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Abstract

The deformation of applicable surfaces such as sheets of paper satisfies the differential
geometric constraints of isometry (lengths and areas are conserved) and vanishing Gaussian
curvature. We show that these constraints lead to a closed set of equations that allow recovery of
the full geometric structure from a single image of the surface and knowledge of its undeformed
shape. We show that these partial differential equations can be reduced to the Hopf equation
that arises in non-linear wave propagation, and deformations of the paper can be interpreted
in terms of the characteristics of this equation. A new exact integration of these equations is
developed that relates the 3-D structure of the applicable surface to an image. The solution is
tested by comparison with particular exact solutions. We present results for both the forward
and the inverse 3D structure recovery problem.

Keywords: 3D structure recovery, unwarping, applicable surface, differential geometry, sin-
gle view

1 Introduction

When a picture or text printed on paper is imaged, we are presented with a problem of unwarping
the captured digital image to its flat, fronto-parallel representation, as a preprocessing step before
performing tasks such as identification, or Optical Character Recognition (OCR). In the case that
the paper is flat, the problem reduces to one of undoing a projection of an initial shape such as a
rectangle, and the rectification (or unwarping) can be achieved by computing a simple homography.
A harder problem is when the piece of paper is itself deformed or bent. In this case the unwarping
must undo both the effects of the three-dimensional bending of the surface, and the imaging process.

The differential geometry of surfaces provides a very powerful set of relations for analysis of
the unwarping. However, most quantitative use of differential geometry has been restricted to range
data, while its use for image data has been primarily qualitative. The deformation of paper surfaces
satisfies the conditions of isometry and vanishing Gaussian curvature. Here, we show that these
conditions can be analytically integrated to infer the complete 3D structure of the surface from an
image of its bounding contour.

Previous authors have attempted to enforce these conditions in 3D reconstruction. However,
they essentially enforced these as constraints to a process of polynomial/spline fitting using data
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obtained on the surface [17]. In contrast, we solve these equations, and show that information on
the bounding contour is sufficient to determine structure completely. Further, exact correspondence
information along the bounding contour is not needed. We only need the correspondences of a few
points, e.g., corners. Other than its theoretical importance, our research can potentially benefit di-
verse computer vision applications, e.g. portable scanning devices, digital flattening of creased doc-
uments, 3D reconstruction without correspondence, and perhaps most importantly, OCR of scene
text.

2 Previous work

A seminal paper by Koenderink [9] addressed the understanding of 3D structure qualitatively from
occluding contours in images. It was shown that the concavities and convexities of visual contours
are sufficient to infer the local shape of a surface. Here, we perform quantitative recovery of 3D
surface structure for the case of applicable surfaces. While we were not able to find similar papers
dealing with analytical integration of the equations of differential geometry to obtain structure, the
following papers deal with related problems of unwarping scene text, or using differential geometric
constraints for reconstruction.
Metric rectification of planar surfaces: In [2, 12, 16] algorithms for performing metric recti-

fication of planar surfaces were considered. These papers extract from the images, features such as
vanishing lines and right angles and perform rectification. Extraction of vanishing lines is achieved
by different methods; such as the projection profile method [2] and the illusory and non-illusory
lines in textual layouts [16].

Undoing paper curl for non-planar surfaces knowing range data: A number of papers
deal with correcting the curl of documents using known shape (e.g. cylinders) [7, 21]. These
approaches all need 3D points on the surface to solve for the inverse mapping. In [17] sparse 3D
data on the curled paper surface was obtained from a laser device. An approximate algorithm to fit
an applicable surface through these points was developed that allowed obtaining dense depth data.
The isometry constraint was approximately enforced by requiring that distances between adjacent
nodes be constant. In [1] a mass-spring particle system framework was used for digital flattening
of damaged documents using depth measurements, though the differential geometry constraints are
not enforced.
Isometric mapping: In [8] an algorithm is developed to bend virtual paper without shearing or

tearing. Ref. [15] considers the shape-from-motion problem for shapes deformed under isometric
mapping.

3 Theory

3.1 Basic surface representation

In a 3D world coordinate system (x, y, z), a surface r =(x, y, z), can be mathematically represented
in explicit, implicit and parametric forms respectively as:

z = f(x, y), F (x, y, z) = 0, r(u, v) =(X(u, v), Y (u, v), Z(u, v)). (1)
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Figure 1: Parametric representation of a surface.

We consider a smooth surface S expressed parametrically as r(u,v) in Equation (1), which is a
mapping from any point (u, v) in the parametric (or undeformed) plane, the uv-plane, to a point
(X,Y,Z) on the surface in 3D (see Figure 1).

The sets {r(u, v), v = const} and {r(u, v), u = const} represent two families of curves on
the surface. The partial derivatives with respect to u and v can be denoted as ru and rv and are the
tangent vectors to the curves v = const and u = const, respectively [11]. The element of distance
ds = |dr| on the surface is given at each surface point (u, v) by the first fundamental form of a
surface

ds2 = |dr|2 = |ru|2du2 + 2ru · rv dudv + |rv|2dv2 = E du2 + 2F dudv +G dv2, (2)
E(u, v) = |ru|2, F (u, v) = ru · rv, G(u, v) = |rv|2.

The surface coordinates are orthogonal iff F ≡ 0. The surface normal n and area element dA can
be defined in terms of the tangent vectors as:

n =
ru × rv
|ru × rv| , dA = |ru × rv| dudv =

p
EG− F 2 dudv. (3)

The second fundamental form of a surface at a point (u, v)measures how far the surface is from
being planar. It is given by

−dr·dn = L(u, v)du2 + 2M(u, v)dudv +N(u, v)dv2, (4)

where L,M and N are defined as[11]:

L(u, v) = −ru · nu = ruu · n, (5)
M(u, v) = −ru · nv = ruv · n,
N(u, v) = −rv · nv = rvv · n.
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Here the second derivatives of r with respect to u and v are denoted as ruu, ruv and rvv.
For every normal section through (u, v) there exist two principal curvatures k1 and k2. The

mean,H(u, v), and the Gaussian,K(u, v), curvatures are defined as:

H ≡ k1 + k2
2

=
1

2

EN − 2FM +GL

EG− F 2 , K ≡ k1k2 = LN −M2

EG− F 2 . (6)

3.2 Special surfaces

Let us assume that we have a mapping of a point in the parametric plane (u, v) to a point in 3D
r =(X,Y,Z). The mapping is isometric if the length of a curve or element of area is invariant with
the mapping, i.e.

E(u, v) = |ru|2 = 1, F (u, v) = ru · rv = 0, G(u, v) = |rv|2 = 1. (7)

Lengths and areas are conserved in an isometric mapping

ds2 = |dr|2 = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2 = du2 + dv2,
dA =

p
EG− F 2 dudv = dudv. (8)

The mapping is conformal if the angle between curves on a surface is invariant of the mapping
(F = 0). It is developable if the Gaussian curvature is zero everywhere.

K = 0 =⇒ LN −M2 = 0. (9)

It is stated in [10] that two surfaces are applicable to each other if the mapping between them
conserves the first fundamental form, and the Gaussian curvature. According to this definition a
surface is applicable to a plane if the surface is isometric with a plane (7) and the Gaussian curvature
vanishes (9) for every point on the surface. In this paper we simplify the terminology and refer to a
surface applicable to a plane as an “applicable surface.”

4 Partial differential equations describing an applicable surface

Here we prove two theorems, which provide partial differential equations that describe applicable
surfaces.

Theorem 1 For a surface r = r(u, v) isometric to a plane, the normal vector n is collinear to the
vectors ruu, ruv, rvv:

n k ruu k ruv k rvv. (10)

Proof. If we differentiate the first and third equations in (7) with respect to u and v, we obtain:

ruu · ru = ruu · rv = ruv · ru = ruv · rv = rvv · ru = rvv · rv = 0. (11)
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This shows that the vectors ruu = (Xuu, Yuu, Zuu), ruv = (Xuv, Yuv, Zuv), and rvv = (Xvv, Yvv, Zvv)
are perpendicular both to ru and rv and, consequently, are collinear with the normal vector to the
surface. This can be written as:

n =aruu = bruv = crvv, (12)

or in the form (10).

