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Abstract
Inspired by the work by Gomes et al., we describe and analyze a vector distance function approach
for the implicit evolution of closed curves of codimension larger than one. The approach is set up
in complete generality, and then applied to the evolution of dynamic geometric active contours in

 (codimension three case). In order to carry this out one needs an explicit expression for the zero
level set for which we propose a discrete connectivity method. This leads us to make connections
with the new theory of cubical homology. We provide some explicit simulation results in order to
illustrate the methodology.
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1. Introduction
Recently there has been an increased interest in evolving objects of codimension larger than
one, with applications ranging from geometric optics (Burchard et al., 2001; Min, 2004;
Osher et al., 2002), to image processing (Lorigo et al., 1999), and to geometric optimization
(Pottman and Hofer, 2003). Theoretical aspects of these evolutions have been investigated in
Ambrosio and Soner (1996), Evans and Spruck (1991, 1992a,b, 1995), Gomes et al. (2001)
and Slepcev (2003).

This paper describes an approach based on Gomes and Faugeras (2001a, 2000b) and Gomes
et al. (2001), for the implicit evolution of (possibly multiple) closed curves with
codimension greater than one. The usual level set approach (Osher and Fedkiw, 2001;
Sethian, 1999), valid for the evolution of hypersurfaces, is difficult to apply in higher
codimensions. Indeed, in the codimension one case, there is a clearly defined interior and a
clearly defined exterior of the given object of interest (if the surface is closed). In this case, a
signed distance function can be used for a level set implementation of the evolution
equation.

On the other hand, for objects of larger codimension, this is no longer the case. A possible
remedy to this problem is to evolve an unsigned distance function. However, this is
numerically challenging since numerical dissipation causes the zero level set to drift away
from zero requiring the detection of points of minimal distance to extract an approximation
to the zero level set. Closely related to the evolution of an unsigned distance function,
Ambrosio and Soner (1996) analyze mean curvature motion in arbitrary codimension. Here,
the evolving surface of codimension k in  is surrounded by a family of hypersurfaces,
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where the normal velocity is given by the sum of the geometrically relevant (the d – k
smallest) principal curvatures. Existence and uniqueness of a weak solution is established.

Lorigo et al. (1999) use the ideas of Ambrosio and Soner for vessel segmentation based on
magnetic resonance angiography images, a codimension two problem. Classical numerical
schemes for level set evolutions can be used since a tube (an ε-level set) is evolved, thus
generating an “artificial” inside and outside. A disadvantage of this method is the occurrence
of “fattening,” which does not allow for straightforward topological changes (Osher and
Fedkiw, 2001) since curves can develop interiors. (See Burchard et al., 2001 for an example
of fattening and (Bellettini et al., 1998) for an analysis of the phenomenon.)

Another possibility for the evolution of manifolds of arbitrary codimension is to represent a
manifold of codimension k by the intersection of k scalar functions with non-vanishing
gradient on the surface of the manifold (e.g., k signed distance functions with the
intersection of their respective zero level sets representing the desired manifold). This
approach was also proposed by Ambrosio and Soner, but not further pursued since the
resulting system of evolution equations is not straightforward to analyze (the theory of
viscosity solutions is not available for such systems of equations). Nevertheless, this
approach has been very successfully applied, in particular to problems in geometric optics
(Burchard et al., 2001; Min, 2004; Osher et al., 2002), where the handling of topological
changes is of no importance (as they do not occur in this setting Osher et al., 2002).
However, if one is interested in topological changes these approaches may require global
initializations, and it is not be clear how to automatically initialize the scalar functions to
guarantee proper topological behavior. This is of special importance when numerical
efficiency is crucial (e.g., when it would be beneficial to employ a narrow-band approach)
(Burchard et al., 2001).

An alternative approach, closely related to the evolution of an unsigned distance function, is
the evolution of a vector distance function, which is the topic of the present work. In this
scheme not only the distance to an object is known at any space point, but also the normal
direction. For a vector distance function, there will always be a clearly defined zero level set
(where vectors flow away from each other), there are no initialization problems and narrow-
band approaches are possible. A vector distance function can easily be calculated from a
distance function and vice versa. Unfortunately, the theory underlying the numerical
methods for vector distance functions is still in its infancy, since one is dealing with
discontinuous vector fields. Also, as for the level set intersection methods discussed above,
there is no analog to the theory of viscosity solutions available for these systems of partial
differential equations (Gomes and Faugeras, 2001a). In this paper, we restrict ourselves to
the representation of closed curves. This will simplify the numerical implementation and
facilitate a reinitialization procedure compensating for fattening artifacts occurring
throughout the evolution process (due to numerical inaccuracies).

We now summarize the contents of this paper. In Section 2 we describe the main level set
approaches, focusing on the vector distance function based approach. Section 3 discusses the
vector distance function based level set method. Next in Section 4, we apply the
methodology developed in Section 3 to the evolution of a normal geometric dynamic active
contour. Simulation results are presented in Section 5, and finally we make some
conclusions in Section 6.

2. Level Set Approaches
In this section, we outline some of the main methods for the evolution of manifolds of
codimension greater than one via various level set approaches. We will then describe in
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some detail the vector distance function method which we will subsequently apply to the
problem of dynamic active contours which are represented as curves evolving in .

