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Abstract 

Context-aware recommender systems improve context-free recommenders by exploiting the 

knowledge of the contextual situation under which a user experienced and rated an item. They use data 

sets of contextually-tagged ratings to predict how the target user would evaluate (rate) an item in a 

given contextual situation, with the ultimate goal to recommend the items with the best estimated 

ratings. This paper describes and evaluates a pre-filtering approach to context-aware recommendation, 

called Distributional-Semantics Pre-filtering (DSPF), which exploits in a novel way the distributional 

semantics of contextual conditions to build more precise context-aware rating prediction models. In 

DSPF, given a target contextual situation (of a target user), a matrix-factorization predictive model is 

built by using the ratings tagged with the contextual situations most similar to the target one. Then, 

this model is used to compute rating predictions and identify recommendations for that specific target 

contextual situation. In the proposed approach, the definition of the similarity of contextual situations 

is based on the distributional semantics of their composing conditions: situations are similar if they 

influence the user’s ratings in a similar way. This notion of similarity has the advantage of being 

directly derived from the rating data; hence it does not require a context taxonomy. We analyze the 

effectiveness of DSPF varying the specific method used to compute the situation-to-situation 

similarity. We also show how DSPF can be further improved by using clustering techniques. Finally, 

we evaluate DSPF on several contextually-tagged data sets and demonstrate that it outperforms state-

of-the-art context-aware approaches. 
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1 Introduction 

Context-Aware Recommender Systems (CARSs) differ from traditional recommenders because they 

predict the rating of a target user u for an item 𝑖, not only by using an existent data set of ratings but 

also exploiting: a) the knowledge of the contextual situations under which the ratings were acquired, 

and b) the knowledge of the (real-time) contextual situation of the target user asking for a 

recommendation.  

The notion of context is ubiquitous to several scientific disciplines and has several interpretations 

(Bazire and Brezillon 2005), but, in CARSs, context is commonly defined as all the information that 

characterizes the situation of a user, an item, and the experience (interaction between a user and an 

item) that the user is evaluating. Dourish (2004) introduces a taxonomy of contexts by classifying 

contextual information as either pertaining to the “interactional” or “representational” views. 

According to Dourish, the interactional view assumes that the user behavior is induced by an 

underlying context, but the context itself is not necessarily observable. Therefore, no enumeration of 

contextual conditions is possible beforehand, since the scope of contextual information is defined 

dynamically. In contrast, the representational view assumes that context is defined with a predefined 

set of observable conditions, which can be separated from the activity and the structure of which does 

not change significantly over time. In other words, using this view a set of contextual factors and their 

conditions are identifiable, they are known a priori and, therefore, can be represented beforehand. In 

this paper, as in the majority of the researches on context-aware recommender systems, we follow the 

representational view of context. In particular, by using the term contextual factor we refer to a 

specific type of contextual information (e.g., weather), and with contextual condition we refer to a 

specific value of a contextual factor (e.g., sunny). The term contextual situation refers to a 

combination of elementary contextual conditions that describe the context in which the user 

experienced the item, e.g., “today is sunny and it is holiday”. 

The main motivation for introducing CARS techniques is that, when context matters, the rating data 

acquired in the target contextual situation should be more relevant for predicting what to recommend 

in that situation. However, a common limitation of these techniques is the data-sparsity problem; in 

order to generate accurate recommendations CARSs need large data sets of contextually-tagged 

ratings. These are ratings for items provided in several contextual situations, which are encountered by 

a user while experiencing an item.  

A solution to that data-sparsity problem, when making recommendations in a specific situation, is to 

consider as relevant background data, not only the ratings provided by the users exactly in that 

situation, but also to consider ratings provided in similar situations. For instance, if we want to predict 

the rating for a place of interest, e.g., the South Tyrol Museum of Archaeology (in Bolzano, Italy), and 

the target contextual situation includes a condition such as, “group composition is two adults and two 

children”, ratings acquired when the “group composition is two adults and three children” may also be 

useful for computing the rating prediction model, and consequently the recommendations for the target 

situation. But, what about ratings acquired while the “weather” was “sunny”? A “sunny” day and a 

group of “two adults and two children” do not seem to be similar contextual conditions although, 

depending on the recommendation domain, they may be highly related. These cross-factor semantic 

associations are not easy to identify at design stage. But, following with the same example in the 

tourism domain, if we analyze how a “sunny” day and a group of “two adults and two children” 

influence the users’ ratings, we may discover that they actually have a similar influence pattern: they 

both tend to increase the user’s ratings for outdoor places like castles and decrease them for indoor 

places like museums. Therefore, based on the similarity of their influence patterns (i.e., their 

distributional semantic similarities) we may consider them as semantically similar.  

In distributional semantics, the meaning of a concept is based on its distributional properties, which 

are automatically derived from the data corpus where the concept is used. The fundamental idea 

supporting this approach to extract semantic similarities between domain concepts is the so-called 

distributional hypothesis (Rubenstein and Goodenough 1965): concepts repeatedly co-occurring in the 

same context or usage tend to be related. Originally, distributional semantics has been introduced in 

the context of applications that require semantic processing of text (Turney and Pantel 2010; Molino 
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2013). Later on, in the Recommender Systems (RSs) field, some researchers have exploited 

distributional semantics for overcoming some of the limitations of content-based recommenders. For 

instance, Musto et al. (2014) presented a content-based context-aware recommendation framework 

that adopts a novel distributional semantics representation to extract latent relationships between 

item’s concepts, which are then exploited to improve the system prediction accuracy. Differently from 

that previous research, in this paper we employ distributional semantics to infer similarities between 

contextual conditions based on an analysis of how similarly two contextual conditions affect the users’ 

rating behavior.  

We present a reduction-based pre-filtering approach, called Distributional-Semantics Pre-filtering 

(DSPF), which computes similarities between situations based on the distributional semantics of their 

contextual conditions, i.e., assuming that two situations are similar if they are defined by elementary 

contextual conditions that influence users’ ratings in a similar way. Given a target contextual situation, 

DSPF uses ratings tagged with contextual situations similar to the target one to generate more precise 

recommendations. In order to determine if a candidate situation is similar enough to the target one, 

DSPF uses a global similarity threshold that specifies the minimum similarity required for situations to 

be considered as relevant and useful to build a predictive model for the target situation: the larger the 

threshold, i.e., the higher is the required similarity, the sharper the contextualization is. This implies 

that fewer situations, i.e., the ratings collected in these situations, are used to build the rating 

prediction model adapted to the target contextual situation. For that reason we say that the predictive 

model is (more) “local”. 

Early variants of DSPF were introduced by Codina et al. (2013a; 2013b). Codina et al. (2013a) 

presented an initial definition of the approach and evaluated two situation-to-situation similarity 

computation methods based on the pair-wise evaluation of the similarities between the conditions that 

are composing the contextual situations. Codina et al. (2013b) provided a more sophisticated method 

to obtain the distributional semantics of contextual conditions and to estimate the situation-to-situation 

similarity. Moreover, the performance of DSPF was compared to other state-of-the-art approaches 

using several contextually-tagged rating data sets.  

In this paper, we introduce an improved and scalable variant of DSPF that reduces the number of the 

generated local models by using clustering strategies. Furthermore, we include the results of a 

comprehensive experimental evaluation of the proposed approach by using six data sets with different 

types of contextual information and rating sparsity. The evaluation results show that DSPF 

outperforms state-of-the-art context-free and context-aware approaches both in terms of rating 

prediction (MAE) and ranking (NDCG) accuracy.   

The remainder of this paper is organized as follows. Section 2 positions our work with respect to the 

state of the art. Section 3 presents the details of DSPF and the proposed variants. Section 4 presents 

the experimental evaluation of DSPF on the considered data sets as well as a detailed analysis of the 

effect of the similarity threshold on the system performance. Finally, section 5 draws the main 

conclusions and describes the future work. 

