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Abstract This study presents how predictive analytics can be used to in-
form the formulation of adaptive collaborative learning groups in the context
of Computer Supported Collaborative Learning (CSCL) considering across-
spaces learning situations. During the study we have collected data from differ-
ent learning spaces which depicted both individual and collaborative learning
activity engagement of students in two different learning contexts (namely the
classroom learning and distance learning context) and attempted to predict
individual students future collaborative learning activity participation in a
pyramid-based collaborative learning activity using supervised machine learn-
ing techniques. We conducted experimental case studies in the classroom and
in distance learning settings, in which real-time predictions of students future
collaborative learning activity participation were used to formulate adaptive
collaborative learner groups. Findings of the case studies showed that the data
collected from across-spaces learning scenarios is informative when predicting
future collaborative learning activity participation of students hence facilitat-
ing the formulation of adaptive collaborative group configurations that adapt
to the activity participation differences of students in real-time. Limitations
of the proposed approach and future research direction are illustrated.
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1 Introduction

Technological advancements have caused a multiplicity of learning spaces, cre-
ating learning opportunities towards students beyond the physical classroom
spaces defined by the formal educational context (Ellis and Goodyear, 2018;
Kloos et al, 2012). With the increased availability of diverse digital learn-
ing spaces students learn, interact, share knowledge and engage in productive
discussions with peers leaving behind a vast amount of digital data traces.
Retrieving meaningful information combining trace data emerged from mul-
tiple sources is challenging and requires specialized knowledge, despite the
fact that the analysis and interpretation of this data can provide meaningful
insights to design and implement pedagogically meaningful learning activi-
ties in different learning spaces (Amarasinghe et al, 2017; Prieto et al, 2017;
Martinez-Maldonado et al, 2017; Hernández-Leo et al, 2012; Tsovaltzi et al,
2015).

In the past few decades, Computer Supported Collaborative Learning (CSCL)
emerged as a branch of the learning sciences, focusing on how people learn
together with the help of computers (Stahl et al, 2006). In contrast to individ-
ual learning, CSCL is characterized by social learning phenomena, in which
learning occurs socially through group interactions among students (Roschelle
and Teasley, 1995). It has been shown that working in groups increase stu-
dents’ learning and pro-social attitudes while solving problems with others,
agreeing or disagreeing to different points of views at the same time giving
or by receiving help from peers (Fall et al, 2000). In CSCL social interactions
among students are being effectively mediated using computers, facilitating
synchronous or asynchronous learning in the classroom and distance learning
environments. Nonetheless, interactions observed in such learning settings are
much more complex than that of the individual learning (Cen et al, 2016)
which makes it challenging to conduct fruitful collaborative learning activities
in both synchronous and asynchronous modes of collaboration.

In the domain of collaborative learning, scripts aim to promote productive
interactions among groups of learners by shaping the way they interact with
each other (Dillenbourg and Tchounikine, 2007; Kobbe et al, 2007). Using
different techniques (e.g., defining the activity sequence, role allocation etc.)
scripts attempt to increase the probability of productive student-student and
student-teacher learning interactions that would occur rarely or not at all in
spontaneous collaboration (Dillenbourg and Tchounikine, 2007; Demetriadis
and Karakostas, 2008; Kobbe et al, 2007). In CSCL, collaborative learning
scripts have been operationalized using computers formulating CSCL scripts as
it facilitates the mediation of collaboration (partly or totally) among distance
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and co-present learners (Dillenbourg and Tchounikine, 2007; Demetriadis and
Karakostas, 2008; Kobbe et al, 2007; Villasclaras-Fernández et al, 2009).

Nonetheless, research has shown that the static support provided by scripts
is not responsive to what is occurring in the actual collaborative learning en-
vironment (Kumar et al, 2007). It has been argued that adaptive collabora-
tive scripting, in which collaborative interactions are modeled as they occur
(Walker et al, 2009) in an adaptive mode can considerably improve the collab-
orative learning experience (Demetriadis and Karakostas, 2008). When con-
sidering the across-spaces learning scenarios, adapted scripted collaboration
becomes challenging since the actions of students in previous activities carried
out in diverse spaces or with different technologies is relevant for the planning
of following up activities in a new space (Hernández-Leo et al, 2012).

From a learning analytics perspective, fine-grained learning analytics tech-
niques can be employed to interpret data captured across different learning
spaces in different modalities (Martinez-Maldonado et al, 2017). Meaningful
insights gained from learning analytics can be used to identify relevant adap-
tive script features hence facilitating the formulation of adaptive collaboration
scripts in across-spaces learning situations in real-time (Amarasinghe et al,
2017). Towards this end, the focus of our work is on investigating how pre-
dictive analytics can support the formulation of adaptive collaborative scripts
in cross-context learning situations. Predictive analytics is described as a sub-
set of data science that facilitates to uncover relationships and patterns within
large volumes of data that can be used to make predictions about future events
(Waller and Fawcett, 2013; Nyce and Cpcu, 2007). Within this study, predic-
tive analytics have been used to predict future collaborative learning activity
participation of students, to facilitate the formulation of collaborative learner
groups that adapt to the activity participation differences of students. We
have collected data from different learning spaces and used supervised ma-
chine learning techniques for prediction purposes. The main research question
addressed in this study is the following: Can participation prediction be used
to inform decisions for adaptive collaborative scripts in across-spaces learning
situations? The main research question composed of the following sub research
questions: (i) How to use supervised machine learning techniques to predict
future collaborative learning activity participation of students based on data
collected from across-spaces learning situations? (ii) How an estimate of future
collaborative learning activity participation of students can be incorporated
into CSCL scripts in real-time to facilitate the formulation of adaptive collab-
orative learning scripts?