Level set approaches to date are extremely versatile and based on solid mathematical
foundations for codimension one problems (Osher and Fedkiw, 2001). Ambrosio and Soner
extended the theory of level set evolutions to mean curvature flows in arbitrary
codimensions in their seminal paper (Ambrosio and Soner, 1996). Specifically, they prove
existence and uniqueness of weak solutions for the curvature evolution of surfaces of
arbitrary codimension represented by a surrounding family of hypersurfaces. They also hint
at the possibility of representing smooth surfaces by the intersection of the level sets of
multiple scalar functions, but do not follow this path due to theoretical complications (it is
not clear how to theoretically analyze the resulting system of equations).

The first approach (as employed by Lorigo et al. (1999) for the evolution of a smooth
manifold  of codimension k > 1 in , makes use of the nonnegative scalar auxiliary
function ,

which vanishes on  and fulfills ∇v(x) ≠ 0 for . For , but ε-close to ,
we can define the matrix

where

is the orthogonal projection operator along the direction of the vector p and ∇2 denotes the
Hessian. According to Ambrosio and Soner (1996), the evolution described by the
differential equation

with

such that
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are the eigenvalues of Pp APp orthogonal to p, represents the mean curvature evolution of
 where

Only the d – k smallest eigenvalues of J(x) orthogonal to ∇v(x) are related to the geometry
of . The uniqueness and existence results obtained in Ambrosio and Soner (1996) can be
extended to a general normal velocity

where  is the mean curvature vector,  is a given vector field and  is the
projection operator onto the normal space of . The evolution equation then becomes

This approach is mathematically well founded, however, fattening of the evolving manifold
can occur (Bellettini et al., 1998; Burchard et al., 2001) and so the handling of topological
merging is problematic. Furthermore, numerical extraction of the zero level set is not
straightforward. This can be circumvented (at the cost of less theoretical insight) by
evolving the intersection of isocontours of k scalar functions in a way consistent with the
desired movement of the codimension k object, which is the second method proposed by
Ambrosio and Soner (1996) (see Burchard et al., 2001; Osher and Fedkiw, 2003; Bertalmio
et al., 1999) for codimension two, (Osher et al., 2002) for codimension three, and (Gomes
and Faugeras, 2002b) for arbitrary codimensions). Given the k scalar functions , 0
< i ≤ k, the evolving object is implicitly described by the simultaneous evolution of

where xt is the velocity vector. The object is represented (for example) by the intersection of
the respective zero level sets of the k scalar functions αi.

Two major questions arise from this formulation:

1. How are the scalar functions initialized? This has to be performed globally (over
the whole computational domain) if well-behaved handling of topological changes
is required. Narrow-banding approaches (Adalsteinsson and Sethian, 1995) cannot
be used per se for this problem. Further, the representation of an object by
intersection of multiple hypersurfaces is not unique.

2. How should the speed functions in the complete computational domain be
determined for the scalar functions αi if the desired velocities are only known at the
intersection of the hypersurfaces? Based on these velocities, extension velocities
have to be constructed (on the zero level sets, and in the interior of the domain).

To resolve these questions, a novel approach based on vector distance functions is
introduced in (Gomes and Faugeras 2001a, and Gomes et al. 2001). Given a manifold ,
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is defined as the distance from point  to the manifold . The vector distance function
u(x) is then given as the derivative of the squared distance function (see Ambrosio and
Soner, 1996; Pottman and Hofer, 2003) for details on the squared distance function)

Thus

(1)

The vector distance function is an implicit representation of the manifold  with

the intersection of the d hypersurfaces

The description is redundant, but unique.

The evolution equation for the manifold , parameterized by p, becomes (using the
notation of Gomes and Faugeras (2001a))

where  is a vector field defined on , determining the evolution speed at x.
Note that we do not need the tangential component of the evolution equation since the
evolution is performed in .

To evolve the manifold , a speed function must be constructed on the subspace of  that
contains the evolution of the manifold. This speed function should

1. maintain the vector distance function throughout the evolution, and

2. move the manifold  appropriately.

It can be shown (see Gomes et al. (2001) that the characteristic equation for the vector
distance function u(x) is

(2)

where Du denotes the Jacobian of u. Taking the time derivative of Equation (2) and using
the fact that (Du)T = Du (Gomes et al., 2001)

(3)

where b is the appropriate velocity for the vector distance function evolution with initial
condition
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The overall evolution is then given by

which completes the vector distance function based approach.

The vector distance function to a given manifold  is unique, and its initialization is
straightforward. Significant reductions in computational cost are possible through narrow-
banding techniques. A fattening phenomenon (similar to that found in Ambrosio and Soner
(1996)) can be observed for vector distance function based level set approaches.

In what follows we restrict ourselves to the representation of closed one-dimensional curves
in , i.e., we will be considering a codimension d – 1 problem. This restriction is beneficial
since it allows for the construction of an explicit reinitialization method, which in turn
alleviates the fattening problem, and will provides a good representation for the evolutions
based on the equations of dynamic active contours. Dynamic active contours will be
presented in Section 4.

3. Level Set Approach by Means of a Vector Distance Function Evolution
An implicit description of an object by a vector distance function is extremely versatile;
there is no restriction regarding an object's shape. Specifically, objects with varying
dimensions can be represented (Gomes and Faugeras, 2001a). Objects can also change
dimension throughout the vector distance function evolution, in contrast to level set
approaches using a signed distance function, where objects necessarily need to be closed
(unless we are working within a bounded domain). The representational flexibility of vector
distance functions is clearly a desirable property. However, it is not clear at this point how to
devise numerical methods for this general case. To facilitate the numerical implementation,
we restrict ourselves to the representation of possibly multiple closed curves.