Corollary 2 Let W (u, v) and Q(u, v) denote any of the functions X(u, v), Y (u, v), and Z(u, v)
which describe a surface isometric to a plane. Then

WuuQvv =WvvQuu, WuuQuv =WuvQuu, W,Q = X,Y,Z. (13)

Proof. It follows from Theorem 1 that ruu × rvv = 0 and ruu × ruv = 0. These equations
written for each component in Cartesian coordinates r(u, v) = (X(u, v), Y (u, v), Z(u, v)) result
in (13).

Theorem 3 LetW (u, v) denote any of the functionsX(u, v), Y (u, v), and Z(u, v) which describe
an applicable surface. Then

WuuWvv =W
2
uv, W = X,Y,Z. (14)

Proof. Substituting (5) into (9) we obtain for surfaces of zero Gauss curvature:

(ruu · n)(rvv · n)− (ruv · n)2 = 0. (15)

Then we can use the relation (12) for surfaces isometric to a plane. For applicable surfaces, then

ac− b2 = 0, (16)

where a, b, and c are the scalars in (12). Further

Wuv

Wuu
=
a

b
=
b

c
=
Wvv

Wuv
, W = X,Y,Z. (17)

Solving the set of nonlinear higher order partial differential equations (PDEs) (14) one can com-
pute the surface structure r in 3D, given boundary conditions (the boundary curves) for an applicable
surface. These equations may be solved by conventional methods of numerically solving PDEs e.g.,
using the Finite Difference method or the Finite Element Method. However, the development and
implementation of efficient solvers for nonlinear PDE can be a difficult task. Below we provide a
much more efficient method based on reduction of the order of PDEs and, finally, reduction of the
problem to integration of several simultaneous ordinary differential equations (ODEs).
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4.1 First integral and reduction to ordinary differential equations

Below we formulate our main results, which demonstrates the integrability of the system of PDEs
describing applicable surfaces. These theorems also provide explicit expressions for integrals and
conditions on the characteristics of the PDEs that can be treated as ODEs, which further can be used
for solution of forward and inverse problems for warping and unwarping.

Theorem 4 Let r = r(u, v) be an applicable surface with tangent vectors ru(u, v) and rv(u, v).
Then there exists a scalar function (which we call the mapping function) t = t(u, v) , such that

ru(u, v) = R
(u) (t(u, v)) , rv = R

(v) (t(u, v)) , (18)

whereR(u) (t) andR(v) (t) are some vector functions of the single variable t.

Proof. Consider the functions Xu(u, v) and Xv(u, v). These functions satisfy the following
consistency conditions

Xuv =
∂Xu
∂v

=
∂Xv
∂u

= Xvu. (19)

With this condition, equation (14) for W = X can be interpreted as the degeneracy condition
for the Jacobian of the mapping (u, v) 7−→ (Xu,Xv):

∂ (Xu,Xv)

∂(u, v)
=

∂Xu
∂u

∂Xv
∂v
− ∂Xu

∂v

∂Xv
∂u

= 0. (20)

This shows that there exists a function t(x)(u, v), such that

Xu(u, v) = eX(u)(t(x)(u, v)), Xv(u, v) = eX(v)(t(x)(u, v)), (21)

where eX(u)(t(x)) and eX(v)(t(x)) are some scalar functions of the single variable t(x). Similarly, the
consistency condition and equation (14) can be applied to the functions Yu, Yv to show that there
exists a function t(y)(u, v), such that these derivatives can be considered as functions of a single
variable t(y) :

Yu(u, v) = eY (u)(t(y)(u, v)), Yv(u, v) = eY (v)(t(y)(u, v)). (22)

Using the prime to denote derivatives of functions, we have from equations (21) and (22):

Xuu = eX(u)0∂t(x)

∂u
, Xuv = eX(u)0∂t(x)

∂v
, Yuv = eY (u)0∂t(y)

∂v
, Yuu = eY (u)0∂t(y)

∂u
. (23)

Now if we substitute these relations into the second equation (13), where we set W = X and
Q = Y, we can see that the Jacobian of the transform (u, v) 7−→ ¡

t(x), t(y)
¢

is zero:

∂
¡
t(x), t(y)

¢
∂(u, v)

=
∂t(x)

∂u

∂t(y)

∂v
− ∂t(x)

∂v

∂t(y)

∂u
= 0. (24)
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This means that there exists a function t(u, v), such that

t(x)(u, v) = T (x)(t(u, v)), t(y)(u, v) = T (y)(t(u, v)), (25)

where T (x)(t) and T (y)(t) are functions of a single variable t. Therefore, if we define functions
X(u),X(v), Y (u), and Y (v) of variable t as

X(u)(t) = eX(u)(T (x)(t)), X(v)(t) = eX(v)(T (x)(t)), (26)
Y (u)(t) = eY (u)(T (y)(t)), Y (v)(t) = eY (v)(T (y)(t))

we obtain

Xu = X
(u)(t), Xv = X

(v)(t), Yu = Y
(u)(t), Yv = Y

(v)(t).

Obviously, we can add to this list the relations

Zu = Z
(u)(t), Zv = Z

(v)(t), (27)

since all the above relations hold also for the z-component (one can simply replace all Y ’s with
Z’s). This proves the theorem, since the scalar functions can be arranged as components of a vector
function as:

R(u) (t) =
³
X(u)(t), Y (u)(t), Z(u)(t)

´
, R(v) (t) =

³
X(v)(t), Y (v)(t), Z(v)(t)

´
. (28)

Corollary 5 If the conditions of theorem 4 hold, the normal to the applicable surface is a function
of t alone:

n(u, v) = N (t(u, v)) , N (t) = R(u) (t)×R(v)(t). (29)

Proof. This follows from the fact that for an applicable surface n = ru× rv = R(u) (t(u, v))×
R(v) (t(u, v)) .

Theorem 6 Let r = r(u, v) be an applicable surface with the mapping function t(u, v), introduced
by equation (18). Also let the vectorw defined as

w = uṘ(u) (t) + vṘ(v) (t) (30)

be non-zero in some domain (u, v) ∈ Ω. Then, in this domain w = w(t) and the function t(u, v)
satisfies the Hopf equation

h(v) (t)
∂t

∂u
− h(u) (t) ∂t

∂v
= 0, (31)

where h(v) (t) and h(u) (t) are functions related toR(u) (t) andR(v) (t) as

h(v)(t)Ṙ(u) (t)− h(u) (t) Ṙ(v) (t) = 0, Ṙ(u) =
dR(u)

dt
, Ṙ(v) =

dR(v)

dt
. (32)

The solution t(u, v) of equation (31) in implicit form is

uh(u) (t) + vh(v)(t) = 1. (33)
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Proof. Let us prove first that the functionw introduced by (30) is a function of t alone. Indeed,
differentiating (18) we have

Ṙ(u)
∂t

∂v
= ruv = rvu = Ṙ

(v) ∂t

∂u
. (34)

This shows that the Jacobian of the transform (u, v) 7−→ (t,m·w), wherem is an arbitrary constant
vector, is zero:

∂ (t,w ·m)
∂ (u, v)

=
∂t

∂u

∂w ·m
∂v

− ∂t

∂v

∂w ·m
∂u

=
∂t

∂u

∙
uR̈(u)

∂t

∂v
+ Ṙ(v) + vR̈(v)

∂t

∂v

¸
·m

− ∂t

∂v

∙
Ṙ(u) + uR̈(u)

∂t

∂u
+ vR̈(v)

∂t

∂u

¸
·m = −

µ
Ṙ(v)

∂t

∂u
− Ṙ(u) ∂t

∂v

¶
·m =0. (35)

Setting here m = ix, iy, iz (ix, iy, iz are the unit basis vectors) we can see that any component of
vectorw is a function of t alone, and so w = w(t).

