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Abstract. A novel approach for essential matrix estimation is presented, this being a key task in stereo vision process-
ing. We estimate the essential matrix from point correspondences between a stereo image pair, assuming that the internal
camera parameters are known. The set of essential matrices forms a smooth manifold, and a suitable cost function can
be defined on this manifold such that its minimum is the desired essential matrix. We seek a computationally efficient
optimization scheme towards meeting the demands of on-line processing of video images. Our work extends and im-
proves the earlier research by Ma et al., who proposed an intrinsic Riemannian Newton method for essential matrix
computations. In contrast to Ma et al., we propose three Gauss-Newton type algorithms that have improved convergence
properties and reduced computational cost. The first one is based on a novel intrinsic Newton method, using the normal
Riemannian metric on the manifold consisting of all essential matrices. The other two methods are Newton-like methods,
that are more efficient from a numerical point of view. Local quadratic convergence of the algorithms is shown, based
on a careful analysis of the underlying geometry of the problem.
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1. Introduction

In the seminal work by Longuet-Higgins (1981) it is
shown that the pose information between a pair of cali-
brated camera images is algebraically captured by an es-
sential matrix. Several techniques have been developed
for estimation of this matrix and are reviewed e.g. in
Huang and Faugeras (1989) and Huang and Netravali
(1994). We mention only two such methods. The first is
the celebrated normalized eight-point algorithm (Hartley
and Zisserman, 2003), that works well for noise free data
but presents only an approximate solution in the impor-
tant noisy data case. The second one is due to Ma et al.
(2001), who proposed an intrinsic Newton method on
the manifold of essential matrices, in order to improve

the estimate obtained by the eight-point algorithm. The
algorithm in Ma et al. (2001), although locally quadrati-
cally convergent, has shortcomings that will be resolved
in the present paper. First, it converges only in a possi-
bly small neighborhood of the true solution, while sec-
ondly, it is confined to a particular Riemannian metric
structure.

In this paper, which builds on our earlier conference
paper (Helmke et al., 2004), a new optimization ap-
proach for essential matrix computations is proposed
that is based on the homogeneous space structure of
the manifold E of essential matrices. Using different lo-
cal parametrizations for E , a new class of Newton-like
methods is introduced that is shown to converge locally
quadratically fast to the desired solution. By combining



118 Helmke et al.

this method with suitable gradient descent steps, new
variants of the Gauss-Newton method on a manifold are
obtained. This leads to an improvement of the Rieman-
nian Newton methods by enlarging the domain of attrac-
tion for the algorithm. Our approach may also be of in-
terest in other optimization applications, where a greater
flexibility in algorithm design may prove beneficial.
Moreover, appropriate choices of the local parametriza-
tion lead to more efficient numerical implementations,
as shown by computer simulations with complexity per
iteration considerably less than in the work of Ma et al.
(2001).

We begin with the problem formulation in Section 2.
This is followed in Section 3 by a geometric analy-
sis of the manifold of essential matrices, including tan-
gent space descriptions, local parametrisations and sub-
sequent discussion of the cost function. The algorithm,
together with a proof of local quadratic convergence
is discussed in Section 4. Simulation results are pre-
sented in Section 5. The conclusion can be found in
Section 6 and a detailed comparison between the the-
oretical approach by Ma et al. and ours is detailed in the
Appendix.

2. Problem Formulation

Two images of the same scene are related by epipolar
geometry (Longuet-Higgins, 1981), as we now explain
(see Fig. 1). Although the subsequent material in this
section is certainly well known in the computer vision
community, we include the derivation of the epipolar con-
straint, to enhance readability of the paper for a wider
audience.

For simplicity, we assume that images are taken by two
identical pin-hole cameras with focal length equal to one.
The more general case of arbitrary cameras can be treated
similarly, provided the camera calibration matrices are
known.