We perform the following steps for our vector distance function based curve evolution. To
evolve a curve according to the vector distance function approach,

0 Initialize the vector distance function.

1.
Detect (a band around) the zero contour (i.e., .

2. Redistance the vector distance function outside of the zero band or (if necessary)
explicitly on the whole computational domain.

3. Compute the vector field b on the band determined in (1).

4. Extend the b vector field to the whole domain, keeping the values of step (3) fixed.

5. Do an evolution step.

6. Go to step (1).

Steps (0)–(5) are described in the following subsections.

3.1. Initializing the Vector Distance Function
Assume the existence of a piecewise linear approximation of the closed curve to be
represented. Let this approximation be
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where  is the set of line segments constituting the piecewise linear approximation.
Working on a discrete grid, we explicitly initialize1 the vector distance function u on a set,

, γ-close to the piecewise linear approximation :

In the remainder of the computational domain Ω, i.e., , we can reinitialize by first
computing the distance function δ to  and then converting the distance function to the
vector distance function. One way to compute this distance function δ on  is to use the
reinitialization approach proposed by Sussman et al. (1994). There is no inside and outside
when representing objects of codimension larger than one. This precludes the application of
the scheme by Sussman et al. to initialize over the whole domain Ω (see Section 3.3 for more
details).

3.2. Simple Zero Band Detection
As will be shown later, redistancing the vector distance function over the whole
computational domain Ω is not straightforward. Since redistancing is not straightforward,
neither is the extension of quantities (like the velocities). However, frequently it is sufficient
to perform these operations away from the zero level set (Dupont and Liu, 2004), where
standard methods known from the evolution of closed curves or surfaces of codimension one
can be applied. This is the approach followed here. We simply do not redistance on the set

 which is γ-close to the zero level set (in analogy to Section 3.1). The current vector
distance function u can be used to find the set ,

We will see in Section 3.7 that a more precise approximation for the zero level set is needed
for the explicit reinitialization of the vector distance function field on . The value for γ
needs to be chosen conservatively to make sure that the actual zero level set is contained in

.

3.3. Redistancing the Vector Distance Field Away from the Zero Band
Inspired by Dupont and Liu (2003), the vector distance function is reinitialized only outside
the zero band obtained as described in Section 3.2. Gomes and Faugeras (2001a) propose to
minimize the functional

(4)

By means of calculus of variations they derive the corresponding gradient descent flow. This
is a flow that directly works with the vectors u. Unfortunately, the numerical
implementation is not straightforward (except in the case of simple geometries, e.g. lines).

1For an efficient implementation this set has to be approximated, since we do not know the distance of a point x to  beforehand.
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Alternatively, redistancing is performed via the intermediate computation of a scalar
distance function. Based on this reinitialized scalar distance field, we can then compute the
vector distance field. This two-step approach has the advantage that standard algorithms can
be used and iteration free solutions (e.g., fast marching) are possible2. The current distance
function δ(x) relates to the vector distance function by

(5)

The distance function can be reinitialized on  for example by a fast marching approach
(Sethian, 1999) or by a partial differential equation approach along the lines of Sussman et
al. (1994). However, since we are not dealing with a signed distance function here, the
approach by Sussman et al. (1994) will simplify to solving the equation

(6)

Given the reinitialized distance function δ, the reinitialized vector distance function can be
determined by solving3 for u in Eq. (1).

3.4. Computing the Velocity Field on the Zero Band

It is sufficient to compute a velocity vector for every point in . From Gomes and
Faugeras(2000a) the identity Du(x)t = 0 holds for every element t of the tangent space to the
curve. The symmetry of (Du) in the evolution equation

means that the velocity vector b need not be projected onto the normal space of the curve.
For example, for a mean curvature evolution, the velocity vector b is given by the mean
curvature vector which can be computed (Gomes and Faugeras, 2001a) (for a one-
dimensional curve) as

the component-wise Laplacian of u. Section 4 contains the corresponding expressions for
the normal dynamic active contour.

3.5. Extending the Velocity Field
We now show that the velocity field b satisfies Equation (18), if it is normal to  and
extended in the normal direction to . Assume b is extended in the normal direction to ,
i.e., given any point x ∈ Ω, b will be constant in the u direction. Then,

and Eq. (3) reduces to

(7)

2The overall scheme is then an iteration free scheme to produce a vector distance function.
3Choose the gradient direction dictated by the numerical scheme.
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We know that

(8)

But

(9)

since the gradient of δ(x) is constant along the normal direction, and b and the normal
direction are linearly dependent by assumption. Combining (7–9) yields

which holds because b is assumed normal to .

By Section 3.4, only the normal direction of b matters for the evolution of u. Thus, instead
of solving Eq. (3) directly, it is sufficient to extend the components of b along the normal
direction to . Since only the normal component of b to  matters for the evolution, b
need not be projected onto the normal space of  before extending it in the normal
direction of .

3.6. Evolving the Vector Distance Function
There are numerical advantages to evolving vector distance functions over evolving distance
functions directly. Whereas the vector distance function clearly defines the zero level set at
every point in time (vectors are emanating from the zero level set), the zero level set of the
distance function is not so easy to find. In case of the distance function it is unreasonable to
expect to find a level set that is exactly zero. Instead, locating the zero level set would
require searching for distance minima or locations of diverging gradients of the distance
function. The latter essentially goes back to the idea of the vector distance function. Also,
numerical algorithms usually cause dissipation. For the distance function this means, in the
extreme case, that the “zero level set” drifts away from zero over time. This drift is not
desirable.