The rest of this paper is structured as follows. Section 2 presents rele-
vant literature considering adaptive collaborative scripting, its association with
across-spaces learning scenarios and different learning analytic techniques that
have been deployed in previous studies to support collaborative learning. Sec-
tion 3 illustrates the proposed approach, along with data collection methods
in different learning contexts, feature generation and model selection in detail.
Section 4 presents case studies that demonstrate the applicability of the sug-
gested intervention in formulating adaptive collaborative scripts in real-world
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collaborative learning sessions along with the lessons learned and the limita-
tions of the proposed approach. The final section provides concluding remarks
followed by future research directions.

2 Background

2.1 Adaptive collaboration scripts

CSCL scripts aim to facilitate productive interactions among distant or co-
present learners as free collaboration fails often to trigger productive group
interactions (Dillenbourg and Tchounikine, 2007). Scripts are based on the
scripted cooperation approach and provide a method for structured collabo-
ration which intends to achieve higher levels of cognitive processing and bet-
ter learning outcomes (Demetriadis and Karakostas, 2008). Scripts provide
instructions “for small groups of learners on what activities need to be exe-
cuted, when and by whom they need to be executed in order to foster individual
knowledge acquisition” (Weinberger et al, 2007). Many studies have reported
the effectiveness of using collaborative scripts towards achieving benefits of
collaboration (Rummel and Spada, 2007; Kollar et al, 2006).

Yet, at the same time, CSCL scripts have also been criticized for being
overly constrained limiting its modifiability during the script runtime (Dil-
lenbourg and Tchounikine, 2007). Lack of flexibility associated with CSCL
scripts and potential risks of over-scripting collaboration has highlighted the
requirement towards adaptive collaboration scripts that adjust script parame-
ters during script execution (Demetriadis and Karakostas, 2008). As described
in (Demetriadis and Karakostas, 2008) adaptive collaboration scripting “is
the idea that collaboration scripts can be adapted during runtime in sev-
eral of their aspects, to provide learning experiences tailored to individual
and group characteristics”. However, it is not possible to model any script
feature as an adaptation. Intrinsic constraints that preserve the underlying
pedagogy of a script are not considered as candidates for adaptation (Dillen-
bourg and Tchounikine, 2007). For instance, in a Jigsaw script, a constraint
that specifies each Jigsaw group requires to consist at least one member from
each expert group is an intrinsic constraint that is mandatory to be satis-
fied and cannot be modeled as an adaptive script parameter. On the other
hand, extrinsic constraints are related to the contextual aspects that lead to
a particular implementation of the pedagogy. As further illustrated in (Deme-
triadis and Karakostas, 2008) extrinsic constraints can be further divided into
two categories namely “Non-pedagogical” and “Pedagogical” constraints and
can be considered as candidates for adaptation. Non-pedagogical constraints
(constraints that do not possess any pedagogical relevance) e.g., duration of
a script phase, can be altered by teachers or students to better accommodate
the script to the given learning situation while Pedagogical constraints (e.g.,
increasing the level of support given to avoid learners misconceptions) should
be adapted to facilitate a better learning experience. CSCL scripting systems
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that embed adaptive scripting techniques have been referred to as Adaptive
Collaboration Scripting systems or ACS (Demetriadis and Karakostas, 2008).
ACS have been reported to be more effective than non-adaptive collabora-
tive learning systems as ACSs tailor the learning experience to the needs and
characteristics of both individuals and learner groups maximizing the benefits
from the scripted collaboration (Rummel et al, 2008).

Research has provided evidence that adaptive collaboration support pro-
vided in the form of prompts has a beneficial impact on student learning. In
(Kumar et al, 2007) adaptive collaborative learning support has been deployed
using tutorial dialogue agents. It has been found that the students who gained
dynamic support in terms of adaptive prompts have benefited significantly
from collaboration when compared to the no support condition. (Walker et al,
2014) have built an ACS to support peer tutoring in high school algebra. The
adaptive support has been built into the system (in terms of reflective prompts
that appear in the chat), to support peer tutors to provide correct and effec-
tive help. Authors have investigated the impact of adaptive support on peer
tutor learning and have shown that students in the adaptive support condi-
tion learned more than the students in the non-adaptive condition. Further,
as the adaptive support increases, the difference between learning gain in the
adaptive condition and the non-adaptive conditions became more apparent. In
(Baghaei et al, 2007) adaptive support was built into an intelligent tutoring
system in which students construct UML class diagrams that satisfy a given
set of requirements. Adaptive feedback was provided to groups while collabo-
rating on the design of UML class diagrams in order to guide them towards
the correct solution. It has been found out that students who received adap-
tive feedback while working with the system performed significantly better on
the collaborative task. In (Karakostas and Demetriadis, 2011), authors have
examined the use of adaptive prompts to enhance domain learning. The ACS
implemented in their study monitored students’ discussions in order to detect
whether students have missed to discuss important subject relevant concepts
during their discussions. When a missing concept was detected the system
provided a prompt to students showing the missing information. Authors have
shown that this mechanism has resulted in improved learning outcomes. In
(Demetriadis et al, 2018) authors have proposed the potential use of con-
versational agents in Massive Open Online Courses (MOOCs) to enhance the
MOOC experience of course participants. The study has described how conver-
sational agents can be applied to peer interaction sessions in order to enhance
the course engagement of MOOC participants that will help to reduce the
overall MOOC dropout rates while facilitating educators to better orchestrate
MOOC activities.

However, as emphasized in (Karakostas and Demetriadis, 2011) ACSs are
still at an early stage of research and most of the efforts that have implemented
adaptive support are strongly related to a particular domain of instruction.
Towards this end, the objective of our study is to emphasize the need for imple-
menting adaptive collaborative learning support considering not only learning
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that occurs within a specific domain in a particular space, but considering
diverse behaviours that occur in cross-context learning situations.