Now we note that because the vectors

ruu = Ṙ
(u) ∂t

∂u
, rvv = Ṙ

(v) ∂t

∂v
, (36)

are collinear (see (10)), the vectors Ṙ(u) and Ṙ(v) are collinear, and sincew is a linear combination
of these vectors (30), we have w(t)||Ṙ(u)(t)||Ṙ(v)(t). Hence, there exist scalar functions h(u) (t)
and h(v)(t) such, that

Ṙ(u) (t) = h(u) (t)w (t) , Ṙ(v) = h(v)(t)w (t) . (37)

Multiplying the first equation by h(v)(t) and subtracting the second equation multiplied by h(u)(t)
we obtain relation (32). Substituting (37) into (34) we can see that t(u, v) satisfies equation (31)
because w is not zero. Equation (33) then can be obtained by substituting (37) into the definition
(30).

Note that the Hopf equation is a common nonlinear hyperbolic equation in shock-wave theory,
and its properties are well studied, see e.g. [20]. The characteristics of this equation, t (u, v) =
const, are straight lines in the uv-plane, as can be easily seen from equation (33). This also shows
that the ratio h(v)(t∗)/h(u)(t∗) describes the tangent of the characteristic t (u, v) = t∗. Along the
characteristics all functions of t are constant, and therefore the tangent vectors ru(u, v) = R(u) (t)
and rv(u, v) = R(v) (t) do not change.

These facts allow us to perform integration of equations (18). This is provided by the following
theorem.

Theorem 7 Let r = r(u, v) be an applicable surface with the mapping function t(u, v), introduced
by equation (18) and let the vectorw defined by relation (30) be non-zero in some domain (u, v) ∈
Ω. Then the solution of equations (18) in Ω is

r (u, v) = uR(u) (t) + vR(v) (t) + ρ (t) , ρ̇ (t) = −w (t) . (38)
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Figure 2: Generation of an applicable surface by sweeping a straight line in space.

Proof. To check that this is a solution, we can differentiate the first equation in (38) with respect
to u and v and use the second equation in (38) and the definition ofw (30). Doing this we find

ru = R(u) (t) +
h
uṘ(u) (t) + vṘ(v) (t) + ρ̇ (t)

i ∂t
∂u

= R(u) (t) +
h
uṘ(u) (t) + vṘ(v) (t)−w (t)

i ∂t
∂u

= R(u) (t) , (39)

rv = R(v) (t) +
h
uṘ(u) (t) + vṘ(v) (t) + ρ̇ (t)

i ∂t
∂v

= R(v) (t) +
h
uṘ(u) (t) + vṘ(v) (t)−w (t)

i ∂t
∂v
= R(v) (t) . (40)

Corollary 8 If the conditions of theorem 7 hold, the curves on the surface r = r(u, v) correspond-
ing to characteristics t(u, v) = const. are straight lines.

Proof. Consider a characteristic line t = t∗. The tangent vectors R(u)(t∗),R(v)(t∗) and vector
ρ (t∗) from equation (38) are constant. If in equation (33) h(v) (t∗) 6= 0 then along the characteristic
line v is a linear function of u and

r = uR(u) (t∗) +
(1− uh(u) (t∗))

h(v) (t∗)
R(v) (t∗) + ρ (t∗) = uq+ q0, (41)

where q0 and q are constant vectors. If h(u) (t∗) 6= 0 then along the characteristic line

r = vR(v) (t∗) +
(1− vh(v) (t∗))
h(u) (t∗)

R(u) (t∗) + ρ (t∗) = vp+ p0, (42)

where q0 and q are constant vectors. Recall that these are the equations of a line in 3D and according
to equation (33) h(u) (t∗) and h(v) (t∗) cannot be zero simultaneously in the domain.

This corollary shows that one can sweep a straight line in space and the generated envelope will
be an applicable surface (see Figure 2). It is also noteworthy that hyperbolic equations allow piece-
wise smooth solutions with discontinuities of the function t (u, v) along the characteristics (shock
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waves). For the current problem, such solutions correspond to discontinuity of the tangent vectors
to the surface along the characteristics, which are straight lines. There can also be a case when two
different characteristics corresponding to, say, t∗1 and t∗2 intersect. In this situation, at the point of in-
tersection we have two different values of tangent vectors, sayR(u) (t∗1) andR(u) (t∗2) . This means
that the intersection point is the point of discontinuity in the solution. While consideration of the
non-smooth solutions can be important for some problems, in the present paper we will concentrate
only on the smooth bending of some patch (domain). In this case, for each point on the patch we
can assign just one characteristic line and the solution is differentiable in the entire domain.

Note that there exists a special case when the vector w defined by equation (30) is zero in
the domain under consideration. This special case includes the case when the surface is a plane,
Ṙ(u) (t) = Ṙ(v) (t) = 0, and non-trivial cases, which are described by the Hopf-type equation with
the family of characteristics passing through a single center u = v = 0 (conical surfaces). In fact,
the last case is not special when we consider warping and unwarping problems for a finite simply-
connective domain (patch) in the (u, v)-plane. They can be reduced to the case where w 6= 0 by
shifting the origin of the reference frame in the parametric plane in such a way that the point of
characteristic intersection (singularity of the surface) is outside the domain.

The above equations are sufficient to solve the basic warping and unwarping problems for im-
ages based on information about the shapes of the image, or patch, boundaries. The goal is to find
dependencies R(u) (t) ,R(v) (t) ,ρ (t) , h(u) (t) and h(v) (t) and, finally, r (u, v) from the available
information. For convenience, we write down a summary of the differential and algebraic relations
for applicable surfaces

r (u, v) = uR(u) (t) + vR(v) (t) + ρ (t) , (43)

Ṙ(u) (t) = h(u) (t)w (t) ,

Ṙ(v) (t) = h(v)(t)w (t) ,

ρ̇ (t) = −w (t) ,
uh(u) (t) + vh(v)(t) = 1,¯̄̄
R(u)

¯̄̄2
= 1, R(u) ·R(v) = 0,

¯̄̄
R(v)

¯̄̄2
= 1.

5 Forward problem: generation of an applicable surface with a spec-
ified boundary curve

5.1 Statement

The first problem we consider is how to generate an applicable surface (or some patch on an ap-
plicable surface). We call this the forward problem. This problem is important, for example, for
computer simulation of bending of a flat page in three dimensions. As we show below it is possible
to do so by conforming some part of an initially flat patch (page edge) to a given curve in 3D. In
general the page edge can have an arbitrary given shape, while an important particular case is when
the edge of the undeformed page is a straight line (see Fig. 3). We will consider both situations.

Consider a patch Ω0 in the uv-plane. Let Γ0 be a curve describing some part of the patch edge,
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and let it be given parametrically as

Γ0 : u = U (t) , v = V (t), u2 + v2 6= 0, t ∈ [tmin, tmax] . (44)

Without any loss of generality, we can assume that t is a natural parameter of the curve, i.e. the
distance along the curve measured from some starting point A0 = (u0, v0) ∈ Γ0 :

t =

Z t

0
ds ≡

Z t

0

√
dr · dr. (45)

For a natural parametrization, the functions U (t) and V (t) satisfy the additional constraint:

U̇2 + V̇ 2 = 1. (46)

Assume that the page is warped and the patch Ω0 transforms to a patch Ω, and the curve Γ0
transforms to a curve Γ, whose parametric equation in 3D is

Γ : r =eR(θ). (47)

Due to the isometry of the transform, we can use the natural parameter t instead of an arbitrary
parameter θ to parametrize the warped curve Γ. The relation between the two parametrizations,
then, is given by

R(t) = eR(θ), dt

dθ
=

¯̄̄̄
¯deR(θ)dθ

¯̄̄̄
¯ , (48)

and we have

Ṙ · Ṙ =1. (49)

5.2 Equations

Our goal is to write a set of equations that can be solved to determine all the unknown functions of
t. We assume that all the assumptions that were made to derive equations (43) hold. Then, writing
these equations for the values of u and v located on the boundary curve (44), we obtain:

R(u) ·R(u) = 1, R(u) ·R(v) = 0, R(v) ·R(v) = 1,
Uh(u) + V h(v) = 1, h(v)Ṙ(u) − h(u)Ṙ(v) = 0, UR(u) + VR(v) + ρ = R. (50)

This system is completed by equations (46) and (49), which characterize the selection of t as
the natural parameter along the boundary curves. While the number of unknowns here is 11
(R(u),R(v),ρ, h(u), h(v)) and the number of equations is 12, two of these equations are dependent.
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Figure 3: Generation of an applicable surface with a 3D curve. In this example a straight line Γ0 in
the uv-plane is mapped on a given 3D curve Γ.