We assume a velocity field b in Ω as discussed in Section 3.5. We evolve the vector distance
function as4

(10)

Increased numerical accuracy can for example be achieved through back and forth error
compensation and correction (Dupont and Liu, 2003). If  is the numerical solution
operator of Eq. (10) the backward error compensation method is given by the following
three steps:

1. Solve forward: .

2. Solve backward: .

3.
Solve with error compensation: .

4For vector distance function evolutions: b = –v, where v is the speed of the zero level set.
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We show an example of backward error compensation in Section 5, but refrain from its use
for the remainder to save on computational complexity (this scheme increases the numerical
complexity roughly by a factor of three).

3.7. Redistancing the Vector Distance Function Field
Due to numerical errors, the evolving vector field u will drift away from the class of vector
distance functions over time. Close to the zero level set, the vectors will fail to be
perpendicular to the curve being evolved and the approach of Subsection 3.3 will no longer
suffice.

In this case, the vector field has to be reinitialized on the zero band (or alternatively, we
could constantly reinitialize as we go). Instead of using the flow based on the energy
functional (4), we could directly solve the characteristic equation

numerically. Inspired by (6) it seems reasonable to evolve

to steady state. Since Du is symmetric this is equivalent to

(11)

Equation (11) has a particularly simple structure. It is a multi-dimensional transport equation
with a right hand source term. Unfortunately, solving Eq. (11) numerically is not
straightforward. Only in the most trivial cases, i.e., when representing one single line, will
there be no solution shocks. Generically, the solution will have discontinuous shocks.

To get a feel for this equation and its associated problems, consider the one-dimensional
case. Equation (11) becomes

(12)

a one-dimensional Burgers’ equation with source term. The steady state for this equation is
either ux = 1 or u = 0. However, this is only true if we are implicitly representing one single
point. Otherwise, we expect a discontinuous solution that should be interpreted in the weak
sense. If the equation is discretized using a conservative scheme (e.g., volume of fluids) the
singled-out solution is not necessarily the desired solution. This can easily be seen in the
one-dimensional case by looking at the shock-speed given by the Rankine-Hugoniot
condition. Due to the additional source term on the right hand side of the Burgers’-like
equation, a derivation of the shock speed is instructive. To derive the shock speed, we
consider a small time interval Δt for which the shock speed s is approximately constant
(Leveque, 2002). During that time period the shock travels the distance Δx = sΔt. Assuming
the discontinuous states across the shock are ul and ur, we derive the shock speed based on
the conservation form of

which yields Eq. (12) when . We obtain (see Fig. (1))
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(13)

Since the value for u is constant in each of the triangles of Fig. 1, Equation (13) simplifies to

With Δx = sΔt,

resulting in an expression for the shock speed s:

(14)

The latter expression is independent of the right hand-side source term (it is negligible for
this infinitesimal time interval). This is the classical Rankine-Hugoniot condition for scalar

conservation laws. Substituting  into Eq. (14) yields

the shock speed for Burgers’ equation. For the one-dimensional case, discontinuities will
only arise in between the represented points (the zero level set). For the representation to be
a true vector distance function the left-hand and the right-hand side limits of the vector
distance function magnitude at the discontinuity have to be equal. Since the numerics will
introduce errors, this exact balance will not be stable. Redistancing performed by solving
Eq. (12) will favor high magnitudes of the vector distance function. The vector distance
function will converge to a vector distance function of a single point (whichever one was the
most dominating). Figure 2 shows the shock speeds for two vector based level set
representations of a two-point scenario. In both cases the shock does not move in the desired
direction.

To get a feeling for the fundamental difference between the signed distance function based
and the vector distance function based approaches, it is instructive to briefly review the
rationale behind the numerics for the level set evolution based on a signed distance function.
Here, the slope of the signed distance function is conserved (Sethian, 1999). In one
dimension, the evolution equation is given as

(15)

where F is the speed function. Differentiation of Eq. (15) gives
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Substituting w = Φx we get

which is in conservation form for w, the slope. Here, H(·) is the flux function. However, a
numerical solution to Φ instead of w is sought. Thus, the Hamilton-Jacobi equation

(16)

needs to be solved using a numerical approximation of H(·). Equation (16) evolves a
continuous function Φ as opposed to a discontinuous vector field u.

3.7.0.1. Explicit Redistancing of the Vector Distance Function—Since it is not
immediately obvious how to devise a partial differential equation based reinitialization
strategy, reinitialization is done by construction. Doing so requires an explicit expression for
the zero level set, which is also useful for visualization purposes. The remainder of this
section proposes a particle based method and a method based on discrete connectivity. Both
methods are computationally expensive; more efficient methods would be desirable.
Fortunately, it is not necessary to reinitialize the vector distance function after every
iteration step.

3.7.1. Particle Based Explicit Redistancing of the Vector Distance Function—
Given a sampling set  of a (discrete) domain containing the zero level set (e.g.,

, move each particle in the sampling set along the vector distance field:

The particles will converge to the zero level set (possibly suffering from fattening). A
sufficiently dense sampling will guarantee a good representation of the zero level set.
Denoting the set of points to which the particles converge by , the vector distance

function on  can be reinitialized by explicitly computing .

3.7.2. Discrete Connectivity Based Redistancing of the Vector Distance
Function—The discrete connectivity based approach hinges on a discrete approximation of
the zero level set and a piecewise linear approximation thereof.