2.2 Cross-context learning and collaboration orchestration

With the increased access to emerging communication technologies, Learn-
ing Management Systems (LMS), MOOCs, Virtual Learning Environments
(VLEs), Social Networking Sites (SNS), and 3D Virtual Worlds (3DVWs) to
name a few, students learn across different digital learning spaces that spread
beyond the boundaries of physical spaces defined by traditional classroom
environments (Kloos et al, 2012; Martinez-Maldonado et al, 2016; Tsovaltzi
et al, 2015). Students engage in different learning activities in different learn-
ing spaces and associate different learning communities disregard the place
and time in which learning occurs. Such learning scenarios are referred to as
across-spaces learning situations, in which learning activities are not restricted
or constrained to a single physical or digital environment (Kloos et al, 2012).
Across-spaces learning scenarios provide valuable opportunities towards learn-
ing, since physical and social interactions that occur in ‘real-world’, outside
the traditional classroom, promote the acquisition of certain skills (Kloos et al,
2012).

Although distinct learning spaces provide a wide variety of learning oppor-
tunities towards learners, understanding how learning occurs across-spaces in
its totality combining multiple spaces is a complex task (Prieto et al, 2017).
This leads to challenges in being able to create interconnected flows between
different learning spaces (e.g., formal, informal, virtual spaces) in order to sup-
port learners while maintaining smooth transitions across different learning
spaces (Kloos et al, 2012). How existing pedagogical strategies e.g., collab-
orative learning, game-based learning can be effectively utilized considering
more complex and dynamic across-spaces learning situations that spreads be-
yond the traditional classroom walls have been identified as an interesting field
worth exploring (Kloos et al, 2012).

In the domain of CSCL, managing learning scenarios while adapting to a
number of different parameters both in real-time and across longer scales of
time, is referred to as “orchestration” of the collaborative learning activity
(Dillenbourg et al, 2011; Tissenbaum and Slotta, 2015). When considering the
cross-context learning situations the real-time management or the orchestra-
tion of collaboration become more challenging for educators than managing
traditional scripts in a single space e.g., classroom, as both macro and micro
script parameters now require being adjusted according to learning activities
that occurs across-contexts that associates complex technologies (Tissenbaum
and Slotta, 2015). Design and execution of complex collaborative scripts in
such scenarios demand increased levels of information processing needs of ed-
ucators and learners (Tissenbaum and Slotta, 2015). In such a context, learning
analytics can be effectively utilized to make simplified views on complex across-
spaces learning scenarios facilitating educators to make data-informed script
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design decisions. These script design decisions can then be used to formulate
adaptive collaboration scripts that tailor learning experiences to individual
students and group characteristics (Tissenbaum and Slotta, 2015). Further
during the execution of the scripts, learning analytics can be used to update
the educator on the status of collaboration occurs at different levels (e.g., in-
dividual level, group level) by showing which script parameters requires being
adjusted (e.g., time) and also by proposing dynamic group re-configurations
(e.g., learner dropouts in the middle of the activity) or by highlighting groups
that require intervention (Tissenbaum and Slotta, 2015). Apart from formu-
lating adaptive collaboration scripts, the association of intelligent agents and
real-time data mining techniques into learning environments have been shown
beneficial towards the orchestration of scripted cross-context learning situa-
tions (Tissenbaum and Slotta, 2015).

2.3 Collaborative learning and learning analytics

Learning analytics is defined as the “measurement, collection, analysis and
reporting of data about learners and their contexts, for the purposes of un-
derstanding and optimizing learning and the environment in which it occurs”
(Ferguson, 2012). Recently learning analytics gained a lot of attention as it
provides different mechanisms and techniques to better understand learners
(Dawson, 2006) while providing insights to improve teaching practices (Dyck-
hoff et al, 2013; Ferguson, 2012). During recent times, different learning an-
alytics techniques accompanied with data mining and machine learning have
been widely adopted in different learning contexts for different purposes as it
provides new ways to analyze data on students interactions, engagement, and
performances (Coffrin et al, 2014).

Different learning analytics techniques have been used in the domain of
CSCL to better understand collaborative interactions, participation behaviours,
knowledge building behaviours etc. of students in order to make productive in-
terventions during collaboration interactions. A number of mechanisms such as
process mining, sequential mining, data mining, social networking analysis and
different machine learning techniques such as predictive analytics, Bayesian
networks, and fuzzy logic have been effectively utilized in different studies to
address a number of research questions that have covered different aspects
of collaboration. For instance, some researchers have used data mining and
process mining techniques to analyze data collected in classroom collaborative
sessions to distinguish high from low achieving groups (Martinez-Maldonado
et al, 2013) while some researchers have used machine learning techniques,
i.e., Hidden Markov Models and multidimensional scaling techniques to an-
alyze conversational data collected during collaborative learning activities to
detect effective and non-effective knowledge sharing episodes (Soller, 2004).
Learning analytics have also been used to make productive interventions dur-
ing the collaborative construction of written documents (McNely et al, 2012).
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With the incorporation of predictive machine learning techniques, some
research has attempted to predict group learning performance in collaborative
learning sessions as it helps to determine better group-based assessment mea-
surements. For instance, Xing et al (2015) used activity theory to holistically
quantify student’s participation in CSCL activities, which was then used to
build a student performance prediction model, using Genetic Programming.
Goode and Caicedo (2014) have analyzed log data collected from a social media
website to measure group participation during a collaborative learning task. A
model was then proposed to predict team performance in future collaborative
learning activities using system-tracked log data. Cen et al (2016) have used
supervised machine learning techniques, i.e., classification and regression to
predict group performance using data which depicted member interactions.
Research has also focused on predicting post-test scores by taking into ac-
count pair interactions (Rafferty et al, 2013). Olsen et al (2015) have argued
that much of the research on learning predictions have focused on modeling
individual learning and much of the work does not attempt to predict student
performance as students collaboratively solve problems. In their work Olsen
et al (2015) have used a standard logistic regression model, i.e., Additive Fac-
tors Models which is widely used for predicting individual student performance
in the context of Intelligent Tutoring Systems (ITS) to predict collaborative
problem-solving performances of students in an ITS environment.