Thus the two cameras are specified by the camera cen-
ters C1, C2 ∈ R3 and attached orthogonal camera frames
{e1, e2, e3} and {e′

1, e′
2, e′

3}, respectively. Let t := C2−C1

Figure 1. Epipolar geometry.

be the translation vector of the first camera into the sec-
ond and R ∈ SO3 the uniquely determined real or-
thogonal transformation that transforms the basis vec-
tors e1, e2, e3 into e′

1, e′
2, e′

3, expressed with respect to
the basis e1, e2, e3. Let [t1t2t3]� denote the coordinates
of t with respect to the first camera basis. Given an object
point M ∈ R3 let mi := [Xi Yi Zi ]�, i = 1, 2, denote the
coordinates of M with respect to the two camera bases.
Thus

m1 = Rm2 + t. (1)

Let

� :=

⎡⎢⎣ 0 −t3 t2
t3 0 −t1

−t2 t1 0

⎤⎥⎦ (2)

be the skew-symmetric matrix satisfying �t = 0. Thus,
by premultiplying (1) from the left by � and noting that
m�

1 �m1 = 0, we obtain

m�
1 �Rm2 = 0. (3)

Let m̂1 = [u1 v1 1]�, m̂2 = [u2 v2 1]� be the camera
image points, expressed with respect to the camera basis
in pixel image coordinates, respectively. Since the vec-
tors m̂i and mi are proportional we obtain the so-called
epipolar constraint

m̂�
1 �Rm̂2 = 0 (4)

for the camera image coordinates. The matrix

E = �R (5)

is called the essential matrix. More generally, any (3×3)-
matrix of the form E := �R, where �, R denote a
(3 × 3)- skew-symmetric matrix and orthogonal rotation
matrix, respectively, is called an essential matrix. From
its knowledge the pose information defined by the rota-
tion R and the translation vector t are easily determined
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(see Section 3.1). The essential matrix plays a crucial role
in motion analysis. Thus, given a set of point correspon-
dences between a pair of calibrated intensity images, the
task is to estimate the essential matrix which encapsulates
the relative pose between the images.

It is known that with eight or more generic point corre-
spondences in the noise-free case, the essential matrix is
uniquely determined. For a discussion of the number of
solutions for five generic point correspondences we refer
to Horn (1990).

3. Optimization on the Essential Manifold

3.1. Geometry of the Essential Manifold

Since the novel aspects of our algorithms depend on a
detailed understanding of the differential geometry of es-
sential matrices, we begin by reviewing such geometric
details. Note that the authors of Soatto et al. (1996) al-
ready suggest to exploit the geometry of the essential
manifold.

Orientation preserving rotational transformations in
R3 are represented by elements of the special orthog-
onal group SO3, which consists of (3 × 3) orthogonal
matrices of determinant equal to 1:

SO3 := {X ∈ R3×3| det X = 1, X� X = I3}. (6)

The set SO3 is a 3-dimensional Lie group and its associ-
ated Lie algebra so3 is the set of (3 × 3) skew-symmetric
matrices:

so3 := {X ∈ R3×3|X = −X�}. (7)

There is a well known isomorphism from the Lie algebra
(R3, ×) to the Lie algebra (so3, [., .]), where × denotes
the vector cross product and [A, B] := AB−B A denotes
the matrix commutator. This allows one to identify so3
with R3 using the linear map

� : R3 → so3,

ω =

⎡⎢⎣ωx

ωy

ωz

⎤⎥⎦ �→

⎡⎢⎣ 0 − ωz ωy

ωz 0 − ωx

−ωy ωx 0

⎤⎥⎦ .
(8)

Notice that � can be written as,

�(ω) = ωx Qx + ωy Qy + ωz Qz, (9)

where

Qx :=

⎡⎢⎣0 0 0
0 0 −1
0 1 0

⎤⎥⎦ , Qy :=

⎡⎢⎣ 0 0 1
0 0 0
−1 0 0

⎤⎥⎦ ,

Qz :=

⎡⎢⎣0 −1 0
1 0 0
0 0 0

⎤⎥⎦ . (10)

According to the definition above, an essential matrix
is defined as the product E = �R of a skew-symmetric
matrix � and a rotation matrix R. It is well-known
from the computer vision literature (see Hartley and
Zisserman, 2003), that the essential matrices are charac-
terized by the property that they have exactly one positive
singular value of multiplicity two, consequently E must
be rank 2. In particular, normalized essential matrices
of Frobenius norm equal to

√
2 are therefore character-

ized by having the set of singular values {1, 1, 0}. Conse-
quently, the set of normalized essential matrices is given
as

E := {�R
∣∣ � ∈ so3, R ∈ SO3, ‖�‖2 = 2}. (11)

This is the basic nonlinear constraint set on which the pro-
posed optimization algorithms are defined, where ‖�‖
denotes the Frobenius norm

√
tr(���).