To solve the system, we can reduce it to the following canonical form by differentiating equations
(46) and (49) and using the other equations of the system to obtain

Ṙ(u) =
h(u)F

U̇h(u) + V̇ h(v)
,

Ṙ(v) =
h(v)F

U̇h(u) + V̇ h(v)
,

h(u) =
gu

V gv + Ugu
, h(v) =

gv
V gv + Ugu

,

F = R̈−ÜR(u) − V̈R(v), gu =
...
U − ...

R ·R(u), gv =
...
V − ...

R ·R(v), (51)

where the number of dots shows the order of derivatives with respect to t.

5.3 Numerical integration

In fact, this is a sixth-order system of ordinary differential equations with unknownsR(u) andR(v)
with right-hand sides that depend on R(u), R(v), and given functions U (t) , V (t), and R(t) which
specify the boundary curves in parametric form. In general, a solution can be obtained numerically
using standard ODE solvers, e.g. widely available ones based on the Runge-Kutta method [18]. All
unknowns therefore can be obtained with specified accuracy on an arbitrary grid t1, ..., tN (for ρ (t)
we use the last equation in (50)). With this solution, we can generate the structure of the patch on
the applicable surface for t ∈ [tmin, tmax].

We note that to start the numerical integration of equations (51) we need to specify initial con-
ditionsR(u)0 = R(u) (0) andR(v)0 = R(v) (0). They are subject to additional constraints that follow
from the original system (50), (46), and (49). Indeed, the vectors R(u)0 and R(v)0 are dependent,
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since they satisfy the first three equations (50), which describe two orthonormal vectors. Assuming
that (ru, rv, ru × rv) is a right-handed basis, we can always rotate the reference frame of the world
coordinates so that in the rotated coordinates we have R(u)0 = (1, 0, 0) , R

(v)
0 = (0, 1, 0) . Consis-

tent initial conditionsR(u)0 andR(u)0 for Eq. (51) can be obtained by application of a rotation matrix
Q (α,β, γ) with Euler angles α,β and γ, to the vectors (1, 0, 0) and (0, 1, 0) , respectively. We note
that for some particular cases it may happen that both the functions gv and gu in Eq. (51) may be
zero. In this case the equations for h(u) and h(v) can be replaced by the limiting expressions for
gv → 0, gu → 0.

We implemented and tested an ODE solver for the above system. A simple validation was per-
formed by comparison of the numerical solution and the following analytical solution corresponding
to a cylindrical surface:

X = u− umin, Y = N cosϕ (v) , Z = N sinϕ (v) , ϕ (v) = v/N. (52)

To reproduce this surface we started our algorithm for warping with a 3D curve with the condition
that in the (u, v)-plane the curve Γ0 is a straight line, u = umin, and the fact that the corresponding
3D curve for transform (52) is

X(t) = 0, Y (t) = N cosϕ (t) , Z(t) = N sinϕ (t) . (53)

For this surface, we have the initial conditions for integration asR(u) (0) = (−1, 0, 0) ,R(v) (0) =
(0,− sinϕ0, cosϕ0) with ϕ0 = vmin/N . We integrated the forward problem (51) with these condi-
tions using an ODE solver from MATLAB, which was based on the 4th order Runge-Kutta method.
The results were identical to the analytical solution within the tolerance specified to the solver. The
numerical solutions for more complex transforms were also validated against an analytical solution
obtained for a special case described in the section below.

5.4 Special case: patch with a straight line boundary

There is a special case, where to generate an applicable surface one can use an analytical solution
instead of numerical integration. This case also serves to provide a practical demonstration of our
developed theory. For this particular case we make all the assumptions we made above, plus we
state that Γ0 is a straight line, which conveniently can be parametrized in the form (44) with the
following functions U (t) and V (t) :

U(t) = U0, V (t) = t+ V0, U0, V0 = const. (54)

This case is practically important, since it corresponds to bending of a page with a straight edge to
fit an arbitrary spatial curve Γ : r = R(t).

Let us show that in this case

R(u) =
R̈× Ṙ¯̄̄
R̈
¯̄̄ , R(v) = Ṙ, (55)

where t is the natural parameter of curve Γ (see (49)) is a solution of the forward problem (50).
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Consider the last equation in (50). Differentiating it with respect to t we obtain:

Ṙ =
³
UṘ(u) + V Ṙ(v) + ρ̇

´
+U̇R(u) + V̇R(v) (56)

= (Uh(u) + V h(v) − 1)w+R(v) = R(v).
where we use the expressions for Ṙ(u), Ṙ(v), and ρ̇ via w (see 43)), the fourth equation (50), and
the fact that U̇ = 0, V̇ = 1, which follows from (54). This proves the second equation in (55). To
prove the first equation, we note that in the special case (54) we have Ü = V̈ = 0, and, therefore, the
fifth equation (51) yields F = R̈. On the other hand, the two first equations (51) show that Ṙ(u)and
Ṙ(v) are collinear with F. Now we note that Ṙ(u)and Ṙ(v) are collinear to the normal to the surface
n (see (10) and (36)), which is perpendicular both to R(u) and R(v) (see (3)). Therefore vector
R(u) is perpendicular to F = R̈. Since it is also perpendicular to R(v) = Ṙ it should be collinear
to R̈ × Ṙ. Now we note that the norm of vector R(u) is unity (see 43)) and the basis (ex, ey, ez)
defined as

ez =
R̈¯̄̄
R̈
¯̄̄ , ex = Ṙ = R

(v)
, ey = ez × ex = R(u), (57)

has a right-handed orientation (we assume that our transform is just a bending without a change of
orientation). This proves the first equation (55).

Figure 4 shows an example of image warping with a 3D curve using the analytical solution. We
also performed warping using a more general ODE solver with proper initial conditions as described
in the previous section and obtained the same results. A number of tests were performed with curves
given parametrically by

eR(θ) = (P (θ) ,N cos θ,N sin θ) , P (θ) = a1θ + a2θ
2 + a3θ

3 + a4θ
4. (58)

Some other than polynomial dependencies P (θ) were tested as well. To convert this parametric
representation to a natural parametrization we solved equation (48) numerically with a standard
ODE solver in MATLAB. The curve shown in Fig. 4 corresponds to N = 200, a1 = 20, a2 =
10, a3 = 10, a4 = −10. In this example, the characteristics for this surface are not parallel, which
is clearly seen from the graph in the upper right corner of Fig. 4. The image of the portrait of
Ginevra dé Bencia by Leonardo da Vinci was fit into a rectangle in the uv-plane and warped with
the generated surface r(u, v). Further, its orthographic projection was produced using pixel-by-
pixel mapping of the obtained transform from the (u, v) to the (x, y, z) . These pictures are also
shown in Fig. 4.

6 Inverse problem: 3D structure recovery of applicable surfaces

6.1 Statement

Here, we seek to estimate the 3D structure of an applicable surface from a single view (with known
camera model) and knowledge of the undeformed uv-plane boundary.
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Figure 4: Illustration of the solution of the forward problem (image warping with a given 3D curve).
The 3D structure is generated and then projected, which transforms the initial image in the left upper
corner to the image shown in the right bottom corner. The graph in the right upper corner shows the
characteristics corresponding to this case.

For any point (x, y) in the image plane, we can estimate the corresponding point in the uv-plane
and vice versa by solving the ODEs for the problem. The input parameters are the known camera
model, the patch contours in the uv-plane and in the xy-, or image, plane.