Based on some research already done in the field it was seen that different
learning analytics techniques have been broadly utilized to better understand
collaborative group learning processes as well as to predict group learning
performances. However, less attention is given to predict individual learners’
collaborative learning participation behaviour considering across-spaces learn-
ing situations, although such predictions can inform the formulation of adap-
tive collaborative learning scripts that adapts to diverse individual learning
behaviours observed in different learning spaces.

3 Participation Prediction as an Adaptive Collaborative Script
Parameter for Pyramid Based Collaborative Learning Scripts

Implementation of tools and techniques to enhance students’ engagement in
collaborative learning activities has been a research question of interest in the
Technology Enhanced Learning (TEL) research community for many years.
Formulation of homogeneous or heterogeneous learner groups based on learner’s
profile details (e.g., preferences, knowledge levels etc.) which were captured us-
ing questionnaires or surveys prior to the group formation process is one of
the frequently adopted method for criteria-based group formation until recent
times. This method has reported being effective at achieving specific objectives
in different collaborative learning situations (Spoelstra et al, 2015; Moreno
et al, 2012). However, with the increased use of online learning platforms for
teaching and learning, recent research has highlighted the feasibility of us-
ing data-driven learning analytics techniques to analyze trace data collected
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Fig. 1: A screenshot of the PyramidApp showing rating space (left) and the negotiation
space (right)

from online learning platforms to formulate meaningful collaborative learning
groups. The use of different data-driven techniques to identify team-formation
criteria was seen as beneficial to conduct fruitful collaborative sessions in both
co-located and distance learning environments (Sanz-Mart́ınez et al, 2017).

In the work presented in this study we propose an adaptive group formation
strategy in which an estimation of students’ future collaborative learning ac-
tivity participation was modeled as an adaptive script parameter considering
their cross-context learning behaviours. Predicted future activity participa-
tion differences of students were used in real-time to formulate heterogeneous
groups automatically in a pyramid-based collaborative learning script. A tool
called “PyramidApp” was used to operationalize pyramid-based collaborative
learning scripts (Manathunga and Hernández-Leo, 2018).

A pyramid flow is initiated with individual students proposing individual
answers to a global task. Then, in a second level of the pyramid, individual
students are allocated to a number of small collaborative learning groups in
which solutions are discussed and rated to agree upon a common proposal. In-
built discussion board of the tool provides a negotiation space for participants
at group levels to discuss and agree upon the individual options submitted.
Once a pyramid activity is designed and published by the educator it becomes
accessible to students via a public URL. Activity participants can access the
activity by logging to the PyramidApp tool using the given URL. A screenshot
of the PyramidApp is shown in Figure 1.

The proposed adaptive group formation strategy is seen vital in a pyramid-
based collaborative learning script for many reasons. Firstly, predictions inform
the formulation of meaningful group configurations. For instance formulation
of heterogeneous groups based on predicted activity participation differences
avoid the creation of homogeneous groups that consist only one type of par-
ticipants e.g., groups consist only inactive participants, yet facilitating the
meaningful progression of the collaborative learning activity.
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Secondly, as the Pyramid script evolves over time creating increasingly
larger groups, an active group i.e., a homogeneous group consist of active
participants, collaborating with an inactive group i.e., a homogeneous group
consist of inactive participants in the next levels of a pyramid will not result in
creating beneficial collaborative learning opportunities for the members of the
active group as they cannot build rich pedagogical interactions with members
of the inactive group who exhibited little or no interest towards collaboration.
Combining these type of homogeneous groups as one big group in the next
levels of the pyramid can demotivate members of the active group causing
unpleasant learning experiences.

Finally, the formulation of heterogeneous groups based on activity engage-
ment differences of students ensures that every group consists of at least a
portion of active participants who will actively contribute to the collabora-
tive learning task at hand. Assigning at least a few active participants in a
group can positively influence the inactive participants, as inactive participants
get a chance to observe meaningful collaborative interactions and productive
communicative acts occur among active participants. Being informed on the
positive interactions that occur among active participants can motivate and
encourage inactive participants to take part in the pyramid script in the next
levels.

3.1 Proposed approach

3.1.1 Formalization of the learning problem and feature representation

The prediction problem addressed in this study was treated as a binary clas-
sification problem, in which we attempted to use supervised machine learning
techniques to learn a classifier to predict the future collaborative learning ac-
tivity participation of individual students. The prediction problem addressed
in this study can be formulated using mathematical notations as follows.

Given a dataset of observations S = (x1, y1), ...., (xm, ym) where xi is a
vector specifying various individual student features (extracted from student-
platform interaction data) and yi ∈ 0, 1 representing whether or not a given
student will participate in collaborative learning activity, the problem is to
learn a classifier to infer value of yi given xi. The following sections describes
how we collected training data, feature generation and model selection pro-
cesses adhered in detail.

3.1.2 Data Collection

The training data used in this study were collected from two different learning
contexts: (i) Classroom learning context and (ii) Distance learning context.
In each learning context, two different learning spaces were used to collect
training data that described students’ individual and collaborative learning
behaviours.
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In the classroom context, we extracted data from a Moodle - an open source
Learning Management System (LMS) - course (164 cases). In the distance
learning context, we collected data from a MOOC course querying the Canvas
LMS REST API, which described students learning behaviour in a different
digital learning space (230 cases). In both spaces, the data consisted of records
that provided insights on individual student-platform interactions details (e.g.,
course content page views, forum discussion views, assignment submissions,
quiz attempts, quiz submissions and forum post submissions).