3.1.1. SVD Characterization of Normalized Essential
Matrices. There is an alternative characterization of es-
sential matrices as the homogeneous space of the compact
Lie group SO3 × SO3. This description is fundamental
to our subsequent algorithm development and is there-
fore explained in more detail. A key property of essential
matrices for this characterization is as follows.

Lemma 3.1. A non-zero (3 × 3)-matrix E is essential
if and only if there exists a singular value decomposition
(SVD),

E = U�V � with � =

⎡⎢⎣s 0 0
0 s 0
0 0 0

⎤⎥⎦ , s > 0

and U, V ∈ SO3. (12)

Moreover, E is a normalized essential matrix, if and only
if s = 1. In particular, for

E0 :=
[

I2 0
0 0

]
, (13)
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the normalized essential manifold is equal to the homo-
geneous space

E = {U E0V � | U, V ∈ SO3}. (14)

Proof: Assume that E = �R is essential with � ∈ so3
and R ∈ SO3. Then the equality E = �R implies

E E� = �R R���

= −�2,

with a corresponding set of eigenvalues

λ(E E�) = {s2, s2, 0}, where s := 1√
2‖�‖.

The set of singular values of E is then σ (E) = {s, s, 0}.
Thus there exists an SVD, see (12), with U, V ∈ O3. But
it is easily seen that there exists also a factorisation (12)
with U, V ∈ SO3.

For the converse, consider

� :=

⎡⎢⎣0 −s 0
s 0 0
0 0 0

⎤⎥⎦ ∈ so3, � :=

⎡⎢⎣ 0 1 0
−1 0 0
0 0 1

⎤⎥⎦ ∈ SO3.

One has

�� = �

⎡⎢⎣s 0 0
0 s 0
0 0 0

⎤⎥⎦ .

Hence by the singular value decomposition of E , with
U, V ∈ SO3,

E = U

⎡⎢⎣s 0 0
0 s 0
0 0 0

⎤⎥⎦ V �

= U���

⎡⎢⎣s 0 0
0 s 0
0 0 0

⎤⎥⎦ �U�U��V �

= (U�����U�)(U��V �)
= �1 R1,

(15)

with

�1 = U�����U� and R1 = U��V � (16)

as required. A second decomposition of E is E = �2 R2
with �2 = −�1 and R2 = U�V �.

The orthogonal matrices appearing in the above SVD
of a given essential matrix are not uniquely determined.
Thus, given factorising matrices U, V ∈ SO3, then

U
[
	 0
0 det 	

]
, V

[
	 0
0 det 	

]
(17)

are also factors, where 	 ∈ O2. Moreover, this describes
all possible factors of an essential matrix.

From the above characterization of essential matrices
we see that there are two different descriptions of E : (i)
The characterization (14) via the SVD and (ii) the char-
acterization as the image of the map

π : S2 × SO3 → E,

(�, R) �→ �R.
(18)

The second one has been extensively used in Ma et al.
(2001), whereas the first one will be exploited here. By
the next theorem we clarify how these two factorisations
can be computed from each other.

Theorem 3.1. Let

S2 := {
� ∈ so3

∣∣‖�‖ =
√

2
}

(19)

denote the two-sphere in so3 with radius equal to
√

2.
The map

π : S2 × SO3 → E,

(�, R) �→ �R,
(20)

is a two-to-one covering map with preimages

π−1

(
U

[
I2 0
0 0

]
V �

)

=

⎛⎜⎝U

⎡⎢⎣ 0 ε 0
−ε 0 0
0 0 0

⎤⎥⎦ U�, U

⎡⎢⎣0 −ε 0
ε 0 0
0 0 1

⎤⎥⎦ V �

⎞⎟⎠ ,

(21)

with U, V ∈ SO3 and ε ∈ {+1, −1}. Thus if E =
U E0V �, then E = �R with ε = ±1,

� = U

⎡⎢⎣ 0 ε 0
−ε 0 0
0 0 0

⎤⎥⎦ U� and

R = U

⎡⎢⎣0 −ε 0
ε 0 0
0 0 1

⎤⎥⎦ V �. (22)
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Conversely, if E = �R is given, then the eigenvalue
decomposition of

� = U

⎡⎢⎣ 0 ε 0
−ε 0 0
0 0 0

⎤⎥⎦ U� (23)

yields U, and V is given as

V := R�U

⎡⎢⎣0 −ε 0
ε 0 0
0 0 1

⎤⎥⎦ . (24)

Proof: The proof is obvious from the above discussion.