3.7.2.1. Thinning: To construct the discrete approximation of the zero level set, begin with
a discrete representation of the zero band (as proposed in Section 3.2). This discrete
approximation is then thinned. Ideally, we would obtain a (3d – 1)-connected (where d is the
space dimension) approximation of the zero level set where this approximation is composed
of a union of sets representing discrete simple closed curves (Thürmer, 2003)5 whose union
does not violate the property of every d-xel having exactly two neighbors. If the represented
curves are sufficiently distant from each other, this two-neighbor-property will not be
violated. However, if the represented curves are sufficiently close it may be, as illustrated in
Fig. 3.

5For our purpose, a discrete simple closed curve γd in  is a finite subset of , such that γd is (3d – 1)-connected and each point of
γd is adjacent to exactly two other points of γd.
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Topology preserving thinning is frequently used to determine discrete skeletons of discretely
represented objects. A key issue is the notion of a simple point: simple points are points of
discrete sets that do not alter the topology of the represented object upon removal. Testing
for simple points gets increasingly complex for higher dimensions. The two-dimensional
case is straightforward. The three-dimensional case is well studied. Higher-dimensional
cases have not received much attention (Gau and Kong, 2002; Kong, 1997). However, this is
the case relevant to our application. For now, assume the existence of a test for the simple
point property in higher dimensions (Section 3.7.3 will explain the method used).

To decide if a point is simple, it suffices to check if its removal changes the topology within
its (3d – 1) neighborhood. To utilize the additional directional information encoded in the
vector distance function for the thinning algorithm, define the local (3d – 1) neighborhood

 of a point p as

and base the decision for a simple point on this neighborhood. As a consequence, the
modified thinning algorithm will no longer be topology preserving. Instead it will be
allowed to break undesired connectivities (see Fig. 4 for a two-dimensional example) based
on the projection of the vector distance function vectors on connecting line segments
between two points.

The thinning is performed by successive removal of simple points until there are no simple
points left. The simple points with maximal vector distance norm are removed first.

3.7.2.2. Constructing a Piecewise Linear Approximation: Given the discrete
approximation of the zero level set, we want to construct a piecewise linear approximation
by means of the discrete connectivity information, i.e., each line in the piecewise linear
approximation will correspond to a (3d – 1) connected pair of d-xels. The discrete
connectivity induces a graph  over the discrete approximation  of the zero level set,
where the vertex set  is the set of points in  and the edge set  is given by the discrete
connectivity information. (See Fig. 5 for an illustration.) We are interested in simple cycles
of this graph that are consistent with the definition for discrete, simple closed curves. Fig. 6
shows some possible simple cycles of the graph associated with a simple two-dimensional
discrete approximation of a zero level set of two circular objects. None of these exemplary
simple cycles are valid representatives for a discrete, simple closed curve.

Initial Candidates: In order to single out sensible candidates for the discrete, simple closed
curves in which we are interested, we introduce a measure for edge deviation from the edge
contained in the sought-after piecewise linear approximation of the zero level set.
Specifically, given the two points x0 and x1 (the vertices of the edge e), define the two line
segments

where p ∈ [0, 1], and
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The distance is then defined as (see Fig. (7) for an illustration):

Define the set of illegal starting edges  as

i.e., the set of edges that are part of simple cycles of length three. These are edges at
positions where the discrete curve “ceases to be simple” and a point has more than two
neighbors.

The following heuristic algorithm is used to find discrete, simple closed curve candidates:

0 Set the set of uncovered edges to .

1. While : (repeat steps (2)–(4)):

2.
Find .

3. Find all simple cycles containing e that represent a discrete, simple closed curve
and put them in  (the set of these cycles).

4. If  remove e from . Otherwise, the smoothest6 of the cycles in  is the
desired, discrete, simple closed-curve candidate whose edges are removed from .

Measuring Smoothness: The smoothness of a cycle depends on the likelihood of a cycle to
follow a path across a vertex that has more than two neighbors. Specifically, if  is the set
of all paths through a vertex , define the path-likelihood as

where ci is an approximation to the curvature at p for the path pi and the probability P of a
cycle taking the path pi at vertex p as

The smoothness s of a cycle C is then defined to be

The smaller s(C), the smoother the cycle C is. Fig. (8) illustrates this smoothness
computation. Starting with an edge emanating from the light gray block at the bottom left of
Fig. 8(a), the three cycles given in Figs. 8(b–d) are possible. Due to symmetry, it suffices if
we compute curvature approximations at the point pa denoted by the asterisk. The four

6See the subsequent subparagraph on how to measure the smoothness of such a cycle.
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hatched blocks are used for the discrete curvature computations. We assume that the
diagonal distance between points is one. In case (b), curvature c(pa) = 0. In the cases (c) and
(d),

Using σ = 2, the likelihoods at the crossing points are

The corresponding probabilities thus become

which yields to the smoothness values

Since s is smallest in case (b), the corresponding cycle is the smoothest.

Refining the Piecewise Linear Approximation: Once a cycle has been determined, its
piecewise linear approximation is still relatively crude. To refine the approximation
(keeping the connectivity at the same time), successively split a line segment into two line
segments. Given the two end-points p0 and p1 of a line segment, define

The line segment (p0, p1) is then replaced by the two line segments (p0, pm) and (pm, p1).

This process can be repeated multiple times if necessary. Due to numerical inaccuracies in
the vector distance function oversampling may result in a rugged-looking curve. To increase
curve smoothness approximate this over-sampled piecewise linear approximation to the zero
level set by a least squares quadratic spline (Dierckx, 1993) or a least squares piecewise
linear approximation. It is then straightforward, but relatively computationally costly, to
redistance the vector distance function based on the obtained piecewise linear
approximation.