2 Related work  

CARS are generally classified into three paradigms (Adomavicius and Tuzhilin 2011; Adomavicius et 

al. 2011):  

(1) contextual pre-filtering, where context is used for selecting a set of contextually relevant 

rating data that is then exploited for generating target context-dependent recommendations 

(using a context-free model);  

(2) contextual post-filtering, where context is used to adjust (filter) recommendations generated 

by a context-free model; and  

(3) contextual modeling, in which contextual information is directly exploited in the adopted 

context-aware recommendation model. 
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In contextual pre-filtering, context is used for data pre-processing, that is, for discarding rating data 

that is not relevant for the target situation the recommender is facing. The remaining ratings are used 

to learn a local model for rating prediction and recommendation. Adomavicius et al. (2005) proposed a 

straightforward approach to implement this idea known as reduction-based. The first variant of this 

approach was Exact Pre-filtering, which strictly implements the pre-filtering idea and builds a local 

context model for each target situation. This is achieved by using exactly the ratings tagged with that 

situation. The main limitation of this approach is its rigidity: it does not reuse any rating acquired in 

situations even slightly different from the target one, regardless of the number of the remaining 

training ratings that can be used for learning the local model, which may not be sufficient for that task. 

To mitigate this shortcoming the authors proposed Generalized Pre-filtering, which first determines 

the optimal aggregation of ratings tagged with hierarchically related contextual situations (i.e., optimal 

segments), and then builds a collection of prediction models using the ratings belonging to each 

segment. However, the performance of this solution depends on the pre-defined context hierarchical 

taxonomy, which may not optimally partition the contextual situations in a collection of local models 

(one for each segment) having jointly the highest rating prediction accuracy. 

A different approach was introduced in Baltrunas and Ricci (2009; 2014), which is known as Item 

Splitting. The idea here is to split the rating vector of a given item into two virtual item vectors using a 

specific contextual factor. So for instance the full set of ratings of a music track may be split in the set 

of ratings for the track collected when the user was happy and another set of ratings acquired when the 

user was not happy (assuming in this example that happiness is the contextual factor). Then a 

predictive model is trained by considering all the ratings organized in the extended set of items 

generated by splitting the items that satisfy a given statistical test, which is essentially measuring if the 

two virtual items generated by the splitting have significantly different ratings. In Item Splitting, 

filtering is selectively carried out item by item for the most relevant contextual condition. Baltrunas 

and Amatriain (2009) proposed a variant of this approach, which is called User Splitting that, instead 

of splitting items, splits users into several sub-profiles, each representing the (ratings of the split) user 

in a particular context. Then, similarly to the previous approach, a global predictive model is built 

using all the ratings but in the modified set of users. Zheng et al. (2013a) also explored a combination 

of the two previous variants, UI-Splitting, which yielded even a better prediction accuracy in a movie 

recommendation problem. 

Another pre-filtering approach, proposed by Zheng et al. (2012; 2013b), is differential context 

modeling, which tries to break down a predictive model into different functional components to which 

specific optimal contextual constraints are applied in order to maximize the performance of the whole 

algorithm. The authors proposed two variants of this pre-filtering approach used in combination with 

the traditional user-based CF technique: Differential Context Relaxation, which discards the contextual 

factors with small relevance for a given function component; and Differential Context Weighting, 

which weights the contribution of each factor according to their relevance for the given component.   

As we mentioned above, contextual post-filtering exploits contextual information to discard some 

(irrelevant) recommendations, after an initial recommendation set is determined by a context-free 

predictive model. Panniello et al. (2009) proposed a probabilistic post-filtering approach that first 

estimates the probability of an item to be relevant for the user in a given context, and then uses these 

probabilities to penalize the items estimated as not relevant to the target context. Two variants are 

presented: Weight Post-filtering, which reorders the recommended items by weighting the predicted 

ratings according to their estimated probability; Filter Post-filtering, which filters out the 

recommended items that have a probability to be relevant lower than a specific threshold. Hayes and 

Cunningham (2004) presented a content-based post-filtering approach that focuses on finding common 

item features (e.g., preferred actors to watch) for a given user in a given context, and then uses these 

features to adjust the recommendations. 

Approaches based on contextual modeling extend context-free predictive models by directly taking 

into account the influence of context on the rating prediction model, i.e., by typically adding new 

model parameters that represent the contextual information. Currently, two major approaches based on 

extending Matrix Factorization (MF) techniques have been proposed in the literature: Tensor 
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Factorization (TF) and Context-Aware Matrix Factorization (CAMF). Tensor Factorization consists 

of extending the two-dimensional MF problem into a multi-dimensional version, where the rating 

tensor is factored into a lower-dimensional vector space. In this way, the interactions between users, 

items, and contextual factors are represented as latent factor vectors. Several authors have proposed 

variants of this approach: some of them are optimized for rating prediction, such as the Multiverse 

Recommendation (Karatzoglou et al. 2010) and Factorization Machines (Rendle et al. 2011), while 

others are optimized for ranking-based recommendation, such as iTALS (Hidasi and Tikk 2012), and 

TFMAP (Shi et al. 2012). The main limitation of TF is its computational complexity. In fact, the 

number of model parameters to be learnt grows exponentially with the number of contextual factors. 

CAMF is a more scalable contextual modeling approach that was proposed by Baltrunas et al. (2011b; 

2012). CAMF extends MF by using context-aware baseline predictors to represent the interactions of 

contextual information with the items or users. In this way a smaller number of parameters, compared 

with TF, is used. It generalizes the time-aware baseline predictor that was initially proposed by Koren 

(2010) to incorporate the temporal dynamics associated to rating data. This technique was proved to be 

effective when combined with MF on the Netflix data set (Koren and Bell 2011; Campos et al. 2014). 

Baltrunas et al. (2011b, 2012) proposed different variants of CAMF that model the influence of 

contextual conditions at different granularities. CAMF-C models the influence of a condition in a 

global way, i.e., assuming that it has the same effect on every user and item. CAMF-CI models the 

influence of a contextual condition uniformly on each item, i.e., assuming that it does not depend on 

the user. Finally, CAMF-CC assumes that context influences uniformly the ratings for all the items of 

the same type (i.e., item categories). More recently, Odić et al. (2013) proposed a variant of CAMF 

that models the influence of contextual conditions with respect to the users (CAMF-CU). 

Recent empirical analyses indicate that there is no single best approach, among pre-filtering, post-

filtering and contextual-modeling, and the best performing one depends on the recommendation task 

and the application domain (Panniello et al. 2014). Their analysis shows that the accuracy of all 

considered CARS techniques decreases when the contextual information has a finer granularity and 

hence fewer ratings tagged with the target situation are available. In this article, we claim that it is 

possible to overcome such limitation by exploiting the distributional similarity of contextual situations 

directly in the context modeling phase.  

Distributional-Semantics Pre-filtering (DSPF), the method proposed in this article, is analogous to 

Generalized Pre-filtering: it is a reduction-based approach, but instead of searching for the optimal 

segmentation of the ratings, it exploits similarities between situations to generate segments that 

aggregate the ratings tagged with situations similar to the target one. Hence, the key difference is that 

our approach leverages the knowledge of the situation-to-situation similarity of contextual conditions 

instead of relying on the usually limited condition-to-condition hierarchical relationships defined in a 

context taxonomy. As we will show later, our approach supports a more flexible and effective 

aggregation of ratings and thus yields a better accuracy, especially when the contextual situations 

considered in the application are very specific, i.e., defined by the conjunctions of several contextual 

conditions. 

3 Distributional-Semantics Pre-Filtering 

To better understand DSPF, it is worth recalling how reduction-based pre-filtering operates. When it is 

requested to compute recommendations in a target contextual situation, reduction-based pre-filtering 

executes two procedural steps:  

 firstly, a subset of the training ratings, which are judged as relevant to that contextual 

situation, is selected from the training set;  

 secondly, a predictive model is trained on the selected ratings, which is then used to make 

predictions to users exactly in that situation.  

We say that this model is “local” because it is not based on the full set of available ratings but exploits 

only a subset of more relevant ratings, which is estimated to produce better predictions in that 

particular contextual situation.  
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The key step of this process is therefore the selection of the ratings, i.e., the estimation of what ratings 

are relevant to better model the users’ rating behavior in the target contextual situation. In DSPF, in 

addition to the ratings acquired exactly in the target situation, ratings acquired in situations “similar” 

(enough) to the target one are also used. DSPF uses a custom definition of similarity that will be 

described in the next section. The selection of the “similar” contextual situations is also determined by 

a similarity threshold (t), which is a global parameter that must be tuned to the data set; it determines 

the minimum similarity score between two situations to make one reusable when the target contextual 

situation is defined by the other. The larger the threshold is, i.e., the closer is to 1 (maximum 

similarity), the less contextual situations are selected and consequently the more the rating prediction 

model fits the target contextual situation. In particular, when t=1 the prediction model is very local and 

it is equal to the one built by Exact Pre-filtering: only the ratings acquired in the target contextual 

situation are used.  