For a geometric interpretation of the two possible factori-
sations E = �1 R1 = �2 R2 (see Hartley and Zisserman,
2003), Figs. 9.12 (a), (d) in Section 9.6.3. Note that Figs.
(b), (c) in that section correspond to the factorisation of
−E .

The next result details the manifold structure of E .

Theorem 3.2. The set E is a smooth five-dimensional
compact manifold diffeomorphic to RP2 × SO3.

Proof: Recall, that the real projective plane RP2 can be
identified with the isospectral manifold{

U
[

I2 0
0 0

]
U�

∣∣∣∣∣ U ∈ SO3

}
.

It can be shown that the map

φ : E → RP2 × SO3,

U
[

I2 0
0 0

]
V � �→

(
U

[
I2 0
0 0

]
U�, U V �

)
(25)

is smooth and bijective. Moreover, the inverse

φ−1(X, Y ) = XY,

is smooth as well. Therefore, φ is a diffeomorphism.
Since RP2 is of dimension 2, and SO3 is of dimension 3,
then RP2 × SO3 is of dimension 5.

3.1.2. Tangent Space of the Essential Manifold. One
advantage of the characterization of essential matrices by
the singular value decomposition is that it allows for an
elegant description of associated tangent spaces.

Theorem 3.3. The tangent space at the normalized es-
sential matrix E = U E0V � is

TEE = {U (�E0 − E0�)V �|�, � ∈ so3}

=

⎧⎪⎨⎪⎩U

⎡⎢⎣ 0 ω12 − ψ12 −ψ13

ψ12 − ω12 0 −ψ23

−ω13 −ω23 0

⎤⎥⎦V �
∣∣∣ωi j ,

ψi j ∈R, i, j ∈{1, 2, 3}

⎫⎪⎬⎪⎭ (26)

with � = (ωi j ) and � = (ψi j ).

Proof: For any E = U E0V � ∈ E , let αE : SO3 ×
SO3 → E be the smooth map defined by αE (Û , V̂ ) =
Û EV̂ �. The tangent space TEE is the image of the linear
map

D αE (I3, I3) : so3 × so3 → R3×3,

(�̂, �̂) �→ �̂E − E�̂,
(27)

i.e., the image of the derivative of αE evaluated at the
identity (I3, I3) ∈ SO3 × SO3. By setting � := U��̂U
and � := V ��̂V thefirst equation is shown (see Helmke
and Moore, 1994) (Helmke and Moore, 1994), pp. 89 for
details. The result follows from a straightforward com-
putation.

Corollary 3.1. The kernel of the mapping
D αE0 (I3, I3) : so3 × so3 → R3×3 is the set of
matrix pairs (�, �) ∈ so3 × so3 with

� = � =

⎡⎢⎣ 0 x 0
−x 0 0
0 0 0

⎤⎥⎦ , x ∈ R. (28)

Proof: Let � = (ωi j ), � = (ψi j ) with �, � ∈
so3 and E0 as defined in (13), then

�E0 − E0� = 0

⇐⇒

⎡⎢⎣ 0 ω12 − ψ12 −ψ13

−(ω12 − ψ12) 0 −ψ23

−ω13 −ω23 0

⎤⎥⎦ = 03

⇐⇒ ω12 = ψ12 and ω13 = ψ13 = ω23 = ψ23 = 0.

(29)

Setting ω12 = ψ12 = x gives the result.

Since the affine tangent space T aff
E E at E = U E0V � ∈

E can be identified with the tangent space TEE via
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Figure 2. Local parameterization of essential manifold.

translating TEE by E , we obtain

T aff
E E=

⎧⎪⎨⎪⎩U

⎡⎢⎣ 1 − x3 − x5

x3 1 x4

−x2 x1 0

⎤⎥⎦V �

∣∣∣∣∣∣∣ x1, . . . , x5 ∈ R

⎫⎪⎬⎪⎭.

(30)

3.1.3. Parameterization of the Essential Manifold
Computations on a manifold are often conveniently car-
ried out in terms of a local parameterization. For our later
convergence analysis we therefore need a local parame-
terization of the essential manifold (see Fig. 2).