We conducted collaborative learning activities in the classroom and dis-
tance learning contexts to collect training data that depicted students’ col-
laborative learning behaviours. The collaborative learning activities were im-
plemented using PyramidApp. The Pyramid script adopted in both contexts
consisted of five phases: (i) an individual phase where students study a learn-
ing material and formulate their own answers to a given question related to
the material studied (ii) an individual phase where students log in to the Pyra-
midApp and submit individual answers (iii) a small group collaborative phase
where students discuss and rate individual answers submitted (iv) a larger
group collaborative phase in which students further discuss and rate answers
previously selected or best rated in small group levels (v) a debriefing session,
where the teacher explained the best rated/ winning answers of each pyramid.

Since the training data collected was originated from different data sources
i.e., PyramidApp, Moodle LMS course, MOOC course, data preprocessing be-
came mandatory in order to interpret meaningful information out of raw data.
During data preprocessing, for each individual student s, we considered event
history up to time t in Moodle LMS course log data and MOOC course log
data, given that the student has participated in small group collaboration
phase in pyramid script at time t. During pre-processing we had to deal with
unstructured data as there had no predefined data model in-place for data
gathering from multiple sources in cross-context learning situations. In partic-
ular, date-time formats were not consistent and needed to convert them to a
common date-time format without losing any important information.

After data preprocessing stage, we built two data sets: (i) a data set merg-
ing PyramidApp log data with Moodle LMS course data that described col-
laborative and individual learning behaviours of a particular set of students
(ii) a data set merging PyramidApp log data with MOOC course data that
described collaborative and individual learning behaviours of a particular set
of students (see Figure 2). The two data sets were later used to train and test
machine learning classifiers.

3.1.3 Feature selection

The accuracy of a given classification task depends on the choice of informa-
tive and discriminating features that are provided as inputs to the supervised
learning algorithm (Cen et al, 2016). In the following, we describe the features
used in this study for prediction purposes.
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Fig. 2: Heterogeneous data sources

We used a correlation-based approach for feature selection since the re-
moval of irrelevant and redundant features often improves the performance
of machine learning algorithms (Yu and Liu, 2003). Based on correlation co-
efficient values it was observed that in both learning contexts some features
positively or negatively correlated with the class, while some features do not
have a relationship with class variable (correlation coefficient was zero). Based
on the results of the correlation analysis in the classroom context the input
vector xi included seven input features (generated using Moodle LMS log data
and PyramidApp Log Data) as mentioned below:

– Total number of course page views before collaborative activity participa-
tion

– Total number of forum discussion entry views before collaborative activity
participation

– Total number of quiz attempts before collaborative activity participation
– Total number of quiz submissions before collaborative activity participa-

tion
– Total number of assignment submitted before collaborative activity par-

ticipation
– Student’s participation in the initial stage of the pyramid activity
– Student’s collaborative activity participation (class variable)

In the distance learning context the input vector xi included ten input
features (generated using MOOC course log data and PyramidApp log data)
as mentioned below:

– Total number of course page views before collaborative activity participa-
tion

– Total number of assignment submitted before collaborative activity par-
ticipation
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– Total number of discussion entries posted before collaborative activity par-
ticipation

– Total number of quiz submissions before collaborative activity participa-
tion

– Total number of quiz attempts before collaborative activity participation
– Total number of quizzes answered correctly
– Total number of quizzes answered incorrectly
– Total quiz score
– Student’s participation in the initial stage of the pyramid activity
– Student’s collaborative activity participation (class variable)

In both contexts, the class variable yi was used to specify each individual
student’s collaborative activity participation. In other words, yi can take one
out of the two values in the classification task in which, 1 depicting ‘yes’ and 0
depicting ‘no’ with regard to the small group collaborative phase participation
of each individual during pyramid script enactment.

3.1.4 Algorithm implementation and model selection

To predict individual student’s collaborative activity participation in Pyramid
activities, we explored the applicability of three widely adapted supervised
machine learning techniques: Support Vector Machines (SVMs), Feed Forward
Neural Networks (FFNNs) and Random Forests (RFs). In the following, we
provide a brief explanation of each model.

The SVMs are pioneered by Vapnik (Vapnik, 2013) and have been used
to solve both classification and regression problems in different contexts, al-
though it is widely used to solve classification problems. The SVMs construct
a hyperplane(s) usually in the high dimensional space, in order to separate
two data classes, i.e., positive and negative instances in a given dataset. Intu-
itively, the maximum-margin hyperplane, which represents the largest margin
between two data classes achieves the best possible separation and has been
proven to lower the classifier’s expected generalization error (Kotsiantis et al,
2007). The FFNN is an artificial neural network which simulates the function-
ality and behaviour of biological neurons (Hagan et al, 1996). FFNNs typically
consist three types of layers: (i) input layer–consists of input nodes, (ii) one
or more hidden layers–consist of hidden nodes, and (iii) output layer–consists
output nodes. In FFNNs information flow only in one direction through the
network from the input layer to the output layer, without forming cycles in
the network. During the training phase of the network, network parameters
(e.g., weights and biases) requires being adjusted using back-propagation algo-
rithm. Afterward, the trained network can be presented with unseen test data
for classification tasks. Finally, RFs is an ensemble learning technique used
for classification tasks. In general ensemble learning techniques generate many
classifiers and aggregate their results to provide a final classification output.
During the training phase of RFs, a number of decision trees are being gener-
ated and the mode of the classes output by individual trees is provided as the
prediction output (Breiman, 2001).
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Table 1: Prediction performance accuracy comparisons of different models using 10-fold cross
validation

