heterogeneous multicore platforms. In: ACM RTNS

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.cl.cam.ac.uk/~rdm34/big.LITTLE.pdf
http://www.cl.cam.ac.uk/~rdm34/big.LITTLE.pdf

232 Real-Time Systems (2022) 58:189–232

Petros Voudouris Petros Voudouris received the BSc degree in com-
puter science from the University of Crete, Heraklion, Greece, and
the MSc degree in embedded systems from the Department of Com-
puter Science and Mathematics, Technical University of Eindhoven,
Netherlands, in 2011 and 2014. He is working toward the PhD
degree in the Department of Computer Science and Engineering,
Chalmers University of Technology, Sweden. His main research
interests include the design and analysis of time-predictable schedul-
ing algorithm and worst-case execution time analysis for parallel
computer systems. He is a student member of the IEEE.

Per Stenström is a professor of computer engineering at Chalmers
University of Technology. His research interests are in computer
architecture. He has authored or co-authored four textbooks and
about 200 publications and 20 patents in this area. He is known for
his many contributions to high-performance memory systems which
has awarded him a Fellow of the ACM and the IEEE. He has exten-
sive experience in scientific publishing as editor-in-chief and pro-
gram chair of prestigious scientific journals and conferences. Apart
from acting as the associate editor-in-chief of JPDC in the archi-
tecture area, he acts as senior associate editor of ACM TACO and
topical editor of IEEE Transactions on Computers. He has been pro-
gram chair or co-chair of the IEEE/ACM Symposium on Computer
Architecture, the IEEE High-Performance Computer Architecture
Symposium, the IEEE Parallel and Distributed Processing Sympo-
sium and ACM International Conference on Supercomputing. He is
a member of the Royal Swedish Academy of Engineering Sciences,

Academia Europaea and the Royal Spanish Academy of Engineering Science.

Risat Pathan received the MS, Lic-Tech, and the PhD degrees from
the Chalmers University of Technology in 2006, 2010, and 2012,
respectively. He is an assistant professor in the Department of Com-
puter Science and Engineering, Chalmers University of Technology,
Sweden. He visited the Real-Time Systems Group, The University
of North Carolina at Chapel Hill, during fall 2011. His main research
interests include the real-time scheduling on uni- and multi-core pro-
cessors from efficient resource utilization, fault tolerance and mixed-
criticality perspectives. He is a member of the IEEE and the ACM.

123

	Bounding the execution time of parallel applications on unrelated multiprocessors
	Abstract
	1 Introduction
	2 System model
	3 Scheduler mathcalGHE
	3.1 Scheduler description
	3.2 An example

	4 Formal tools to compute the makespan
	4.1 Motivation and preliminary definitions
	4.2 Minimum capacity
	4.3 Heterogeneity

	5 Makespan calculation
	5.1 Overview
	5.2 Exhaustive search makespan
	5.3 Efficient makespan
	5.4 Summary

	6 Complexity analysis
	7 Evaluation
	7.1 Simulation framework
	7.1.1 DAG modeling
	7.1.2 Simulator
	7.1.3 Configuration and evaluation metrics

	7.2 Quantitative results
	7.2.1 Impact of changing the number of processors
	7.2.2 Impact of changing the number of processor types
	7.2.3 Impact of task-processor compatibility
	7.2.4 Impact of processor heterogeneity
	7.2.5 Impact of application characteristic

	7.3 Summary

	8 Comparison with similar approaches
	8.1 Homogeneous and related multiprocessor models
	8.2 Typed DAG application model

	9 Related work
	10 Conclusion
	Acknowledgements
	A Proofs of Lemmas 3 and 4
	A.1 Proof of Lemma 3
	A.2 Proof of Lemma 4

	References