As in other machine learning tasks, it may not be the case that a model fitting the most specific 

training data (the ratings provided in the target contextual condition) provides the best predictions on 

future data, i.e., not used to train the model: overfitting the local contextual situations may jeopardize 

the overall system behavior especially when ratings data are scarce. Hence, one must detect the 

optimal middle point between a global model based on all user ratings (i.e., a context-free model) and 

a strict local model, which is just fitting the user ratings in a specific context. In DSPF we have 

designed an approach to find the right level of contextualization for a given data, i.e., to learn the 

similarity threshold that maximizes rating prediction accuracy.   

Making the above discussion more precise, given a target contextual situation s* and a similarity 

threshold t, in DSPF the local training set Rs*, which is the set of the ratings acquired in situation s*, is 

expanded by adding all the ratings acquired in all the situations s where Sim(s, s*) ≥ t. This expanded 

training set is then used for building the local rating prediction model for the target situation s*. 

Denoting with Rs the set of ratings acquired in situation s, the set Xs* of the training data for the local 

model of s* is therefore:  

    ⋃   

      (    )  

                                                                              ( ) 

Figure 1 illustrates the generation of the training data for a target contextual situation in DSPF. In this 

example it is shown that only the ratings tagged with situation s* and  s1 are selected. We note that, if 

more than one rating for a given user and item are available in the selected contextual situations 

similar to the target one, an average of these ratings is computed in order to generate a unique rating 

for a given user, item and contextual situation. Using this procedure we reduce the original 

multidimensional rating data to a two-dimensional rating matrix that can be used for training any CF 

context-free prediction model.  

 

 

Figure 1. Example of the ratings selection process adopted by DSPF  
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3.1 Distributional semantics of contextual conditions 

In the previous section we referred to the usage of a similarity function between contextual situations 

in order to determine which ratings must actually be used to generate context-dependent 

recommendations for any given target contextual situation. In this section, we describe how a viable 

similarity function can be computed. The proposed situation-to-situation similarity is based on the 

distributional semantics of contextual conditions, i.e., it is rooted on the assumption that two situations 

are similar if their composing conditions influence users’ ratings in a similar way. To represent the 

distributional semantics of concepts we use a semantic-vector space with the goal to define the 

similarity between concepts in terms of their proximity in a high-dimensional vector space.  

In this article we propose to model a contextual condition by describing its influence on the average 

rating either of the items or of the users. Hence, the dimensionality of the resulting semantic vectors is 

equal to either the number of items or users. In more detail, our method exploits rating information to 

measure the influence of a condition as the produced deviation between the observed ratings when the 

condition holds (    ), and the predicted context-free rating ( ̂  ). If we use a user-based perspective, 

then the influence of a condition c on a user u, which is denoted by    , is calculated as follows: 

    
 

|   |     
 ∑ (      ̂  )

         

                                                    ( ) 

where      is the set of ratings of the user u in condition c; and   is a decay factor used to cope with 

the lack of reliability of the proposed measure     when only a limited number of user u ratings are 

available in a given contextual condition c. The decay factor has the effect of decreasing the estimated 

deviation     when |   | is small. The rationale is that the smaller the number of ratings is, the less 

reliable the estimated deviation is (hence it must be closer to 0). In our experiments we obtained the 

best results when          ; the exact value depends on the data set.   

In this article we use as context-free predictive model the baseline predictor presented in Koren and 

Bell (2011) that optimizes the model parameters by using stochastic gradient descent and whose 

prediction formula is:  ̂            , where μ is the overall rating average,    is the bias 

associated to the user u, and    the bias associated to the item i. We also tested more sophisticated 

context-free predictive models but no significant performance differences were observed. 

Analogously to what it is shown above, the measure of the impact of a contextual condition can also 

be based on its effect on the ratings for an item. If     denotes the set of ratings for item i in condition 

c, then in the item-based perspective the influence of the condition c on the item i, which is denoted by 

   , is defined as follows: 

    
 

|   |     
 ∑ (      ̂  )                                                       ( )

         

 

Using either formula (2) or (3) we can build a semantic-vector representation of each condition with 
respect to either the users or the items respectively.  

Figure 2 shows the semantic vectors of three contextual conditions in a hypothetical scenario where 

only six items are present in the recommender system. This exemplifies the application of the item-

based perspective. In such a representation, a positive value (of    ) means that the condition tends to 

increase the ratings given to the item, a negative value means that in that condition the item tends to be 

rated lower, and zero indicates that the condition has overall no effect on the item ratings: the larger 

the value, the larger the impact of the condition.  
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Figure 2. Semantic vectors of three conditions with respect to six items 

3.2 Situation-to-situation similarity 

Relying on the previously described semantic representation of contextual conditions, we can measure 

the semantic similarity between two contextual conditions and then between two generic contextual 

situations. We recall that a contextual situation is defined by the conjunction of one or more conditions 

(e.g., a contextual situation may be defined by temperature=hot, season=summer and mood=happy). 

If the compared situations are defined by only one condition, we define the situation-to-situation 

similarity as the condition-to-condition similarity between the candidate   and the target condition   , 

which is calculated as the cosine of the angle between their respective semantic vectors, denoted by    

and     respectively (l is the dimensionality of the semantic representation of a contextual condition):  

 𝑖 (    )  
  

    

√∑    
  

    √∑     
  

   

                                                  ( ) 

Note that cosine similarity ranges in [-1,1], but in our experiments we never considered negative 

values as acceptable similarity thresholds. In this paper, we evaluate two strategies to measure 

situation-to-situation similarity when situations are defined by the conjunction of several conditions:   

 Aggregative Similarity, aggregating the pair-wise similarities of the conditions belonging to 

the compared situations. In this case the similarity between a target situation    and a 

candidate situation   is calculated by comparing all-pairs of conditions in the two situations, 

as follows: 

 𝑖 (    )  
 

| |  |  |
∑ ∑  𝑖 (    )

          

                                         ( ) 

 Direct Similarity, which directly measures the similarity of two situations by representing the 

situations, similarly to the conditions, as vectors of influence scores on the items or users. 

Here the similarity of two situations is calculated by defining first a vector representation of a 

situation, and then comparing these vector representations. The semantic vector representation 

of a contextual situation is defined as the centroid of the semantic vectors representing its 

known conditions:  

   
 

| |
∑  

   

                                                               ( ) 

Then, the similarity between a target situation    and a candidate situation   is estimated as the 

cosine of the angle between their corresponding semantic vectors: 

 𝑖 (    )  
  

    

√∑    
  

    √∑     
  

   

                                                 ( ) 



9 

 

 

Figure 3 shows the semantic vectors of three contextual situations defined by the conjunctions of two 

conditions as in the example shown in Figure 2.  

3.3 Improving the scalability by using clustering techniques 

A potentially limitation of DSPF, which is common to all the reduction-based approaches, is that 

DSPF needs to learn a local rating prediction model for each target contextual situation that the system 

may face. This means that, depending on the number of possible situations and the size of each local 

prediction model, DSPF can be more memory-demanding than other context-aware techniques where 

a unique global prediction model is needed (e.g., contextual post-filtering and contextual modeling). In 

the worst case scenario, when the complexity of each local model is almost the same as the global 

model (i.e., the local models have the same number of parameters as the global one) the memory 

consumption may be significantly larger than other methods, because for each contextual situation a 

model (of the same size of the global one) must be stored on the system secondary memory. However, 

as we will show in Section 4.6, the system’s identified local models are trained on a small subset of 

the training rating data (i.e., only with the ratings tagged with situations strongly similar to the target 

one). Hence the local models complexity, expressed by the number of parameters, does not need to be 

as large as that required by other global context-free and context-aware approaches, such as Tensor 

Factorization (Karatzoglou et al. 2010; Rendle et al. 2011; Hidasi and Tikk 2012; Shi et al. 2012) and 

CAMF (Baltrunas et al. 2011b; 2012).  