Learning context Model Accuracy score

Classroom SVMs* 0.82
NNs 0.81
RFs 0.79

Distance SVMs 0.80

NNs* 0.81
RFs 0.78

* Best performed model in each learning context

The aforementioned classification algorithms were implemented using scikit-
learn machine learning library 1. Each algorithm was trained separately in both
learning contexts, i.e., classroom and distance learning, to determine the best
performing classifier. To obtain the best hyper-parameters for each algorithm
a grid search was carried out. Each model, i.e., an algorithm with best hyper-
parameters, was then evaluated using K-fold cross-validation method given its
benefits over train/test split procedure. In particular, we implemented 10-fold
cross-validation, which has been shown as a reliable estimate in the litera-
ture towards model evaluation (Cen et al, 2016). Table 1 provides the cross-
validation accuracy of each model. Based on cross-validation accuracy scores
it was seen that SVMs outperformed other models when predicting collabora-
tive activity participation in classroom context while NNs performed slightly
better than SVMs in distance learning context.

4 Evaluation: Formulation of adaptive collaborative learning
groups in Pyramid scripts in real-time

In the following sections, we present case studies in which we used the predic-
tion outcomes of the best performed models i.e., SVMs in classroom learning
context and NNs for distance learning context (see Table 1) to formulate adap-
tive collaborative learning groups in pyramid scripts in real-time.

Figure 3 shows the architecture adapted for this purpose. As can be seen in
Figure 3 the prediction output (which differentiated active vs. inactive partic-
ipants) was associated with the other learning design parameters (e.g., group
size, time allocation, number of pyramid levels) of the Pyramid script dur-
ing the activity design stage. Heterogeneous groups were then formulated in
real-time during small group collaboration stage of the Pyramid script auto-
matically.

1 http://scikit-learn.org
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Fig. 3: Pipeline-Integrating prediction results as collaborative script parameters

Table 2: PyramidApp design parameters for classroom activities

Design Parameter Value

No. of Pyramid Levels 3 (e.g., initial answer submission stage,
small group collaboration stage and
large group collaboration stage)

Minimum students per Pyramid 6
Small group size 3
Initial answer submission time 5 mins.
Rating submission time 4 mins.

4.1 Case studies

4.1.1 Collaborative learning activities in classroom context

We carried out collaborative learning activities in four undergraduate classes
in January 2018. First year undergraduate engineering students who were en-
rolled in Computer Organization course participated, with informed consent,
in the collaborative learning activities. Prior to the activity enactment, we did
a demonstration explaining the flow of the activity.

Design elements associated with pyramid activities conducted in classroom
sessions are shown in Table 2. Based on design configurations of the Pyrami-
dApp, i.e., the minimum number of learners per Pyramid, a number of pyra-
mids were instantiated allocating participants to Pyramids who logged into
the system at different times. Further details about the implementation of
this tool can be found in (Manathunga and Hernández-Leo, 2018). The task
given to students was related to a programming problem, in which the students
were asked to collaboratively decide the best answer to the given programming
problem. Predicted future collaborative learning activity participation of each
student (obtained from trained SVM model) was incorporated to formulate
heterogeneous groups automatically in the small group collaboration level of
the Pyramid script.
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Fig. 4: Overall accuracy of prediction in classroom context

4.1.2 Results

We adopted a similar decision scheme proposed in (Lykourentzou et al, 2009)
to evaluate the prediction accuracy of the machine learning models during
case studies conducted in the real-world context. We modified their decision
scheme to match with the specific prediction problem we are interested in,
although the original work was related to dropout prediction in an e-learning
system. Following paragraphs describe the decision scheme adapted and the
interpretation of the results.

The overall accuracy criterion (see equation 1) measures on average the
proportion of accurately predicted active and inactive participants given the
total number of activity participants. Figure 4 depicts the overall accuracy
results of the machine learning model. The vertical axis in Figure 4 presents
the overall accuracy and the horizontal axis represents each pyramid starting
from P1 which refers to the first pyramid and so on in each classroom session.

Based on the overall prediction accuracy results, it was observed that in
many pyramids the classifier has achieved an overall prediction accuracy which
was above 50%. However in P8 generated in classroom session 1, P5 generated
in classroom session 2, P2 generated in classroom session 3 and in P5 generated
in classroom session 4, the overall accuracy has dropped below 50%, which is
much less than the performance accuracy score reported during 10-fold cross-
validation for SVM classifier which was 0.82 (see Table 1).
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Table 3: PyramidApp design parameters for MOOC activities

Design Parameter Value

No. of Pyramid Levels 3 (e.g., initial answer submission level,
small group level and
large group level)

Minimum students per Pyramid 15
Small group size 5
initial answer submission time 1 day
Rating submission time 1 day

4.1.3 Collaborative learning activities in MOOC context

We conducted two Pyramid collaborative learning activities in a MOOC course
named Concepts and Practice of Responsible Research and Innovation in Febru-
ary 2018. The first pyramid activity asked course participants to discuss which
responsible research and innovation practices are easier to implement while in
the second activity students were asked to discuss which responsible research
and innovation practices are difficult to implement. Design parameters asso-
ciated with the Pyramid activities are given in Table 3. Participants were
informed that the activity was voluntary and that activity participation was
part of a research experience and responses collected will be treated anony-
mously.

4.1.4 Results

In contrast to the classroom pyramid activities presented earlier (see Sect. 4.1.1)
in which we formulated adaptive collaborative groups based on prediction re-
sults, within the MOOC context we were unable to do the same due to the
poor performance of the trained NNs classifier. The predicted outcome of the
classifier was 0 for all the students which indicated that none of the students
will participate in the collaborative learning activity. Training data sets that
constituted a limited number of samples that are also imbalanced with regard
to the target class may have caused the aforementioned issue. Hence, we at-
tempted to improve the classifier’s performance by using normalized features
and by introducing new features which were calculated based on percentile
ranks (see below) that have been reported to enhance the performance of the
classifier accuracy in previous studies conducted in the field (Taylor et al,
2014). We have used the same training data set described in section 3.1.2 to
recalculate the features to train and test the NNs classifiers using 10-fold cross
validation.