Explicit Redistancing: Given a line segment L defined by its two endpoints p0 and p1,
define the vector distance u of a point p to the line segment L as:
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where

Otherwise,

The reinitialized vector distance function at a point x is then approximately

3.7.3. Detecting Simple Points—Detecting simple points gets increasingly complex
with higher space dimensions. Since the potential space dimensions may be higher than
three, it is desirable to use a method for simple point detection applicable in arbitrary space
dimensions. Previous work has focused on specific space dimensions: see for example
(Bertrand, 1996; Gau and Kong, 2002; Klette, 2003; Kong, 1997).

Our approach is based on cubical homology and is not restricted to a specific space
dimension. Cubical homology is ideally suited to digital images, due to its ability to handle
voxels or pixels directly. Whereas homology is by now a standard tool of algebraic topology
(Massey, 1991), cubical homology is more recent (Kaczynski et al., 2004; Kalies et al.,
1999). Homology seeks to count holes in a topological space. For three-dimensional image
data for example, three non-trivial homology groups H0, H1 and H2 exist. The number of
connected components, tunnels and voids present in the image are given by the Betti
numbers β0, β1 and β2 respectively; where βi is the rank of the homology group Hi.
Homology is a combinatorial theory, i.e., it can be computed by decomposing the space into
a finite number of units. In the traditional simplicial homology, these units are simplices (a
simplex is a hypertetrahedron, it is the simplest possible polytope for a given space
dimension, e.g., a line in one dimension, a triangle in two dimensions, etc.). In the cubical
homology these units are d-xels and also their respective vertices, edges and higher-
dimensional faces, they are called elementary cubes.

Formally, an elementary cube Q is given by the finite product (Kaczynski et al., 2001)

(17)

where Ii is either a singleton (degenerated) interval I = [l, l] = [l] or an interval of unit length
I = [l, l + 1] for some . The number of non-degenerate components in Q is called the
dimension of Q (dimQ). If a set  can be written as a finite number of elementary
cubes, it is called a cubical set. The set of all elementary cubes is denoted by , and the set
of all elementary cubes Q in  with dimQ = k by , for . In three dimensions, the set
of all elementary cubes  consists of all vertices, edges, faces and voxels.

Definition 1. Let  be a cubical set. Let
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To pass from the combinatorial structure of the elementary cubes, e.g., the collection of
voxels, to the algebraic structure of homology groups, one constructs the free Abelian group
(i.e., a commutative group that has a basis) of k-chains, Ck (X) by declaring each element of

 to be a distinct generator (or basis element). Let Ck denote .

Given , the cubical boundary operator

(18)

is the group homomorphism7 defined on every elementary cube  as the alternating
sum of its (k – 1)-dimensional faces. Due to linearity this boundary operator extends to all k-
chains. A k-chain z ∈ Ck(X) is called a cycle in X if ∂kz = 0. A k-chain z ∈ Ck(X) is called a
boundary in X if there exists a c ∈ Ck+1(X) such that ∂k+1c = z. The set of all cycles and the
set of all boundaries in X form subgroups in Ck(X) and are given by8

(19)

(20)

respectively.

Definition 2. The k-th cubical homology group of X is the quotient group

The Betti numbers βk are then given as

(21)

The elements of Hk(X) are called the k-generators of X. The homology groups are
computed9 as (for example) described in Kalies et al. (1999). If N is the (3d – 1)-
neighborhood of the d-xel x, x is a simple point if Niethammer et al. (2004a)

See Niethammer et al. (2004a) for the simple point condition for arbitrary dimensions d

For our thinning purpose, it is also useful to allow for topological changes. One useful
change for finding a discrete approximation to the zero level set is to allow for the
“piercing” of discrete planes, i.e., if the removal of an d-xel changes the topology of the (3d

7A map f : G → G′ between the two Abelian groups G and G′ is called a homomorphism (Kaczynski et al., 2004) if f (g1 + g2) = f
(g1) + f (g2) for all g1, g2 ∈ G.
8ker f denotes the kernel of f, i.e., ker f = f–1(0).
9Software to compute the Betti-numbers of a cubical complex is freely available (http://www.math.gatech.edu/chom).
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– 1) neighborhood from β0 = 1, βi = 0, i > 0 to β0 = 1, β1 1, βi = 0, i > 1, we allow to this
removal occur.

4. Four-Dimensional Evolution for the Normal Geometric Dynamic Active
Contour

One of the key examples for the proposed vector distance methodology is the evolution of a
normal dynamic active contour (see Section 5 for results). We review some of the
background material for this following (Niethammer et al., 2004b), to which we refer the
reader for all relevant details.

Specifically, consider the evolution of closed curves of the form 
in the plane, where  and  (Grayson, 1987), with t ∈ [0, τ) being
the time, and p ∈ [0, 1] the curve's parametrization on the unit circle S1.

The governing equations for the dynamic active contour model are derived by computing the
Euler-Lagrange equation associated with the action integral

resulting in

(22)

where  is the unit inward normal,  is the unit tangent vector to the curve, 
denotes curvature, s is the arclength parameter (do Carmo, 1976), g is a potential function
and μ is related to the mass of the curve. In comparison to the classical active contour, time
in (22) is not an artificial time parameter introduced to solve an Euler-Lagrange equation,
but instead appears naturally in Eq. (22), is physically motivated and augments the state
space by a velocity vector for every point on the evolving curve.