Moreover, during the initial system test we conjectured that many of the local models produced by 

DSPF may be very similar to each other, hence “merging” together models trained on almost the same 

ratings may be an effective approach to save space without paying too much in terms of prediction 

accuracy. Therefore, in a set of experiments illustrated in this article, we have studied the effectiveness 

of clustering techniques in reducing the number of local models used by DSPF. We have developed 

and evaluated two different clustering strategies with the goal of reducing the number of local models 

while preserving the prediction accuracy of the original, non-clustered, DSPF: 

 K-means--based clustering strategy, first uses the k-means clustering algorithm (Rajaraman 

and Ullman 2012) in order to find k optimal groups of contextual situations, and then, for all 

the situations in a cluster (and for each cluster) it selects, as relevant set of training ratings, 

those acquired in the situations that belong to the cluster.  

 Hierarchical clustering strategy uses bottom-up hierarchical clustering by initially 

considering as clusters all the local set of ratings (i.e., the ratings associated to each possible 

target contextual situation), and then iteratively merging the most similar pairs of clusters.  

Note that these clustering strategies employ different similarity functions: the k-means--based strategy 

estimates situation-to-situation similarities by comparing their representative semantic vectors, 

whereas the hierarchical strategy compares two situations by considering the ratings previously 

identified as relevant for the given situations.  

We implemented the k-means--based clustering strategy using the standard algorithm (also known as 

Lloyd’s algorithm). Figure 4 shows the pseudo-code of the full learning process. The process has two 

parameters as input: the set of contextual situations to be clustered, and the exact number of clusters to 

produce. The algorithm begins initializing the clusters by randomly assigning each semantic vector of 

Figure 3. Semantic vectors in a situation-to-item influence matrix  
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a situation to one of the possible k clusters. Then, it follows an iterative process, which ends when the 

clustering converges, that is, all the situations are assigned to the nearest cluster. At each iteration, two 

main operations are carried out:  

(1) The centroid of each cluster is updated computing the average situation representation (i.e., a 

semantic vector) over the situations currently in the cluster. 

(2) Each situation is moved to the nearest cluster, based on the Euclidean distance between the 

centroid of the cluster and the semantic vector of the situation.  

In this algorithm we used the Euclidean distance, rather than the cosine situation-to-situation similarity 

(see Eq. 7), because the standard k-means assumes a Euclidean space and hence using other distance 

metrics do not ensure the convergence of the algorithm (Rajaraman and Ullman 2012). Once the 

clusters of contextual situations are generated, for each cluster a local rating prediction model is built 

by using as training set only the ratings acquired in the situations that belong to the cluster. In this 

case, instead of using the similarity threshold, the level of expansion of the local models is controlled 

by the hyper-parameter k: the larger k, the fewer contextual situations are aggregated per cluster. As in 

the similarity threshold, the optimal k for each data set must be determined experimentally (cross-

validation).  

 

Input  

 P: initial set of contextual situations to be clustered (i.e. 

semantic vectors representing the contextual situations) 

 k: exact number of clusters to produce 

Output 

 models: k local prediction models (one for each cluster) 

 

 clusters = getRandomInitialGroups(P, k);   

 movement = true; 

 while movement do 

  movement = false; 

  centroids = computeMeans(clusters); 

  foreach     do 
   nearestClusterID = findNearestCluster(p, centroids); 

   if (p.clusterID    nearestClusterID) then 

    assignPointToNearestCluster( , clusters, nearestClusterID); 
    movement = true; 

   endif  

  endfor   

 endwhile    

 foreach c    clusters do 
   Rc = getRelevantRatings(c); 

   Mc = buildLocalModel(Rc); 

   addModelTo(models, Mc); 

  endfor 

return models 

Figure 4. Model learning algorithm using the k-means--based clustering strategy 

 

The hierarchical clustering strategy builds clusters of contextual situations by merging the ratings 

associated to each possible situation. We have implemented a bottom-up approach that gradually 

merges highly similar pairs of ratings sets. We measure the similarity between ratings sets using the 

Jaccard similarity, which measures how well two sets overlap. Being Rs1 and Rs2 the ratings sets tagged 

with the contextual situations    and    respectively, the computation is defined as follows: 

 𝑖 (       )  
       

       
                                                           ( ) 

 

 



11 

 

Figure 5 shows the pseudo-code of the full learning process using the proposed hierarchical clustering 

strategy. It takes as input a set of ratings for each possible target contextual situation, and the 

minimum Jaccard similarity required for merging two sets of ratings. The algorithm follows an 

iterative process that ends when no more sets can be merged in a new cluster. At each iteration, the 

most similar pairs of sets are merged if their similarity is larger than the specified threshold. When this 

happens, the original sets of ratings are removed and the merged one is added. The resulting sets of 

ratings correspond to the new clusters, each one referring to the contextual situations that were 

associated with the merged sets. As in the previous strategy, the final step consists of building a local 

rating prediction model for each resulting cluster of ratings.   

 

Input  

 ratingSets: Initial sets of ratings (one set for each possible target 

contextual situation) 

   : Jaccard similarity threshold 
Output 

 models: local prediction models (one for each cluster) 

  merge = true; 

 while merge do 

  merge = false; 

   foreach     ratingSets do 

        = findMostSimilarSet(  ,ratingSets); 

   if (JaccardSim(  ,    ) >   ) then 

       = union(  ,    );  

    addSetTo(ratingSets,   ) ; 

    removeSetFrom(ratingSets,   ); 

    removeSetFrom(ratingSets,    ); 

    merge = true; 

   else  

    addSetTo(ratingSets,   ); 

  endfor   

 endwhile   

   foreach      ratingSets  do 

   Mc = buildLocalModel(  ); 

   addModelTo(models, Mc); 

  endfor 

  

return models 

Figure 5. Model learning algorithm using the bottom-up hierarchical clustering strategy 

4 Experimental evaluation 

In order to evaluate DSPF, we have considered six contextually-tagged data sets of ratings with 

different characteristics. Table 1 illustrates some descriptive statistics of the data sets. 

 The Music data set contains ratings for music tracks collected by an in-car music recommender 

developed by Baltrunas et al. (2011a). In this data set a user may have rated the same track 

more than once in different contextual situations, which are described by one condition only. 

Eight factors are used here, e.g., driving style, mood and landscape, and each factor can have 

different conditions (e.g., active, passive, happy and sad are possible conditions of the mood 

factor).  

 The Tourism data set contains ratings for places of interest in the region of South Tyrol. It was 

collected using a mobile tourist application called South Tyrol Suggests
1
, developed at the Free 

University of Bolzano. In this data set, ratings are acquired in contextual situations described 

                                                      
1
 South Tyrol Suggest is a mobile application currently available on the Google Play Store. See 

[https://play.google.com/store/apps/details?id=it.unibz.sts.android] (accessed June 4
th

, 2014). 
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by the conjunction of several conditions, using 14 different factors, such as weather, 

companion and travel goal. Possible travel goal conditions are, for instance, business, 

education, fun and social event. The contextual factors and conditions were identified in 

Baltrunas et al. (2012).  

 The Adom data set is derived from the movie data set used by Adomavicius et al. (2005). The 

ratings were collected in a survey of college students who also provided information about the 

context of the movie-watching experience. In this data set, conditions are expressed using four 

contextual factors: companion, day of the week, movie venue, and if it was on the opening 

weekend. As in the previous data set, the contextual situations are described by several 

conditions (e.g., a situation could be defined by summer, home and alone). 

 The Comoda movie-rating data set was collected and used by Odić et al. (2013). As in the 

previous data set, it contains ratings acquired in situations defined by the conjunction of several 

conditions, expressed using 12 different contextual factors, such as mood, time of the day, and 

weather.  

 The Movie rating data set was collected for the MovieLens recommender
2
. In this case, we 

used the tags provided by the users to the movies as contextual situations. We observe that here 

user tags provide a contextual clue of why the movie is important for the user. However, given 

the inherent noise of user-generated tags, we only used those tags that have a statistically 

significant impact on the user’s rating behavior and have been used by a minimum of 5 users. 

As significance test we used Pearson’s chi-squared that has been proven to be an effective 

method for identifying relevant contextual information (Odić et al. 2013). We selected the tags 

that are dependent on the ratings (at 99% confidence level) and we obtained 29 tags (contextual 

conditions). In this case, factors are Boolean, i.e., a tag can appear or not in the definition of a 

contextual situation. 

 The Library book-rating data set was collected from the LibraryThing website
3
 and augmented 

with user tags. Even in this data set tags are used as contextual conditions. But, given the large 

number of ratings and tags, we used a stricter tag filtering criteria: in order to be selected a tag 

must influence the ratings (at the 99% confidence level) and must have been used by a 

minimum of 200 users. After the filtering process, 149 tags were kept as relevant.  