– Total number of course page views before collaborative activity participa-
tion (normalized)

– Total number of assignment submitted before collaborative activity par-
ticipation (normalized)
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Fig. 5: Overall accuracy of prediction in MOOC context

– Total number of discussion entries posted before collaborative activity par-
ticipation (normalized)

– Total number of quiz submissions before collaborative activity participa-
tion (normalized)

– Total number of quiz attempts (normalized)
– Total number of quizzes answered correctly (normalized)
– Total number of quizzes answered incorrectly (normalized)
– Total quiz score (normalized)
– Total number of course page views before collaborative activity participa-

tion as a percentile
– Total number of assignment submitted before collaborative activity par-

ticipation as a percentile
– Students participation in the initial stage of the pyramid activity
– Students collaborative activity participation (class variable)

4.1.5 Improved classifier performance

At the time of presenting the results of the study, we did not have access to an
on-going MOOC to evaluate the performance of the improved NNS classifier
in real-time. In Figure 5, we present the overall accuracy of the improved
classifier as calculated considering the predicted outcome against the actual
collaborative learning activity participation of students within the MOOC
collaborative learning activities described in Sect. 4.1.3

When considering the overall prediction accuracy, it was observed that in
both activity 1 and activity 2 classifier has achieved relatively higher levels of
overall accuracy rates which are above 50%. In particular, during activity 1,
in P4 the overall classification accuracy has increased over 90% which shows a
good prediction performance. However, in P1 in activity 2, the overall accuracy
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has dropped below 60%, which is much less than the overall accuracy observed
in other pyramid activities.

4.2 Discussion

Figure 4 and Figure 5 summarize the prediction performance of the machine
learning classifiers in predicting future collaborative learning activity partic-
ipation of students. The overall accuracy criteria was used to measure the
proportion of active (students who will participate in the collaborative learn-
ing activity) and inactive participants (students who will not participate in
the collaborative learning activity) correctly predicted by the SVM and NNs
classifiers in classroom and distance learning contexts respectively. A Cohen’s
kappa measure has been calculated to better elaborate the prediction perfor-
mance of the classifiers in the two different learning contexts. In the classroom
setting it was seen there was no agreement between the instances classified
by the machine learning classifier and the data labeled as ground truth (k
= 0.211, p > 0.001). In order to better understand the reason behind the
poor performing classifier we have further analyzed the characteristics of the
learner’s profiles in both training and test datasets in the classroom context.
It became evident that in the classroom setting the time frame in which we
placed the evaluation studies has affected the classifier performance. The test
data did not contain records of quiz taking behaviours of students, due to the
fact that by the time we placed evaluation studies in the classroom context,
no quiz related activities were posted in the LMS (as it was the beginning of
the semester). Being unable to have access to the quiz related data which was
seen as the most correlated variable and the fact of being inactive, describes
the poor performance of the classifier in the classroom setting. In general, the
noisy data in the classroom setting has resulted in a poor performing classifier.
A Cohen’s kappa measure has also been calculated to evaluate the prediction
performance of the improved classifier in the distance learning context. A
moderate agreement between the instances classified by the machine learning
classifier and the data labeled as ground truth (k = 0.625, p < 0.001 ) was
observed within this context.

4.3 Limitations of the study

In this study, we have attempted to emphasize the use of predictive analytics to
inform the adaptive collaborative scripting in across-spaces learning situations.
We have presented how machine learning techniques can be used to obtain an
estimate on future collaborative learning activity participation of students
based on data collected from different learning spaces that described their
individual and collaborative learning behaviours in previous activities. The
findings of the present study should be interpreted in light of the following
limitations.
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One of the major limitations of our study is the use of training data sets
that constituted a limited number of samples that are also imbalanced with
regard to the target class. A larger and balanced dataset can potentially en-
hance the model performance creating opportunities to obtain more accurate
test results. Although the current accuracy level of predictions is informative
to achieve the objective of the study (which is to formulate adaptive col-
laborative learner groups based on future collaborative activity participation
differences of students) more accurate predictions can provide more reliable
estimates with increased overall accuracy levels.

On the other hand, the time frame in which we collected training data
and the time in which we have positioned the evaluation studies (due to the
designs of each real-world learning scenarios) have affected the classifier per-
formance. In the classroom context and distance learning context the train-
ing data collected from Moodle LMS and MOOC API respectively depicted
student-platform interactions for a period of one week. In the classroom con-
text the educator conducted pyramid activities at the beginning of the course
and in the distance learning context, the MOOC course was designed to have
collaborative learning activities in the first and second week. As it was men-
tioned earlier, for each individual student s we considered event history up to
time t in Moodle LMS course log data and MOOC course log data, given that
the student has participated in small group collaboration phase of pyramid
script at time t. Hence, the log data obtained to train classifiers from both
Moodle LMS and MOOC platform consisted of records that described indi-
vidual learners learning behaviour for a short period of time. On the other
hand, in the classroom context, the evaluation studies were conducted in an-
other course after three weeks from the course start date. The structure of the
course was different from the course which we used to collect training data and
consisted of records that described student-platform interactions over a rela-
tively longer duration. In other words, the differences associated with the time
frames in which we positioned the evaluation studies in the classroom context
and the differences associated with the structure of the course make it difficult
to model individual students which resulted in a more difficult prediction task.