We limit our consideration to patches on applicable surfaces that do not have any singularities.
This means that we consider domains in the uv-plane, which are covered by non-intersecting char-
acteristics. Consider, first some patch Ω0 with boundary ∂Ω0 that is a closed curve that does not
coincide with the characteristic lines except at two limiting points (see Fig. 6, a)). This bound-
ary can be subdivided into two pieces Γ01 and Γ02, which can be specified in parametric form as
u = U1(s1), v = V1(s1) for Γ01, and u = U2 (s2) , v = V2(s2) for Γ02, with u2 + v2 6= 0. Assume
that the family of characteristics covering Ω0 corresponds to the change of parameter t from tmin to
tmax, with tmin corresponding to point A0 and tmax corresponding to point B0. Hence for any t∗,
such that tmin < t∗ < tmax there exists one point of intersection of this characteristic line with Γ01
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Figure 5: Schematic of the inverse problem. The input for the inverse problem solver are the
equations for the curves in the parametric and image plane and some correspondence points, such
as the image corners. The straight lines in the left and right graphs show the characteristics (that are
obtained during the inverse problem solution).

corresponding to some value s1∗ of the parameter of this curve s1 and one point of intersection with
Γ02 corresponding to some value s2∗ of the parameter of this curve s2. This introduces two functions
s1(t) and s2(t). If these functions are known, then we can find from the equation for characteristics
(33) the coefficients h(u)(t) and h(v)(t) :

h(u)(t) =
V2 − V1

U1V2 − U2V1 , h(u)(t) =
U1 − U2

U1V2 − U2V1 , (59)

since we assume that the functions Ui(si) and Vi (si), i = 1, 2 are given explicitly. Therefore,
knowledge of s1(t) and s2(t) is sufficient to build the mapping function t(u, v) specified by (33)
implicitly. Now we notice that the same reasoning and equations can be applied to the patches Ω0,
whose boundary ∂Ω0 can partly coincide with the characteristic line (see cases b)-d) on Fig. 6).
As in case a), the entire domain is covered by characteristics and functions s1(t) and s2(t) can be
introduced. We will refer to such domains as “elementary”. The patches that can be considered
can have more complex shape than the elementary domains (e.g. see Fig. 6 e)). Any domain
(elementary or non-elementary) can be subdivided into several elementary domains; in this paper
we limit our consideration to the problem of recovery of elementary domains.

It is also noteworthy that the curves Γ01 and Γ02 need not be smooth. We assume, however, that
they are piecewise continuous curves in the uv-plane. For example, in Fig. 5 illustrating the problem
for a rectangular patch (page), the curve Γ01 is a straight line passing through points A0 and D0 and
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Figure 6: Illustration of different types of the patch boundaries and their intersections with the
characteristics.

Γ02 consists of three smooth pieces A0B0, B0C0, and C 0D0. When the original plane is warped to
form an applicable surface the boundary curves transform to 3D curves Γ1 and Γ2, which can be
described parametrically as r = R1 (t) and r = R2 (t), respectively.

Assume that the camera is calibrated, and the relation between the world coordinates r =(X,Y,Z)
and coordinates of the image plane (x, y) are known as x = F (x)(r) and y = F (y)(r) (via the cam-
era model). What is also known are the curves Γ001 and Γ002 that are images of the boundary curves
Γ1 and Γ2, i.e., we can represent them as equations. These equations are assumed to be given in
the form x = x1 (τ1) , y = y1 (τ1) for Γ001; and x = x2 (τ2) , y = y2 (τ2) for Γ002. Correspondence
between the boundary curves and their images is provided by a specification of the functions τ1 (t)
and τ2 (t).

Thus, mathematically, the problem of recovery of the 3D structure of applicable surfaces from a
single view can be formulated as a problem of determination of the unknown functions s1(t), s2(t),
τ1 (t), τ2 (t) , R1 (t), R2 (t), and, finally, the functions h(u)(t), h(v)(t), R(u)(t),R(v)(t), which
then can be used for mapping any point in the uv-plane to the xy-plane and back. It is also clear
that if just the boundaries of the patches are given and the characteristics are not known a priori,
the limiting points on the boundary (such as A0 and B0 in Fig. 6, a)) which break the boundary
into curves Γ01 and Γ02 need to be first determined (this problem becomes more complex for non-
elementary patches). Nevertheless, in some important cases, this problem can be simply resolved
separately prior to the problem of recovery of the unknown functions, using auxiliary information.
For example, if we have a rectangular page with 4 corners, then first, we usually are able to identify
these corners in the image, and what is more important, in most cases the limiting points are the
corner points. Of course, there is a problem; we must decide which two of the 4 corner points are
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to be taken as the limiting points. However, this problem can be resolved, by simply performing
computations of all possible situations (which can be enumerated as a few cases) and comparison of
the results with the actual image. Another possibility is to make this choice by using some additional
information, which will become clear from the solution below. In fact, it turns out, we need only a
small amount of such information.

6.2 Equations

The set of algebraic and differential equations describing the surface (50) can be reduced then to

R(u) ·R(u) = 1, R(u) ·R(v) = 0, R(v) ·R(v) = 1, (60)

R2 = (U2 − U1)R(u) + (V2 − V1)R(v) +R1, Ṙi = ṡi

³
U 0iR

(u) + V 0iR
(v)
´
,

F (x) (Ri) = xi (τ i) , F (y) (Ri) = yi (τ i) , i = 1, 2.

where the prime denotes derivatives of functions with respect to their arguments. For derivatives
of functions with respect to t we preserve the notation used before (dots). We have 16 equations
relating the 15 unknowns (R(u),R(v),R1,R2, s1, s2, τ1, τ2). As in the previous case, one equation
depends on the other 15 and so the system is consistent. After s(t), r1 (t) , ru (t) , and rv (t) are
found, h(u), h(v), and ρ can be determined from equation (59) and

ρ = R1 − U1R(u) − V1R(v). (61)

This enables determination of t (u, v) and r (u, v), from the first and the fifth equations (43).
While they can be solved, equations (60) are not in a form convenient for numerical integration,

since they are not resolved with respect to the derivatives of the unknowns and include implicit
algebraic equations, which will need to be solved at each step of integration. To use standard ODE
solvers we must transform the system to canonical form.

To derive this form we note that the vector w (30) is collinear to the normal to the surface, and
we can introduce a new scalar function k(t) defined as

w = kN.

The function k is a function of t only, since w = w(t) and N = N(t) (see Corollary 5, Eq. (29)).
From equations (43) we have:

Ṙ(u) = kh(u)N, Ṙ
(v)
= kh(v)N, ρ̇ = −kN. (62)

Consider now the equations for the projection of a 3D curve on the image plane (the last two
equations in (60)). Differentiating the equations for the first curve (i = 1) with respect to t, we
obtain

x01τ̇1 = Ṙ1 ·∇F (x) (R1) , y01τ̇1 = Ṙ1 ·∇F (y) (R1) . (63)

Multiplying these equations by x01 and y01 and taking the sum and the difference of the results, we
have

τ̇1 = Ṙ1 · a1, Ṙ1 · b1 = 0, (64)
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where

a1 =
x01∇F (x) (R1) + y01∇F (y) (R1)

x021 + y021
, b1 = y

0
1∇F (x) (R1)− x01∇F (y) (R1) . (65)

From the fifth equation (60) we have Ṙ1 = ṡ1
¡
U 01R(u) + V 01R(v)

¢
, and so we can rewrite (64) as

τ̇1 = ṡ1c1 · a1, c1 · b1 = 0, (66)

where

c1 = U
0
1R

(u) + V 01R
(v). (67)

Differentiation of the last equation (66) yields

ċ1 · b1 + c1 · ḃ1 = 0. (68)

Using (62) we express ċ1 as follows:

ċ1 = ṡ1

³
U 001R

(u) + V 001 R
(v)
´
+ U 01Ṙ

(u) + V 01Ṙ
(v) = ṡ1e1 + kf1, (69)

where

e1 = U
00
1R

(u) + V 001 R
(v), f1 = U

0
1h
(u) + V 01h

(v). (70)