It can be shown that the solution of Eq. (22) can only have a nonvanishing tangential
velocity if its initial condition has a nonvanishing tangential velocity (Niethammer et al.,
2004b). Assume that the initial condition is free of tangential velocities. Eq. (22) simplifies
to

(23)

the evolution equation for normal dynamic geometric curve evolution (with β being the
speed in the normal direction).

Although the evolution equations for the normal dynamic geometric curve evolution seem to
only require a curve evolving in three dimensional space (for the position in the plane and
the normal velocity for every point on the curve—the projection of the space curve onto the
image plane then recovers the geometric shape of the evolving planar curve) this is not
sufficient in general when implementing the evolution for multiple curves simultaneously.
In certain cases (i.e., when the projections of curves overlap in the image plane) there is no
clear inside and outside of the projected curve. Then it is not apparent how to assign a
unique normal vector to every point of the projected curves in the image plane without the
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normal vector exhibiting a discontinuity (when traced along an individual curve). Also, even
if such a normal vector would be given, it is not desirable to perform the topological
merging and splitting based on this representation, i.e., based on the position and the normal
velocity coefficient. Indeed, if we use the unit inward normals of two curves, two curves
will not necessarily merge even though they coincide with position and velocity, because the
normal velocity coefficient β can (and in this case will) differ in sign (see Fig. (9) for an
illustration). It is thus more desirable to perform the level set implementation in a four-
dimensional space (this is a codimension three problem) so that merging and splitting is
performed based on the real velocity vector. We call this the full level set approach.

Previous work (Niethammer et al., 2004b) was not concerned with the propagation of the
curves in this higher-dimensional space. Instead a partial level set approach was used, where
curves in the image plane are represented by a level set function and the normal speed is
simply propagated along with the curves. This guarantees dynamic curve propagation
according to Eq. (23) as long as the level sets, used for the representation of the curves’
positions in the image plane, do not merge or split. Consequently, curves sliding past each
other cannot be represented in this setting. If this is desired, a full level set approach needs to
be employed. Then a completely implicit representation of the curve based on Eq. (23) is
evolved, allowing for full topological flexibility. Of specific interest is the requirement that
two curves will only be merged at a point if their positions and velocities at this point are
identical, i.e., the methodology allows for curves to slide past each other if this is what their
dynamical description requires them to do. When two curves slide past each other, the
projection onto the image plane will show two intersecting closed curves. The merging
behavior will be very different from the one observed for the partial level set approach.
While two objects that get merged with the partial level set approach will lose their joint
boundary, this will not be the case for the full level set approach where the two contours will
get fused at their joint boundary.

We will treat the combined spatial and velocity evolution of closed curves within the vector
distance function setting (as a full level set approach), thus providing a sample problem for
the vector distance function approach to level-set evolutions in higher co-dimension. Eq.
(23) was derived based on curves evolving in the plane. However, the implicit evolution of
closed curves by a vector distance function approach requires the computation of planar
quantities (e.g., the mean curvature vector in the image plane) based on the vector distance
function values u, which implicitly describe a curve in . In short, Equation (23) needs to
be written in terms of u.

With

an evolution equation analogous to Equation (12) is

which is (upon substitution of Eq. (23))
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(24)

To implement Eq. (24) in a level set framework the tangential, , and the normal, ,
vectors need to be written in terms of u. Also, a replacement for the mean curvature vector
in the plane  has to be found. The curve position  and the curve velocity v are
given implicitly by

(25)

where

and .

Since the object dimension is one, exactly one eigenvalue of Du will be zero, while the
others will be one (Gomes and Faugeras, 2001a). The eigenvector corresponding to the zero
eigenvalue will be aligned with the tangential direction of the curve. For numerical
robustness we propose to compute the full-dimensional tangential vector as

where

The tangential vector  in the plane is then the normalized projection of  onto the image
plane:

We define

and propose to compute the mean curvature vector in the plane as
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and the squared velocity variation along the curve as

where we replaced quantities that should be normal to the planar curve by its projections
onto o to increase numerical robustness. Defining the reprojected velocity to be

we obtain (using the reprojected velocity) the overall evolution equation

(27)

In principle v should always be perpendicular to the evolving curve. In case of a numerical
implementation this will not be the case due to numerical inaccuracies. It might thus be
useful to enforce this property dynamically by changing Eq. (27) to

The newly introduced term will ensure that the tangential velocity components will vanish
for t → ∞ (based on the correction gain K > 0).

5. Examples
In this section, we present some numerical test examples to illustrate the behavior of the
algorithms. We show (i) a test example demonstrating the superiority of the vector distance
function approach over the distance function approach, (ii) a mean curvature evolution, (iii)
a translational evolution, and (iv) evolutions of one and two circular objects in a potential
well.

Figure (10) shows a one dimensional toy problem. It demonstrates the superiority of the
vector distance function approach as opposed to the distance function approach. Error
compensation has a very beneficial effect on the distance function results, but cannot
prevent the distance function from drifting away from its correct values (this is more
dramatic for the case without error compensation). On the other hand, error compensation
does not significantly improve the result for the vector distance function evolution in this
example. In both cases (with or without error compensation) the vector distance function
scheme accurately follows the desired movement.
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Note that the main difference between the two approaches, and the reason for the
dramatically different results in this example, lies in numerical problems for the distance
function case: here the curve has a kink at the location of interest. The kink leads to
numerical dissipation, smearing out the kink and resulting in smaller gradients (which cause
very high sensitivity of the minimum of the level set function to numerical errors). On the
other hand the vector distance function does not have a kink at the point of interest. In fact,
the function is continuous and differentiable there. This is favorable for obtaining a reliable
numerical solution.