Finally, the present study does not evaluate whether the impact of adap-
tive collaborative scripting is more beneficial to students than non-adapted
collaborative scripts. As it was mentioned earlier, the main focus of the study
was to evaluate whether predictive analytics can be used to inform the for-
mulation of adaptive collaborative learning groups in the context of CSCL
considering across-spaces learning situations and how such predictions can
be used to formulate adaptive collaborative learner groups automatically in
real-time. However, from a pedagogical perspective, it is important to mea-
sure whether the proposed adaptive group formation strategy has created an
impact on students. Whether adaptive group configurations has resulted in
increased learning gains, other than facilitating to maintain the flow of col-
laboration across pyramid levels is an important aspect which requires to be
further researched.
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5 Conclusions and Future Work

In this study, we have presented how predictive analytics inform the formu-
lation of adaptive collaborative group configurations in the context of CSCL.
The main contribution of the present study is the use of data collected in
cross-context learning situations that exhibited students’ prior activities, to
predict future collaborative learning activity participation of students in a
pyramid-based script. The prediction problem of interest was modeled as a
supervised machine learning problem and solved using well-known supervised
machine learning techniques, i.e., SVMs and NNs. Each classifier was tested
using 10-fold cross-validation to evaluate model performance. During several
case studies conducted in two different learning contexts i.e., classroom and
distance learning context, we then incorporated the prediction results obtained
from machine learning models to formulate adaptive group configurations in
pyramid-based collaborative learning sessions.

Findings of the case studies showed that the data collected from across-
spaces learning scenarios is informative to automatically classify students that
can then allow teachers to make more informed adaptive group configurations
adapting to the estimated activity engagement differences of students. Most
importantly, the work presented in this article conveys that the learning oc-
curs in one space is informative to learning that occurs in another space, which
highlights the interesting connections exist across different learning spaces al-
though understanding the complex interplay between different learning spaces
and interpreting the connections that lie across-spaces is a challenging task
that requires effort. Nevertheless, it should be pointed out that the present
study sheds light on the applicability of learning analytics techniques i.e. pre-
dictive analytics to make those connections explicit in a useful manner suggest-
ing that application of sophisticated learning analytic techniques can advance
this field of research. We consider the work presented in the study is an impor-
tant step for the field to begin to use previous behavioural data to understand
how to create interventions in later activities. Although the present study lacks
a discussion on how the interventions developed using the predictions impact
students, we argue that understanding the predictions themselves is important
and showing that these can be calculated in real-time even with scare data
available that exhibited previous activities of students in cross-context learn-
ing situations is an important contribution of our work. As it was described in
previous studies (Liaw and Huang, 2000; Northrup, 2001) interactions among
participants does not occur automatically, rather intentionally designed col-
laborative learning activities facilitate interactions. Towards this end, we hope
that the proposed adaptive group formation approach that attempts to formu-
late groups based on activity participation differences of students is a mean-
ingful strategy that will facilitate students to gain benefits of collaboration.

Moreover, some of the lessons learned and observations captured while
conducting evaluation studies in real-world context are interesting to be sum-
marized in the conclusions. For instance, when conducting evaluation studies
in the classroom context we realized not only the features extracted from log
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data but also features that describe learner’s cognitive-affective states such
emotions, moods, feelings, which could be captured in the physical space using
sensory inputs can provide useful information to generate fine-grained predic-
tive models as those states can vastly dominate learning activity participation
of students. Incorporation of such relevant data that further describe learner’s
behaviours in different perspectives in different modalities may enhance the
model performance. On the other hand, the technological tools that used to
enable and structure collaborative learning session alone may not necessarily
result in productive learning activity gains. Interactions that occur among stu-
dents physically in the classroom require to be continuously reinforced by the
educator in order to maintain students attention towards the learning activity
which adds to the “orchestration load” of the educator (Prieto et al, 2018). We
have observed in several instances that students missed the participation in
different levels of the pyramid script as they speak with the colleagues sitting
next to them or due to lack of attention towards collaborative learning task
e.g., checking notifications on their mobile phones. Although some of these stu-
dents might have been classified as active participants who would contribute to
the collaborative learning task (based on the behaviour they have exhibited in
the Moodle space), it was observed that the classroom behaviour of students
cannot be fully described alone using log data, which highlighted the need
for incorporating physiological, behavioural and subjective data that better
describe learners behavior in real classroom settings (Prieto et al, 2018). For
instance, the NISPI framework suggested in (Cukurova et al, 2018) provides
a good understanding of how physiological measures can be used to iden-
tify Collaborative Problem Solving (CPS) competence levels of students. As
described in (Cukurova et al, 2018) hand position and heads direction data
provide useful information to predict CPS competency levels of students. The
applicability of such physiological measures to predict the quality of collabo-
ration among groups of students are presented in (Spikol et al, 2018). (Grover
et al, 2016) have provided evidence that physiological measures such as screen
pointing, leaning forward, joint attention (looking at screen), taking the mouse
(with or without consent) and synchrony in body position are useful features
in predicting the level of collaboration in pair programming context.

On the other hand, in the distance learning context, it was observed that
the two different MOOCs that we used to collect data and to position eval-
uation studies are different in nature which can cause a significant effect on
the accuracy of the prediction results. Training data was collected from a
MOOC designed for secondary and higher education teachers while evaluation
studies were placed in a MOOC which was designed for a research-oriented
audience. We have observed that the engagement of MOOC students in collab-
orative learning activities varied drastically in the two MOOC contexts. Lack
of contextual information presented when training machine learning models
can also affect the accuracy of the real-time prediction. In the future, we plan
to consider these lessons learned, to extend the data sources considered, the
experimentation in diverse contexts, the evaluation of its impact in terms of



Title Suppressed Due to Excessive Length 23

learning gains, and the provision of orchestration dashboards for teachers to
monitor and regulate the adaptive scripts.
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