To obtain an expression for ḃ1 we will use the following notation for the second rank Hessian
of the scalar function F (r) :

∇∇F (r) =

⎛⎜⎝
∂2

∂x2
F (r) ∂2

∂x∂yF (r)
∂2

∂x∂zF (r)
∂2

∂x∂yF (r)
∂2

∂y2
F (r) ∂2

∂y∂zF (r)
∂2

∂x∂zF (r)
∂2

∂y∂zF (r)
∂2

∂z2
F (r)

⎞⎟⎠ . (71)

The dot product of this tensor with some vector is a vector. If the vector components are arranged
as a column-vector, then the resulting vector is a product of the Hessian matrix by the input vector.
So we have:

ḃ1 = τ̇1d1 +G1 · Ṙ1 = ṡ1 [(c1 · a1)d1 +G1 · c1] , (72)

where

d1 = y
00
1∇F (x) (R1)− x001∇F (y) (R1) , G1 = y

0
1∇∇F (x) (R1)− x01∇∇F (y) (R1) . (73)

Substituting the expressions (69) and (72) into equation (68) we obtain the following relation
between ṡ1 and k:

ṡ1 = − kf1 · b1
e1 · b1 + c1 · [(c1 · a1)d1 +G1 · c1] . (74)
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A similar relation holds for ṡ2, since we can replace subscript 1 with subscript 2 in equations (63)-
(74).

Now note that equations (60) are invariant with respect to an arbitrary one-to-one transform
t → f(t). In other words, the function t can be defined arbitrarily, as long as the value of this
function is specific for each characteristic. For example, it can be defined as one of the curve
parameters s1, s2, τ1, or τ2, as long as they are one-to-one mappings. It may be more convenient
to introduce some scaling factor, and, so, without any loss of generality we can define t as a linear
function of, say, s1. This definition is equivalent to the statement that the rate of change of s1 is a
constant, ˙s10, or

s1 = ṡ10(t− tmin) + s10, (75)

where s10 is the value ofs1 corresponding t = tmin. Using this definition of t and equations (66)
and (74) written for each boundary curve, we can write down the following ODEs:

ṡ1 = h1, ṡ2 = h2, τ̇1 = g1, τ̇2 = g2, (76)

where

h1 = ṡ10 = const, (77)

h2 = − kf2 · b2
e2 · b2 + c2 · [(c2 · a2)d2 +G2 · c2] ,

gi = hici · ai, i = 1, 2,

k = −e1 · b1 + c1 · [(c1 · a1)d1 +G1 · c1]
f1 · b1 h1,

h(u) =
V2 − V1

U1V2 − U2V1 , h
(v) =

U1 − U2
U1V2 − U2V1 , N = R(u) ×R(v),

Ri = UiR
(u) + ViR

(v) + ρ, i = 1, 2,

ai =
x0i∇F (x) (Ri) + y0i∇F (y) (Ri)

x02i + y
02
i

, bi = y
0
i∇F (x) (Ri)− x0i∇F (y) (Ri) , i = 1, 2,

ci = U
0
iR

(u) + V 0iR
(v), di = y

00
i∇F (x) (Ri)− x00i∇F (y) (Ri) , i = 1, 2,

ei = U
00
i R

(u) + V 00i R
(v), fi =

³
U 0ih

(u) + V 0i h
(v)
´
N, i = 1, 2,

Gi = y
0
i∇∇F (x) (Ri)− x0i∇∇F (y) (Ri) , i = 1, 2.

Now we note that the system (62) and (76) is closed with respect to variables (s1, s2, τ1, τ2,
R(u), R(v), ρ). Moreover it is written in a canonical form, since it is resolved with respect to
derivatives, and the right hand sides of the equations are explicit functions of variables (s1, s2, τ1,
τ2, R

(u), R(v), ρ). Thus, it can be solved numerically using standard methods, if proper initial
conditions are imposed. In some particular cases the system can be substantially simplified (e.g.
for a rectangular patch the boundaries in the uv-plane are straight lines, ei = 0, i = 1, 2, or for
orthographic projection F (x) and F (y) are linear functions of world coordinates, and so Gi = 0,
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i = 1, 2). However such simplifications do not prevent numerical solution and the same ODE solver
should be used for general or special cases.

Another issue is related to the treatment of piecewise smooth boundaries. In this case, the deriv-
atives of the boundary curves can be discontinuous and should be taken according to the direction
of integration. So one can break the integration and perform it in pieces over the smooth parts of the
boundary and use the condition that the functions R(u), R(v), k, h(u), and h(v) should be smooth
functions of t at the corners, since these functions characterize the applicable (smooth) surface.
For example, for the case shown in Fig. 5 we can break the integration from tmin to tmax into
three pieces: from tmin to t1, from t1 to t2, and from t2 to tmax, where tmin, t1, t2, and tmax cor-
respond to the corners of the rectangular patch A00, B00, C 00, and D00, respectively. Since functions¡
s1, s2, τ1, τ2, R

(u), R(v), ρ
¢

are continuous functions of t, the solution at the end point of the
interval can be imposed as the initial condition for the next interval. Determination of the intervals
of smoothness (tmin, t1), (t1, t2), etc. can be performed automatically in the process of integra-
tion, since parametrization of the boundary curve in the uv-plane can be made in such a way that
the corner points correspond to specific convenient values of the curve parameter (for example, we
parametrized the boundary curve for a rectangular patch so that corners A0, B0, and C 0 correspond
to s2 = 0, 1,and 2, respectively, see Fig. 5, so t1 and t2 were the values of t at which s2 was equal
to 1 and 2) .

6.3 Initial conditions

To solve the initial value problem for the system of ODEs (62), (76) we should specify the initial
values of the unknowns (s1, s2, τ1, τ2, R(u), R(v), ρ) at t = tmin. We will denote these values
with subscript zero. Furthermore, we assume a natural parametrization of the boundary curves that
starts from this point, and impose the conditions:

s10 = s20 = τ10 = τ20 = 0. (78)

The remaining 9 initial conditions (vectors R(u)0 ,R
(v)
0 , and ρ0) are not arbitrary, and should

satisfy certain relations. First, we recall that vectors R(u)0 ,R
(v)
0 , and N0 = R

(u)
0 × R(v)0 form

a right-handed basis. This basis can be obtained by application of the rotation matrix Q0 to the
standard unit vectors:

R
(u)
0 = Q0

⎛⎝ 1
0
0

⎞⎠ = Q0ix, R
(v)
0 = Q0

⎛⎝ 0
1
0

⎞⎠ = Q0iy, N0 = Q0

⎛⎝ 0
0
1

⎞⎠ = Q0iz, . (79)

where the entries of Q0 depend only on the three Euler rotation angles α0,β0, and γ0:

Q0=

⎛⎝ cosα0 cosβ0 cos γ0 − sinα0 sin γ0 sinα0 cosβ0 cos γ0 + cosα0 sin γ0 sinβ0 cos γ0
cosα0 cosβ0 sin γ0 + sinα0 cos γ0 sinα0 cosβ0 sin γ0 − cosα0 cos γ0 sinβ0 sin γ0

− cosα0 sinβ0 sinα0 sinβ0 cosβ0

⎞⎠ .
(80)

So we can see that

R
(u)
0 = R

(u)
0 (α0,β0, γ0) , R

(v)
0 = R

(v)
0 (α0,β0, γ0) , N0 = N0 (α0,β0, γ0) , (81)
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and, in fact, one need only specify the 6 values, α0,β0, γ0, and ρ0 to enable solution of the initial
value problem.

The number of unknown initial values can be reduced further. Relations between the initial
values depend on the problem to be solved. To illustrate the reduction let us consider the case
illustrated in Figures 6, a) and 5. Here, at the starting point A0 the boundary curves intersect and so
we have

R10 = R20 = r0, U10 = U20 = U0, V10 = V20 = V0, (82)
x10 = x20 = F

(x) (r0) , y10 = y20 = F
(y) (r0) .