 

 

Table 1. Data set’s statistics (sparsity    
        

               
) 

Data set #ratings 
rating 

scale 
#users #items sparsity #factors #conditions 

#possible 

situations 

Music 4013 1-5 43 139 84% 8 26 26 

Tourism 1358 1-5 121 101 85% 14 57 375 

Adom 1464 1-13 84 192 90,9% 4 14 134 

Comoda 2296 1-5 121 1197 98,6% 12 49 1939 

Movie 2190 1-10 428 1115 99,6% - 29 114 

Library 609K 1-10 7192 37K 99,8% - 149 39K 

 

We evaluated DSPF in terms of its rating and ranking prediction accuracy. We measured the accuracy 

of DSPF by conducting a per-user evaluation protocol known as all-but-n because, as noted by Shani 

and Gunawardana (2011), it is better than standard n-fold cross-validation for assessing the user 

perceived system performance, since users with many and few ratings count equally. Using this 

protocol, for each user, n ratings are randomly selected as test set (we used n=5 in Library and n=3 in 

the other data sets) and all the remaining ratings are used for training. We note that the training ratings 

were also used to compute the distributional situation-to-situation similarities. We measured the Mean 

                                                      
2
 See [http://www.movielens.org] (accessed October 27

th
, 2013). 

3
 See [http://www.librarything.com] (accessed October 27

th
, 2013) 
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Absolute Error (MAE), the Normalized Discounted Cumulative Gain (NDCG), and the catalog 

coverage of the context-aware predictions on the test set.  All the reported results are averages of per-

user evaluations, and the statistical significance of the differences between the evaluated models has 

been calculated using the paired Wilcoxon signed-rank test. 

For all the data sets we tested the system performance only for target contextual situations that had in 

the training set at least three ratings. Applying the proposed evaluation method to the Library data set, 

around 1000 target contextual-situations where used for testing, which implies that, at each execution, 

1000 local MF prediction models had to be built. In order to make testing more efficient using this 

data, we tested reduced subsets of target situations. Particularly, we found that using 100 contextual 

situations (randomly chosen) the measured system's performance was already stable.  

The context-free prediction model that we used for building the local prediction models is the bias-

based Matrix Factorization (MF) proposed by Koren (2010), since it is one of the best-performing 

ones, especially when dealing with highly sparse data. Nonetheless, any available context-free rating 

prediction model can be used in DSPF to build the local models. The selected MF rating prediction 

model generates the rating estimation for the user u and item i as the sum of the user and item biases 

and the dot product between their corresponding vectors of latent features (pu) and (qi):   

 ̂               
                                                                     ( ) 

To learn the model parameters we minimized the regularized error using stochastic gradient descent, 

which has been proven to be an effective approach (Koren and Bell 2011).  

4.1 Meta-parameter optimization 

DSPF has some meta-parameters that need to be fine-tuned in order to maximize its effectiveness: (1) 

the global similarity threshold and (2) those controlling the learning process of the local MF models 

(e.g., learning rate, number of latent factors and regularization parameters). 

We optimized these meta-parameters relying only on the training set data. By using the Nelder and 

Mead (1965) simplex search algorithm, a widely-used meta-optimizer method in the RSs field 

(Koenigstein et al. 2011), we searched for the best configuration of all the meta-parameters. This 

method begins with a set of points, each one representing a specific meta-parameters configuration 

and which, together, form the initial working simplex. At each iteration, the method performs a 

sequence of transformations of the simplex with the goal of finding a new configuration that decreases 

the MAE on the validation set (a subset of the training set) with respect to the previously evaluated 

configurations. In our experiments the algorithm converged, on average, after 15 iterations.  

The validation set was generated by applying again the per-user splitting protocol mentioned above. In 

particular, for each user, we randomly selected n ratings among the training ratings as validation set 

(as in the first training-test split, n=5 in Library and n=3 in the other data sets). Moreover, the ratings 

selected for the validation were selected among those tagged with contextual situations that appeared 

at least once in the test set. That makes the target situations in the validation set similar to the one in 

the test set. Hence, in conclusion the meta-parameters were optimized on a set of ratings different from 

those in the test set but with similar target contextual situations.  

We followed a two-stage process for learning the meta-parameters. Firstly, we found the optimal 

meta-parameters for the global, context-free MF model, and we then used that configuration also for 

learning the local MF models produced by DSPF. Therefore, one can expect that a better optimization 

of the parameters for DSPF could be even possible. Then, we run again the Nelder and Mead 

algorithm just for determining the optimal global similarity threshold (in the validation set) while 

using the Matrix Factorization meta-parameters optimized for the global model. In Section 4.6 we 

analyze and discuss in detail the impact of the similarity threshold to DSPF’s performance.  
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4.2 Semantic-vector representations 

In this section we compare the performance of DSPF when the different methods, described in Section 

3.1, are used for obtaining the distributional semantics of contextual conditions, i.e., the semantic 

vectors. To simplify the performance comparison, here we only show the performance of DSPF using 

the direct situation-to-situation similarity measure. In fact, the performance results obtained by using 

the aggregative similarity measure are pretty similar and do not yield a different selection of the best 

semantic vector (user or item based) for each data set.  

Figure 6 shows the performance comparison of the adoption of the item-based and user-based 

perspectives in DSPF (MAE reduction) in comparison with MF: 

 DSPF-MF-UB denotes DSPF when it uses the user-based perspective for measuring the 

influence of conditions (defined in Eq. 2) and building the semantic vectors. 

 DSPF-MF-IB denotes DSPF when it uses the item-based perspective, defined in Eq. 3, to 

build the semantic vectors. 

It can be observed that there is not a clear winner, since the item-based perspective performs better in 

Tourism and Movie, while the user-based one achieves better results in Adom, Music, Comoda and 

Library. In that respect, DSPF is similar to other context-aware approaches, such as CAMF (Baltrunas 

et al. 2011b) and User-Item Splitting (Baltrunas and Ricci 2009; Zheng et al. 2013a), where different 

variants of the same technique can be generated depending on whether the context effect is measured 

with respect to the users or items (e.g., CAMF-CU and CAMF-CI). Even in these cases it is difficult to 

decide a priori which variant is better at the design stage.  

However, it must be noted that in some data sets, such as Adom and Library, the difference in the 

performance of the two perspectives is not significant, which means that not always this decision is 

crucial for the effectiveness of DSPF. Similarly to User-Item Splitting (Zheng et al. 2013a), we also 

experimented with a DSPF variant that models the context with respect to items and users at the same 

time, but it did not improve the results.  

 

  
Figure 6. MAE reduction of DSPF-MF-UB and DSPF-MF-IB with respect to MF 

 

In order to better understand when a variant between DSPF-MF-UB and DSPF-MF-IB is better, we 

have analyzed and compared the variance of the user- and item-based semantic vectors. We 

conjectured that the larger the variance of the semantic vectors is, the better the performance is. The 

intuition is that the larger is the variance of the entries in the semantic vector, the more the semantic 

vector tells about the specific impact of a contextual condition on the ratings of the available items or 

users.  
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Table 2 shows the average variance of the semantic vectors computed according to the two 

perspectives in the six contextually-tagged data sets. The perspective that produced the lowest MAE in 

each data set is in bold font. As it can be observed, our hypothesis is confirmed; the best perspective is 

always that producing the most diverse semantic vectors. Hence, the variance of the semantic vectors 

is a good indicator (easily computed at design stage) of which perspective (user- or item-based) will 

perform better.  

 

Table 2. Variance of the semantic vectors. Bold font means that the perspective is better than the other 

Dataset Best variant 
Variance 

User Based  Item Based 

Tourism DSPF-MF-IB 0.048 0.053 
Music DSPF-MF-UB 0.062 0.041 
Adom DSPF-MF-UB 0.304 0.262 
Comoda DSPF-MF-UB 0.136 0.06 
Movie DSPF-MF-IB 5.51 7.14 
Library DSPF-MF-UB 0.152 0.052 

4.3 Situation-to-situation similarity measures 

In this section we evaluate the effectiveness of the two situation-to-situation similarity measures 

described in Section 3.2: 

 DSPF-MF-AG corresponds to DSPF using the aggregative similarity defined in Eq. 5 (Codina 

et al. 2013a).  
 DSPF-MF-DR corresponds to DSPF using the direct similarity defined in Eq. 7 (Codina et al. 