Figure 11 shows a two-dimensional result for a vector distance function based curvature
flow. This is merely a result to demonstrate the feasibility of vector distance function
evolutions, since this problem could be solved by a standard level set approach using a
signed distance function. The results show a nice regularization and the expected behavior
(the object becomes increasingly circular over time). Finally, Figs. 12 and 13 show the result
of propagating a circular object by applying a constant velocity field. By using error
compensation (this is a prime example of the usefulness of this approach in certain cases)
the theoretical result is almost indistinguishable from the numerical result.

Figures 14–15 show a circular object oscillating in a potential well based on the evolution
equations derived in Section 410. The curve shown is the projection of the space curve on
the image plane with velocity vectors given by the space curve. Clearly the circular object
oscillates. It dissipates energy due to the numerics and the reinitialization scheme, and stops
oscillating in finite time.

To test the behavior for topological changes, Figs. 16–17 show two circles oscillating
simultaneously in the same potential well used previously. They slide over each other while
their velocities are significantly different from each other, but merge once their velocities
become numerically indistinguishable. Note that this is a demanding example since we
chose to discretize the velocity with the same accuracy as the spatial dimension (see the
pixel size in the images). As illustration, Fig. (18) shows the three-dimensional projections
for a representative thinned discrete approximation to the zero level set.

6. Conclusions
We have argued that the vector distance function based level set approach is a useful tool for
practical evolutions of objects of codimension greater than one. To address implementation
issues, analysis was restricted to the class of objects representable by the class of closed
curves. The restriction greatly simplified the explicit reconstruction of the zero level set
required for reinitialization purposes.

Increasing space dimensions leads to an increasing number of neighbors for each hypercube
(in the computational narrow-banded grid) and thus to an increase in computational cost per
iteration. Significant reductions in computational complexity are possible through narrow-
banding schemes, which is of great importance for evolutions in high-dimensional spaces.

This paper thus presents the combination of an implicit scheme (the vector distance function
based level set propagation) with occasional explicit reinitializations of the vector distance
function. The explicit reinitializations are based on discrete geometry and the theory of
computational homology. While a completely implicit scheme would be desirable, also with
regard to the representation and evolution of a less restrictive object class, the reconstruction

10The potential function is of the form , where I is the intensity image (here a circular blob) and G is a Gaussian filter. The
results are for μ = K = 1.
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of an explicit representation of the zero level set has the advantage of remedying the
fattening problem. Topological mergers can then be addressed satisfactorily.

A better mathematical understanding of the vector distance function evolution scheme is
highly desirable. Numerical methods tailored specifically to the evolution of these
discontinuous vector fields are useful and should be investigated. To obtain a completely
implicit scheme, implicit reinitialization strategies need to be devised. This is a challenging
problem, numerically and in the context of how to properly handle fattening artifacts.

Overall, the results obtained for the proposed methodology are encouraging. Initialization
poses no problem in this setting, narrow-banding is feasible, and topological changes are
handled satisfactorily.
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Figure 1.
Shock propagation over an infinitesimal time interval Δt.
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Figure 2.
Shock propagation.
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Figure 3.
Example of a thinning of the zero band that does not yield two clearly separable discrete
closed simple curves.
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Figure 4.
Undesired topological connection remaining after topological thinning.
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Figure 5.
All possible edges and vertices based on the discrete connectivity.
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Figure 6.
Some possible simple cycles that are not valid representatives for a discrete closed curve.
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Figure 7.
Illustration of the line quality measure.
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Figure 8.
Starting with an edge leaving the light gray block at the bottom left, three candidate cycles
for the discrete configuration (a) are possible, with (b) being the smoothest one.
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Figure 9.
Merging curves scenarios.
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Figure 10.
One-dimensional distance function and vector distance function evolutions. Dash-dotted
curves are the results for the distance function evolution, dotted curves are the initial curves
for comparison, and solid curves are the results for the vector distance function evolutions.
The results represent evolutions for 400 timesteps with a timestep of 0.1. The evolutions
were performed with a constant velocity field of 1 which flips sign every 100 iterations.
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Figure 11.
Vector distance function based curvature flow. Arrows indicate the vector distance function
u.
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Figure 12.
Circular object subject to a uniform flow field with theoretical solution. Evolution steps 0
and 250.

NIETHAMMER et al. Page 36

Int J Comput Vis. Author manuscript; available in PMC 2013 May 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
Circular object subject to a uniform flow field with theoretical solution. Evolution steps 500
and 1000.
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Figure 14.
Oscillating circular curve. Evolution steps 0-15.
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Figure 15.
Oscillating circular curve. Evolution steps 20–35.
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Figure 16.
Two oscillating circles. Time steps 0 to 3.
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Figure 17.
Two oscillating circles. Time steps 4 to 9.
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Figure 18.
Projections of the thinned discrete zero level set representation.
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Table 1

List of symbols.

Symbol Description

∇ gradient

D Jacobian

∇ 2 Hessian

Δ Laplacian

b vector distance function velocity function

V velocity of the zero level set b = –V

v planar curve velocity

β normal curve velocity

δ(x) (scalar) distance function

u vector distance function

Ω computational domain

V vertex set of a graph

E edge set of a graph

Hk (X) k-th homology group of X

β k Betti numbers

M manifold

H mean curvature vector

C planar closed curve

N unit inward normal to C

T unit tangent vector to C

κ signed curvature to C

s arclength

p curve parameterization

g potential function

Int J Comput Vis. Author manuscript; available in PMC 2013 May 20.