The last two equations specify the unknown r0 as a function of the one free parameter, which is
denoted as ξ0 :

r0 = r0 (ξ0) . (83)

Note that for orthographic projection, where F (x) (r0) = ix · r0, F (y) (r0) = iy · r0, the free
parameter can be selected as ξ0 = iz · r0 = z0, and, since in this case the image does not depend
on the selection of z0, any solution r = r (u, v) is equivalent to the solution r = r (u, v) + izz0.
Therefore, without any loss of generality, one can set ξ0 = z0 = 0, keeping in mind that the 3D
structure can be determined up to an arbitrary shift of the z-axis.

For an arbitrary projection, equation (83) specifies ρ0 as a function of ξ0 and the initial Euler
angles due to equation

ρ0 (α0,β0, γ0, ξ0) = r0 (ξ0)− U0R(u)0 (α0,β0, γ0)− V0R(u)0 (α0,β0, γ0) . (84)

This reduces the number of parameters specifying initial conditions from 6 to 4. A further reduction
of the initial parameters occurs due to the orthogonality conditions

c10 · b10 = 0, c20 · b20 = 0. (85)

Here, according to relations (67), the vectors c10 and c20 are functions of the initial Euler angles
α0,β0, and γ0, while b10 and b20 are functions of r0 or ξ0 (see (65) and (83)). For orthographic
projection we have ∇F (x) = ix, ∇F (y) = iy, and in this particular case b10 and b20 do not
depend on ξ0. If the starting point is a corner point, such as shown in Fig. 5, the relations (85)
are independent and reduce the number of initial parameters by 2. For example, γ0 and ξ0 can be
selected as independent initial parameters, while angles α0 and β0 can be expressed as the following
functions:

β0 = B0 (γ0, ξ0) , α0 = A0 (γ0, ξ0) . (86)

If the boundary curves match at the initial point smoothly, one can replace the second equation in
(85) with a condition that follows from the equality of the derivatives along the boundary curves
(we will not elaborate this case here, since our purpose now is just give an idea of how the number
of initial parameters can be efficiently reduced). In the Appendix we derive explicit forms for
computation of B0 (γ0, ξ0) and A0 (γ0, ξ0).
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6.4 Boundary conditions

The above analysis shows that while the number of parameters specifying initial conditions can
be substantially reduced to two parameters (for a general camera model) or to one parameter (in
the case of orthographic projection), some additional information to start the integration process.
Moreover, for any set of initial parameters we also should select the correct solutions appropriate
to the situation due to the non-uniqueness discussed above. To perform this task, information about
correspondence of some points on the boundary curves in the uv- and xy-planes can be used. Such
feature points can appear naturally. For example, if the domain is a patch with corners that can be
easily identified in the image (e.g. see Fig. 5), then instead of the unknown initial parameters we
can impose the boundary value problem for the set of ODEs (62) and (76). Assume that the feature
points are located on curves Γ02 and Γ002 (e.g. points B0 and B00 on Fig. 5). Due to a freedom in
the parametrization of these curves, we can define s2 and τ2 in such a way that the feature point
correspond to s2 = 1 and τ2 = 1. Assume, now, that we start integration with some arbitrary initial
parameters (γ0, ξ0,m) , wherem is some index of solution,m = 1, 2, ... (due to the multiplicity of
solutions for a given (γ0, ξ0)) and stop the integration when either s2 or τ2 reaches 1. The deficiency
of the solution at the feature point then can be characterized by the following objective function

J(γ0, ξ0,m) =
h
(1− s2)2 + (1− τ2)

2
i1/2

. (87)

Due to errors in integration, data interpolation, or quantization etc., we should not expect that this
function will be exactly 0 for the proper set (γ0, ξ0,m). However, J(γ0, ξ0,m) is locally convex
and has a strong minimum, so we can state the problem of determination of the initial parameters as a
minimization problem for this function. The computation of J(γ0, ξ0,m) for each set of arguments
requires the solution of the system of ODEs; this is known as the shooting method for solution of
the boundary value problem. If more information is available (e.g. we can identify all the corners),
the objective function can be constructed in a way that minimizes the deficiency of the solution at
all feature points.

6.5 Ambiguities

The method relies on the boundary information of the patch in the image plane; since some de-
formations can lead us to the same images of the boundary, we have ambiguities. For example,
consider a cylindrical surface

X(u, v) = u, Y (u, v) = f(v), Z(u, v) = g(v), (88)

with some functions f and g, which make this surface applicable. Assume that in the uv-plane
the patch is a rectangle bounded by lines u = umin, v = vmin, u = umax, and v = vmax. For
orthographic projection the image of this patch will be a rectangle bounded by lines x = umin,
y = f(vmin), x = umax, and y = f(vmax). This shows that for any two functions f1 (v) and f2 (v),
such that f1(vmin) = f2 (vmin) and f1(vmax) = f2 (vmax) the patch in the image plane will be
bounded by the same rectangle, and it is impossible to uncover f1(v) based only on the boundary
information.
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The problem of classification of all ambiguities and the methods to treat these cases is a subject
for a separate study. To resolve the ambiguities we can use some additional useful cues such as
texture or shading.

6.6 Example problem

Despite possible ambiguities we should state that these are very special cases. In general the inverse
problem can be resolved. The reconstruction of the 3D structure and texture mapping from the xy-
to uv- plane (unwarping) can be efficiently performed using the boundary information from a single
view. To test the solution we performed the following numerical example.

We took a rectangular patch in the uv-plane (umin = vmin = 1, umax = 151, vmax = 101),
and generated a patch on the applicable surface using the analytical solution of the forward problem
(55). The 3D curve used for forward problem was (58) with N = 200, a1 = 20, a2 = 10, a3 =
10, a4 = −10 (see Fig. 4). Further we took the orthographic projection of the patch boundaries
and discretized each side of the patch with 300 points, which were used as input (x, y) data for the
inverse problem solver.

The test of the inverse problem solver was performed in several stages. The goal for the first
stage was to ensure that the system of ODEs (62), (76), and (77) is derived correctly, and it can
be solved with proper initial conditions. Since the forward problem was simulated, we knew the
information about the characteristics - which corner corresponds to tmin and all functions which
specify the 3D structure (R0(t),R0(t),ρ0(t), hu(t), and hv(t)). So we know the initial values
(R

(u)
0 ,R

(v)
0 ,ρ0) for the start of integration. We run the ODE solver (standard MATLAB function)

with the specified right-hand sides (77) and these initial conditions, and compared the obtained so-
lution for all functions (R0(t),R0(t),ρ0(t), hu(t), and hv(t)) with the analytical solution for the
forward problem at given values of t. This solution was close to the analytical solution within the
specified tolerance, which was varied between ² = 10−4-10−8, except in some small vicinity of
the end point, at which the functions specifying the right hand side (77) have a singularity due to
intersection of the boundary curves. This problem, however, can be avoided by extrapolation of all
functions of t found for [tmin, tmax − t²]with a good accuracy to the small interval [tmax − t², tmax]
near the end point. This is possible to do sinceR0(t),R0(t),ρ0(t), hu(t), and hv(t) are smooth dif-
ferentiable functions. We note that because the boundary in the present case was piecewise smooth,
we used the procedure which stops the integration when parameters s2 or τ2 reach the values corre-
sponding to the corner, and restarted the integration with the curve parameters for the next smooth
piece (with the direction for derivatives taken accordingly; the derivatives of the boundary curves
were computed using numerical differentiation of the tabulated boundary curves).

After we were ensured that the ODE solver produces accurate results for correct initial values,
we considered the problem of recovery of these values from information about the boundary curve.
As we noticed earlier, for the orthographic projection parameter ξ0 = z0 can be selected arbitrarily
and we set it to zero. We note that in the test case expressions for the Euler angles α0 and β0 via
γ0 can be found analytically, since for orthographic projection we have χ10 = χ20 = π/2, and for
the initial point where the boundary curves Γ01 and Γ02 intersect at 90◦ (rectangular patch in the uv-
plane) we have ϕ10 = π/2 and ϕ20 = 0. In this case equations (98) can be written in the following
matrix-vector form:
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Figure 7: The objective function 87 for the example problem. The true value of the Euler angle γ0
=-1.4721 is shown.