2013b).  

Table 3 shows the MAE of DSPF-MF-AG and DSPF-MF-DR when they use the best-performing 

semantic vector representation of contextual conditions in each considered data set (as shown in Table 

2¡Error! Marcador no definido.). In the comparison we have also included two baseline algorithms: 

 A context-free Matrix Factorization model (MF), which generates rating predictions without 

taking into account the context, i.e., all predictions are based on a global prediction model 

learnt by using all the training ratings (whose estimation formula is defined in Eq. 9).  

 Exact Pre-filtering, the reduction-based approach proposed by Adomavicius et al. (2005) (see 

Section 2) in combination with the Matrix Factorization predictive model (Pref-MF-Exact).  

 
Table 3. MAE of DSPF variants using different situation-to-situation similarity measures. Results in bold 

are statistically significant better (95% confidence level) than the baseline algorithms. Underlined results 

are also significantly better than the others. 

Model Tourism Music Adom Comoda Movie Library 

MF 1.00 1.00 2.25 .76 1.27 1.26 

Pref-MF-Exact 1.02 1.21 2.21 .83 1.13 1.19 

DSPF-MF-AG .91 .93 2.20 .74 1.10 1.16 

DSPF-MF-DR .88 .93 2.19 .65 1.10 1.14 
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We can see that DSPF with direct similarity (DSPF-MF-DR) systematically achieves better results, 

and outperforms the baseline algorithms and DSPF-MF-AG
4
. As expected, in the Music data set, 

where situations are defined only by one condition, the two similarity functions coincide and the 

results are equal. The differences in the performance of the two similarities are larger in the data sets 

with fine-grained context granularity, i.e., when the average number of conditions per situation is 

larger. For instance, in the Comoda data set, where contextual situations are defined on average by 12 

conditions, DSPF-MF-DR improves the accuracy by 12% with respect to DSPF-MF-AG. In the other 

data sets, where the contextual situations are defined on average by 3 conditions, the improvement is 

not that large (3% on average). 

Although it is not common to observe a large number of conditions per situation, DSPF-MF-DR has 

also a smaller time complexity compared with DSPF-MF-AG. In fact, in the worst case, computing the 

all-pairs aggregation of condition-to-condition similarities for two contextual situations is O(n
2
), 

whereas the cost of computing the averaged semantic vector for two situations is at most O(n); n being 

the number of contextual factors. 

4.4 Clustering strategies 

In this section we illustrate the effectiveness of the clustering strategies described in Section 3.3. The 

two DSPF variants that use the clustering strategies are: 

 DSPF-MF-kmeans, which is the variant using the k-means clustering method; 

 DSPF-MF-hierarchical, the variant using the bottom-up hierarchical clustering method.  

The MAE of the best-performing DSPF variants is shown in Table 4. In addition to the baseline 

algorithms, in this table we also show the MAE of the best-performing non-clustered DSPF variant, 

which we denote as DSPF-MF. We recall that the goal of the proposed clustering methods is to reduce 

the number of local models generated by DSPF while avoiding a possible reduction of the prediction 

accuracy. Even though we initially did not expect an improvement of the rating prediction accuracy, as 

a matter of fact, we can observe that DSPF-MF-hierarchical slightly outperforms DSPF-MF in 

Tourism. This demonstrates that merging similar sets of ratings, i.e., sets that largely overlap, in 

addition to the beneficial effect of reducing the number of local models, can also improve the 

prediction accuracy. In contrast, the k-means method (DSPF-MF-kmeans) always causes a loss of 

accuracy with respect to DSPF-MF. Therefore, in terms of prediction accuracy DSPF-MF-

hierarchical is the preferable clustering method. 

 

Table 4. MAE of DSPF using the proposed clustering strategies 

Model Tourism Music Adom Comoda Movie Library 

MF 1.00 1.00 2.25 .76 1.27 1.261 

Pref-MF-Exact 1.02 1.21 2.21 .83 1.13 1.193 

DSPF-MF .88 .93 2.14 .65 1.10 1.14 

DSPF-MF-kmeans .92 .96 2.15 .69 1.10 1.15 

DSPF-MF-hierarchical .86 .95 2.14 .65 1.10 1.14 

 

 

 

                                                      
4
 Note that this does not depend on the fact that the best semantic vector representation in each data set was 

selected (as described in the previous section) by using the direct measure of the similarity. In fact, the best 

semantic vector representation, i.e., either the user-based or the item-based (as mentioned previously) does not 

change if the similarity measure is changed. 
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¡Error! No se encuentra el origen de la referencia. shows the number of local models produced by 

DSPF with and without the model clustering strategies. It can be observed that, even if DSPF-MF-

kmeans is not the best in terms of MAE performance, in its best configuration produces a smaller 

number of local MF models than DSPF-MF-hierarchical. In particular, we found that the optimal 

number of clusters is equal to 2 in Tourism, Music and Comoda, 4 in Adom, 5 in Movie and 8 in 

Library.  

Table 5. Number of local MF models produced by each DSPF variant 

Model Tourism Music Adom Comoda Movie Library 

DSPF-MF 103 26 31 90 18 73 

DSPF-MF-kmeans 2 2 4 2 5 8 

DSPF-MF-hierarchical 31 23 28 51 12 60 

 

Figure 7 illustrates how the normalized MAE (NMAE) of DSPF-MF-kmeans is affected by different 

values of k (i.e., number of local MF models). Besides, the optimal configuration of DSPF-MF-

hierarchical is obtained when the Jaccard similarity of the merged sets of ratings is larger than 0.8. 

This clustering method, which is based on merging similar rating sets, is less effective and produces a 

larger number of local models. Using this method, the most significant reduction of the number of 

local models is produced in the Tourism (70% reduction with respect to DSPF-MF) and Comoda (43% 

reduction with respect to DSPF-MF) data sets.  

 

 
 

Figure 7. NMAE results of DSPF-MF-kmeans as a function of the number of clusters (k) 
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We have analyzed the time and space complexity of DSPF-MF-kmeans and DSPF-MF-hierarchical in 

comparison to the non-clustered DSPF and context-free MF in the Tourism data set. We implemented 

the algorithms in the Java programming language and executed the experiments on a laptop machine 

with two cores with clock frequency 2.4 GHz. To speed up the learning process of the considered 

DSPF variants we parallelized the algorithms using multi-threading. The execution time and the run-

time memory consumed by each prediction model are shown in Table 6. As expected, DSPF-MF-

kmeans, with k equal to 2, is clearly more efficient than DSPF-MF and DSPF-MF-hierarchical. In this 

particular case it is even faster than MF (because of the parallel processing) but DSPF-MF-kmeans 

uses slightly more run-time memory. The run-time memory usage of DSPF-MF-kmeans is slightly 

larger than MF because, although they use fewer training ratings, the two local MF models generated 

by DSPF-MF-kmeans have a similar number of parameters to the global model of MF. Comparing 

DSPF-MF-kmeans to DSPF-MF-hierarchical, we can observe that the hierarchical clustering method 

consumes more memory (more local models are generated), but still this is smaller than the memory 

used by DSPF-MF (84% less) and it is two times faster than DSPF-MF.  

Table 6. Execution time and run time memory of the DSPF variants and MF in the Tourism data set 

Model Time (seconds) RAM memory (MB) 

MF 5 10 

DSPF-MF 57 173 

DSPF-MF-kmeans 2 16 

DSPF-MF-hierarchical 25 28 

 

4.5 Comparing DSPF to the state of the art 

In this section we compare the performance of the best DSPF variant in each data set, which we 

denote here simply as DSPF-MF, with two state-of-the-art context-aware models: CAMF, a contextual 

modeling approach proposed by Baltrunas et al. (2011b; 2012), and UI-Splitting, a novel splitting-

based pre-filtering method proposed by Zheng et al. (2013a) (both methods are described in more 

detail in Section 2). CAMF was proved to outperform TF approaches, especially in small-medium--

size rating data sets like Adom (Baltrunas et al. 2011b), and UI-Splitting was proved to outperform 

CAMF on the Comoda data set (Zheng et al. 2013a).  