µ − cos (ψ10 − γ0) cosβ0 sin (ψ10 − γ0)
sin (ψ20 − γ0) cos (ψ20 − γ0) cosβ0

¶µ
sinα0
cosα0

¶
= 0. (89)

Solution of these equations with respect to (sinα0, cosα0) treated as an independent vector exists
only if the determinant of the matrix is zero, which leads to equation

cos2 β0 = − tan (ψ20 − γ0) tan (ψ10 − γ0) . (90)

Furthermore, solution of this equation exists only if

0 6 g 6 1, g = tan (ψ20 − γ0) tan (γ0 − ψ10) . (91)

In this case we have four roots:

β0 = ± arccos (±
√
g) . (92)

where± can be selected in arbitrary combination. According (99) each β0 then produces two values
of α0

α0 = −π
2
− arctan [cot (ψ10 − γ0) cosβ0] + πn, n = 0,±1, ..., −π < α0 6 π. (93)

So for any given γ0 we have 8 possible sets of the Euler angles. By comparison with the initial
Euler angles for the exact solution, we found that the correct solution is among that 8 solutions.

Finally we performed solution of the boundary value problem, where we attempted to uncover
γ0 and m using minimization of the objective function (87). For the present example the range of
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γ0 is between ψ10 = −1.6208 and ψ20 − π = −1.4706 where solution of equation (91) exists
(due to π-periodicity γ0 + π is also a solution), so this provides the bounds for the roots. The true
value γ0 = −1.4721 (from the forward problem) and we can see that the zero of the objective
function is close to this value (this depends on the specified tolerance for the ODE solver and the
tolerance to the approximation near the corner point). Our computations were stable for−1.6208 <
γ0 < −1.4721, while for −1.4706 < γ0 < −1.4721 the objective function was not computable
(due to the singularities in the right hand side for s2 < 1 and τ2 < 1). However, our method
of computation of the objective function is compatible with the standard MATLAB root finding
routine, which converged to the accurate solution in a few iterations (15 for accuracy 10−4).

Note that due to several solutions corresponding to the same γ0 we compared the objective
functions obtained for all possible α0 and β0. This comparison showed that 2 out of 8 solutions
provide the minimum of the objective function for the same γ0. We also checked that if γ0 pro-
vides a minimum of the objective function, then the symmetrical minimum exists for γ0 + π. Here
again, only 2 out of 8 solutions deliver the zero of the objective function. So, totally, we found
4 different combinations of the Euler angles (α0,β0, γ0) which minimize the objective function.
We can note now that transform (α0,β0, γ0) → (α0 + π,−β0, γ0 + π) does not change the ro-
tation matrix Q0 (80) and so such solutions should be considered as identical (generate the same
surface). This leave us with only 2 different solutions. As mentioned above, for the orthographic
projection we always have at least two different solutions, (X (u, v) , Y (u, v), Z(u, v)) and its mir-
ror (X (u, v) , Y (u, v),−Z(u, v)). This also means that while the 3D structure uncovered is not
unique (we also do not have any information about the depth), the transform from the image to the
parametric plane (and back) is unique and enables solution of the unwarping problem.

Finally we note that the quality of the synthetic image warping/unwarping depends on the sur-
face and projection. For the case described above the solution of the inverse problem (use as the
input the image in the right bottom corner of Fig. 4) practically coincides with the exact solution
(the image in the left top corner of Fig. 4 is the output). Figure 8 illustrates the unwarped pixel-
by-pixel image as the end point of the unwarping process in the xy-plane. We ran the algorithm for
small fonts. The original image has the same font size everywhere and with the forward algorithm
we warp the image. The unwarped image has uniform font size everywhere, lines are parallel and
right angles are preserved. The output is noisy (especially at the top), since in the image some
information was lost.
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8 Appendix

To derive explicit forms suitable for computation of functionsB0 (γ0, ξ0) andA0 (γ0, ξ0) (see (86))
let us introduce the following unit vectors, assuming that the starting point is the corner point, in
which case these vectors are not collinear:

ji0 =
U 0i0ix + V

0
i0iy

U 02i0 + V
02
i0

=
1

U 02i0 + V
02
i0

¡
U 0i0, V

0
i0, 0

¢T
, i = 1, 2. (94)
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Figure 8: Inverse Problem for small font: a) original image; b) warped by the forward; c) unwarped
by solution of the inverse problem; d) and f) zoom of the top and middle parts of a); e) and f) zoom
of the same parts of the reconstructed (texture mapped) surface of c).
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Here we use superscript T for transposition, to indicate that ji0 (i = 1, 2) are column vectors. These
vectors can also be written

ji0 = (cosϕi0, sinϕi0, 0)
T , i = 1, 2. (95)

where ϕi0 are the polar angles, which can be easily found from the given derivatives of the boundary
curves U 0i0 and V 0i0.

Using equations (67), (79), and (94), we can rewrite the first equation (85) as

(Q0ji0) · bi0 = 0, i = 1, 2 (96)

Let us represent vector bi0 using spherical polar coordinates (|bi0| ,χi0,ψi0) :
bi0 = |bi0| (cosψi0 sinχi0, sinψi0 sinχi0, cosχi0)T , i = 1, 2, (97)

and insert this relation into equation (96) together with expressions for Q0 (80) and ji0 (95). The
result can be written as:

cos (α0 + ϕ10) [cos (ψ10 − γ0) sinχ10 cosβ0 − cosχ10 sinβ0] +
sin (α0 + ϕ10) sin (ψ10 − γ0) sinχ10

= 0, (98)

cos (α0 + ϕ20) [cos (ψ20 − γ0) sinχ20 cosβ0 − cosχ20 sinβ0] +
sin (α0 + ϕ20) sin (ψ20 − γ0) sinχ20

= 0.

To solve the system, one can express, e.g., α0 via γ0 and β0 as

α0 = −ϕ10 − arctan
∙
cos (ψ10 − γ0) cosβ0 − cotχ10 sinβ0

sin (ψ10 − γ0)

¸
+ πn, (99)

where n = 0,±1, ..., and −aπ < α0 6 π and obtain an equation for β0

ϕ10 − ϕ20 + arctan

∙
cos (ψ20 − γ0) cosβ0 − cotχ20 sinβ0

sin (ψ20 − γ0)

¸
(100)

− arctan
∙
cos (ψ10 − γ0) cosβ0 − cotχ10 sinβ0

sin (ψ10 − γ0)

¸
= 0,

which follows from the second equation (98). This equation can be solved efficiently using standard
iterative solvers. The solution specifies β0 as a function of γ0, and enables one to determine α0 from
equation (99) as function of γ0.

We note that equations (99) may have several roots, and so multiple solutions should be con-
sidered for a given γ0. Some solutions may be non-feasible, while some may exhibit the non-
uniqueness (caused by ambiguities) of the inverse problem solution. This can be easily illustrated for
the case of orthographic projection, for which we have χ10 = χ20 = π/2. In this case, β only enters
equations (98) as cosβ , so if some β is a solution then so is its negative, −β. Furthermore, in this
case, the angles α and γ enter equations as arguments of π-periodic functions (such as tan(α+ϕ0)).
Thus, if the equations are valid for some (α,β, γ) they are valid for (α+ πn,±β, γ + πm) as soon
as n,m, and the sign of β are selected in such a way that all the Euler angles lie in the range
(−π,π]. We note that in the case of orthographic projection we can expect that to any valid solution
r (u, v) = (X,Y,Z) will correspond some “mirror” solution r∗ (u, v) = (X,Y,−Z) , since we
are trying to uncover the 3D structure from its 2D projection, which is the same for r (u, v) and
r∗ (u, v). This non-uniqueness corresponds to the fact that correct solutions exist for at least two
different sets of the Euler angles (α0,β0, γ0).
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