 

4.5.1 Rating prediction accuracy 

In Figure 8 we show the MAE reduction of the three evaluated rating prediction models in 

comparison with MF. In this chart, we show for each prediction model its best-performing variant in 

each data set. For CAMF the best variants are the following: CAMF-CC in Tourism and Music, 

CAMF-CI in Adom and Comoda, and CAMF-CU in Movie and Library. For DSPF-MF the best results 

are obtained using DSPF-MF-IB in Tourism
5
 and Movie, and DSPF-MF-UB in Music, Comoda, Adom 

and Library. Finally, similarly to the experimental evaluation presented by Zheng et al. (2013a), for 

UI-Splitting the best results are obtained when using the chi-square significance test at 95% 

confidence level as splitting criteria, and MF as context-free prediction model.  

 

                                                      
5
 In Tourism we used a slightly different variant that employs Singular Value Decomposition to reduce the 

dimensionality of the original item-based semantic vectors because, in this particular case, it improved 

significantly the results. (See Codina et al. (2013b) for more details about this variant). 
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Figure 8. MAE reduction with respect to MF (the context-free baseline) of DSPF-MF compared to two 

state-of-the-art context-aware approaches (CAMF and UI-Splitting) 

 

As it can be observed, the three context-aware prediction models significantly outperform MF in all 

the data sets, confirming that context-aware methods are significantly more accurate (when context 

matters). UI-Splitting outperforms CAMF in Adom and Comoda data sets, but in the remaining data 

sets CAMF is clearly superior. On the other hand, DSPF-MF outperforms CAMF and UI-Splitting in 

all the data sets. The improvement is evident in Tourism (7% gain w.r.t. CAMF), Comoda (12% gain 

w.r.t. UI-Splitting) and Movie (9% gain w.r.t. CAMF). In the next section, we will present an in-depth 

analysis of the system performance on the evaluated data sets, which aims to shed light on data set 

characteristics that we have found to be correlated to the DSPF performance and which can illustrate 

why DSPF performs better in some data sets and less in others.  

4.5.2 Data-set characteristics influencing DSPF performance  

Here we present a thorough analysis of the data set characteristics that favor and hinder the 

performance of DSPF, compared to the other context-aware approaches, which we have considered in 

this article, i.e., CAMF and UI-Splitting. We would like to explain why DSPF can offer a better 

performance compared to competing solutions. We conjectured that the performance differences can 

be related to the sparsity of the data; in fact, DSPF was originally conjectured to perform better than 

standard pre-filtering techniques because, when computing rating predictions in a target contextual 

situation, it is able to exploit ratings collected in other, similar, contextual situations, hence reducing 

the sparsity of the data in the target context. 

To perform this analysis, we calculated different sparsity-related metrics and computed the correlation 

between each metric and the improvement achieved by DSPF compared to the competing methods. 

We wanted to check if a metric is correlated with the improvement and, therefore, if from the 

knowledge of the metric in a data set one can predict whether DSPF will have a better performance 

compared to the competing approaches. 

The sparsity metrics are defined as follow: 

1. Item rating count in condition (RI), which measures the average item rating count in 

condition over all conditions, as follows: 
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where: I and C are the set of items and set of possible conditions, respectively, and     is the 

number of ratings in condition c given to item i. In this metric, larger numbers mean lower 

sparsity, i.e., there are more ratings in each contextual condition. 

 

2. IB co-occurrence matrix sparsity (IMS), which measures the overall sparsity of the item-

based co-occurrence matrix, i.e., the proportion of non-zero entries in the condition-item 

matrix. This metric is defined as:   

      
            𝑖  

| |   | |
                                                                (  ) 

 
3. UB co-occurrence matrix sparsity (UMS), which measures the proportion of non-zero 

entries in the condition-user matrix:  
 

      
            𝑖  

| |   | |
                                                               (  ) 

 

Again, a larger value for these two metrics (IMS and UMS) indicates a sparser data set. 
   

4. Context granularity (CG), calculated as the average number of conditions per situation. It 

measures how specific the definition of context in the data set is. The larger the number of 

condition per situation, the finer-grained is the contextual information. 
 

Table 7 shows the computed values of the four considered sparsity metrics. For all of them we have 

found a strong correlation between the sparsity metric and the improvement of the DSPF performance. 

 

Table 7. Metrics for each data set and improvement of DSPF w.r.t. CAMF and UI-Splitting. 

 

Sparsity-related metrics Improvement w.r.t. 

RI UMS IMS CG CAMF UI-Splitting 

Tourism  1.6 0.9 0.9 3 7 12.8 

Comoda  1.3 0.6 0.7 12 14 11 

Movie  1.5 1 1 2 9 13 

Music  1.5 0.4 0.5 1 1 5.5 

Adom  2.6 0.4 0.5 3 4 3.6 

Library  2.2 0.9 1 4 1 8.5 

 

In Table 8, we show the correlation coefficients of each metric with the improvement of DSPF w.r.t. 

CAMF and UI-Splitting. DSPF improvement is measured as the percentage of the reduction of the 

error (MAE) with respect to the error of the competing approach. So, for instance, in the Tourism data 

set, DSPF has an error that is 7% smaller than the error of CAMF. One can observe that RI is 

negatively correlated with the improvement of DSPF. This means that in data sets with high RI (larger 

than 2 in these data sets) the gain achieved by our approach is lower, or, in other words, that DSPF is 

more effective than the other methods in the data sets where a smaller number of ratings is available 

for each item and contextual condition on average.  

On the other hand, IMS and UMS are positively correlated with the improvement of DSPF, 

particularly when it is compared to UI-Splitting (0.77 and 0.82, respectively). This indicates that the 

higher the sparsity of the condition-item and condition-user co-occurrence matrix, the better DSPF 

performs compared to these approaches; in contrast, in data sets with low sparsity, the improvement is 

smaller. 
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Finally, also CG is positively correlated with the improvement of DSPF, especially when compared to 

CAMF (0.74). This shows that in the data sets with high CG, like in Comoda, DSPF will more largely 

outperform CAMF, whose performance considerably decays in such cases.  

Overall, based on the above analysis of these sparsity-related measures and the relationship of these 

metrics with the performance of DSPF, we conclude that DSPF is especially suitable for data sets with 

high sparsity (i.e., low RI) and with high context granularity (i.e., high CG). Furthermore, the positive 

correlations of IMS and UMS metrics with DSPF improvement indicate that the proposed 

distributional semantics model is still effective even when there is low overlap between semantic 

vectors.   

 

Table 8. Correlations between metrics and DSPF improvement 

Metrics Vs. CAMF Vs. UI-Splitting 

RI -0.57 -0.63 

UMS 0.22 0.82 

IMS 0.24 0.77 

CG 0.74 0.26 

 

4.5.3 Ranking and Coverage 

In addition, we have evaluated the performance of DSPF in terms of ranking precision using 

Normalized Discounted Cumulative Gain (NDCG) at the ranking cutoff of 20. In this case, we have 

followed the evaluation protocol known as one plus random (Cremonesi et al. 2010). This method 

consists of first selecting, for each user, a set of highly relevant items and target contextual situations. 

Then, for each relevant item a ranking is produced considering the context in which the user rated it, 

which includes the relevant item plus a set of randomly selected candidates. Finally, NDCG is 

measured on the base of the final position of the relevant item in the ranking: the higher, the better. 

We selected the relevant items by simply choosing the items rated with more than 3 stars, in 1-5 rating 

scale data sets, and more than 6 stars in data sets with 1-10 rating scale. 

Figure 9 shows the NDCG of the considered prediction models. Again DSPF is the best performing 

model in all the data sets. Similarly to what we observed for the MAE, the largest gain with respect to 

the second best model is found in Tourism (57% gain), Adom (44% gain), Comoda (29%), and Movie 

(25%). 

Ranking the considered algorithms by their NDCG does not produce in all the data sets the same order 

as ranking them by their MAE. For instance, CAMF has a lower NDCG in Tourism and Music, being 

clearly worse than MF and IU-Splitting. Another difference can be seen in Comoda, where IU-

Splitting is slightly worse than CAMF in terms of NDCG but not for MAE.  

We have also analyzed the catalog coverage of the prediction models at the ranking cutoff of 20. As it 

can be seen in Figure 10, apart from Library, where no significant differences among models are 

observed, in the rest of data sets, DSPF is the model that achieves a larger coverage. 
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Figure 9. NDCG@20 results of the evaluated prediction models 

 

 

 

4.6 Impact of the similarity threshold  

We recall that DSPF, when is requested to compute a rating prediction in a target contextual situation, 

instead of using a model trained exactly with the ratings acquired in that situation, it expands the 

training data by using ratings acquired in similar situations. In the previous sections, we have 

illustrated the performance of several variants of DSPF; all of them were using the optimal similarity 

threshold for each data set, i.e., the one that yields better prediction accuracy. As mentioned previously 

in Section 4.1, we experimentally found the optimal value for each data set.  

We note that the impact of the similarity threshold on the prediction accuracy is similar to the effect of 

the user-to-user similarity threshold in user-based Collaborative Filtering (CF): the lower the threshold 

value, the larger the user’s neighborhood size. In user-based CF, as in our case, it is important to find 

the optimal level of locality (neighborhood size), namely, that yielding the best prediction accuracy for 

the given data. We were not able to identify this optimal level on the base of the data set 

characteristics, and therefore it has to be determined through experimentation.   

Table 9 shows the level of contextual expansion of the local models produced by DSPF using the 

optimal similarity threshold. We measure the level of contextual expansion applied by DSPF as the 

amount of added ratings (on average for all the possible situations) to the ratings used for building the 

strict local models targeted to a specific contextual situation (as those built by Exact Pre-filtering). 

Hence, we say that there is a zero expansion when no additional ratings are added (i.e., when DSPF is 

using Exact Pre-filtering) and 100% expansion when all the ratings in the data set are added 

independently of the target situation (i.e., when using a context-free global model). In practice, for a 

given target situation (s), we measure the expansion level (  ) applied by DSPF to learn its local model 
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Figure 10. Coverage@20 of the evaluated prediction models 
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as follows (note that the final percentage is estimated by averaging the    of all the tested target 

situations): 

   
    𝑖   (    )      𝑖   (     )

    𝑖   (      )       𝑖   (     )
                                            (  ) 

As it can be observed in Table 9, the precise value of the similarity threshold itself is not providing an 

indication of the level of contextual expansion applied to a data set, because the expansion depends on 

the distribution of the situation-to-situation similarities, which is data-dependent. In fact, for a given 

similarity threshold, if the average similarity between situations is smaller, then fewer situations are 

aggregated. For example, although the optimal threshold in Adom and Comoda is equal (0.9), the 

contextual expansion is much lower in Adom than in Comoda. The reason is that in Adom the average 

situation-to-situation similarity is 0.38, whereas it is 0.86 in Comoda. A similar situation is found in 

Movie and Library, which have similar levels of contextual expansion but significantly different 

optimal thresholds. 

Table 9. Optimal level of contextualization for each data set using DSPF 

 Tourism Music Adom Comoda Movie Library 

Similarity threshold 0.3 0 0.9 0.9 0.05 0.35 

Contextual expansion 31% 90% 2% 40% 10% 8% 

 

 

Figure 11 shows the MAE and the expansion percentage as functions of the similarity threshold in the 

three movie rating data sets: Movie, Comoda and Adom. We show here the MAE and the contextual 

expansion only for positive values of the similarity threshold (from 0 to 1). We have observed that 

negative similarity thresholds yield bad results. In the Movie data (top figures) the smallest MAE (i.e., 

the global minimum) is obtained when the threshold is near to 0.05, which causes a level of contextual 

expansion above 10%. In Comoda (charts in the middle) the best MAE is obtained when the similarity 

threshold is close to 0.9, which implies a level of contextual expansion around 40%. In this case the 

accuracy suddenly increases when the threshold is over 0.75, and then drastically drops when the 

contextual expansion is lower than 30%. Finally, the charts at the bottom show the results obtained in 

Adom. Similarly to Comoda, the best MAE is obtained when the threshold is set to 0.9, which 

corresponds to a very low contextual expansion (2%). Note that the expansion decreases linearly as a 

function of the threshold. 

Looking at the left hand side charts one can see that in all the data sets there is a global minimum 

where thresholds values close to it obtain the best results. We have observed that, in general, 

thresholds 0.1 higher or lower than the optimal value do not cause a significant loss of performance. 

However, when the threshold is higher/lower than 0.1 from the optimal value, the accuracy decreases 

significantly though the DSPF performance is still better than that of the global MF model.    
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5 Conclusions and Future Work  

In this paper we have described Distributional-Semantics Pre-Filtering (DSPF), a novel contextual, 

pre-filtering approach that tackles the data-sparsity problem of Context-Aware Recommender Systems 

(CARSs). DSPF improves state-of-the-art CARS techniques by exploiting semantic similarities 

between contextual situations during local context modeling. DSPF is a reduction-based approach that 

employs a situation-to-situation similarity function to accurately select the right level of 

contextualization for a given data; it builds local rating prediction models trained with ratings 

collected in a target contextual situation and similar situations, i.e., with a similarity larger than a data-

dependent similarity threshold.  

Accurate assessments of the optimal similarity threshold allow fine-tuning the rating prediction model. 

The situation-to-situation similarity is based on a distributional semantics approach; two situations are 

similar if their known conditions influence users’ ratings in a similar way. Although the effectiveness 

of this proposed pre-filtering approach strongly depends on the size of the training data, it does not 

require a context taxonomy as Generalized Pre-filtering does. Such a taxonomy may be difficult to 

obtain and may not ultimately yield better rating predictions.  

Figure 11. MAE (left line chart) and contextual expansion (right line chart) as functions of the 

similarity threshold (from top to down we show the results in Movie, Comoda and Adom data sets) 
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The experimental evaluation that we have carried out on six contextually-tagged data sets shows that 

DSPF outperforms state-of-the-art CARS techniques when used in combination with a bias-based MF 

rating prediction model. The results show that our approach obtains better results in data sets where 

contextual situations have a finer granularity and high data sparsity, demonstrating that DSPF is 

especially effective under these conditions. 

Although our method uses specific solutions to improve the reliability of distributional similarities, 

data sparsity can still be a major issue for DSPF. We conjecture that in very sparse data sets, with 

small training sets, the use of an ontology-based similarity measure (based on explicit semantic 

features of context) could improve the precision of the similarity assessments and thus the 

effectiveness of DSPF. This aspect must be assessed in a future analysis. 

Another potential limitation of DSPF is the method used for computing the influence of contextual 

conditions and building the semantic vectors, which, by design, works only with explicit rating data. 

Since it is based on the aggregations of rating deviations from context-free predictions, it cannot be 

used in data sets formed by implicit-feedback signals. Therefore, an interesting line of future research 

is to investigate other methods to measure the influence of contextual conditions that do not depend on 

explicit ratings and baseline rating predictors.  

Also, the performance of DSPF could be further improved on rating data sets where the granularity of 

target contextual situations considerably differs. In these scenarios, by using a fine-grained tuning of 

the similarity threshold, i.e., a threshold that varies situation by situation, the overall performance may 

improve. We also conjecture that DSPF could be further improved if the meta-parameters of the 

Matrix Factorization (MF) local prediction models are fitted to the local training data instead of 

relying on the configuration optimized for the context-free MF. However, the main difficulty of this 

fine-tuning procedure is finding the optimal thresholds and meta-parameters without overfitting the 

training data, especially in small-medium rating data sets. This is a major limitation of DSPF as in 

other local model techniques. 

Finally, we leave as future work the evaluation of a more sophisticated method for computing the 

semantic vector representations, measuring the influence of a contextual condition on groups of items 

or users. The groups could be based on explicit category labels or rating similarities, as in item-based 

and user-based CF approaches. 
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Appendix 

The following table describes the abbreviations used to identify the considered prediction model 

variants. 

 

Table 10. Description of abbreviations used to identify the evaluated model variants 

Abbreviation Description 

MF Context-free MF prediction model 

Pref-MF-Exact Exact Pre-filtering using MF local models 

DSPF-MF-AG DSPF using MF and the aggregative situation-to-situation similarity measure 

DSPF-MF-DR DSPF using MF and the direct situation-to-situation similarity measure 

DSPF-MF-IB DSPF using MF, direct measure and the item-based influence perspective 

DSPF-MF-UB DSPF using MF, direct measure and the user-based influence perspective 

DSPF-MF-kmeans DSPF with MF, best distributional similarity and k-means clustering method 

DSPF-MF-hierarchical DSPF with MF, best distributional similarity and hierarchical clustering  

CAMF-CC CAMF modeling the influence of context with respect to items’ categories 

CAMF-CI CAMF modeling the influence of context with respect to items 

CAMF-CU CAMF modeling the influence of context with respect to users 
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