We introduce a class of parameterizations for E , that is
basic for the subsequent formulation of our algorithms.
Given an essential matrix E ∈ E let U, V ∈ SO3
with U E0V � = E . Recall, that any other factorisa-
tion E = Ũ E0Ṽ � with Ũ , Ṽ ∈ SO3 is given as
(Ũ , Ṽ ) = (U�, V �), where

� ∈ S :=
{[

	 0
0 det 	

]∣∣∣∣∣ 	 ∈ O2

}
. (31)

Here, S is a subgroup of SO3, called the stabiliser sub-
group of E0.

Definition 3.1. Let U, V ∈ SO3 with U E0V � = E . A
local parameterization for E at E is a smooth map

μ(U,V ) : R5 → E (32)

such that the following conditions hold:

(i) μ(U,V )(0) = E .
(ii) μ(U,V ) is a local diffeomorphism around 0.

(iii) There exists a map L : S → GL5 such that

μ(U�,V �)(x) = μ(U,V )(L(�)x) (33)

for all � ∈ S and x ∈ R5.

Here

GL5 := {X ∈ R5×5| det X �= 0}. (34)

In the sequel we consider three specific examples.
To describe them, let U, V ∈ SO3 be arbitrary, let

x = [x1, . . . , x5]� ∈ R5, and let E0 be defined as in (13).
Consider the mappings

�1 : R5 → so3,

[x1, . . . , x5]� �→ 1√
2

⎡⎢⎣ 0 − x3√
2 x2

x3√
2 0 −x1

−x2 x1 0

⎤⎥⎦ (35)

and

�2 : R5 → so3,

[x1, . . . , x5]� �→ 1√
2

⎡⎢⎣ 0 x3√
2 x5

− x3√
2 0 −x4

−x5 x4 0

⎤⎥⎦ .
(36)

Note, that the
√

2-factors are important for subsequent
Riemannian geometry interpretations.

Example 3.1. The exponential parameterization is de-
fined as

μ(U,V ) : R5 → E,

μ(U,V )(x) := U e�1(x) E0 e−�2(x) V �.
(37)

This is a local parameterization of E at E . Here �1(x) and
�2(x) are defined as in (35) and (36), respectively. For the
verification that conditions (i) and (ii) in Definition 3.1.3
are satisfied we proceed as follows. Smoothness of μ(U,V )
and μ(U,V )(0) = E are obvious. To see that μ(U,V ) is a
local diffeomorphism around 0 ∈ R5, we have to show
that the derivative

Dμ(U,V )(0) : R5 → TEE, (38)
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is invertible. For arbitrary h = [h1, . . . , h5]� ∈ R5, then

Dμ(U,V )(0)h

= U

⎛⎜⎝1√
2

⎡⎢⎣ 0 − h3√
2 h2

h3√
2 0 −h1

−h2 h1 0

⎤⎥⎦ E0

−E0
1√
2

⎡⎢⎣ 0 h3√
2 h5

− h3√
2 0 −h4

−h5 h4 0

⎤⎥⎦
⎞⎟⎠V �

= 1√
2U

⎡⎢⎣ 0 −√
2h3 −h5√

2h3 0 h4

−h2 h1 0

⎤⎥⎦V �, (39)

which implies bijectivity in an obvious manner. This
shows (i) and (ii).

To verify the third property we consider an arbitrary
element

�± :=
[

R± 0
0 ±1

]
∈ SO3 (40)

where

R± =
[

c −s
±s ±c

]
with c2 + s2 = 1, (41)

i.e. R+ ∈ SO2 is a rotation and R− ∈ O2 is a reflection,
i.e. det R− = −1 holds. Therefore, L : S → GL5, with
L(�±) = L±

L± : R5 → R5,

L± = ±

⎡⎢⎣R± 0 0
0 1 0
0 0 R±

⎤⎥⎦ ,
(42)

satisfies

μ(U�±,V �±)(x) = U�± e�1(x) E0 e−�2(x) ��
±V �

= U e�1(L±x) E0 e−�2(L±x) V �
(43)= μ(U,V )(L±x)

where x ∈ R5. Thus μ(U,V ) satisfies (i)–(iii).

Subsequently, we consider the essential manifold as an
orbit of the group SO3×SO3 acting on E0 by equivalence

SO3 × SO3 × R3×3 → R3×3,

(U, V, E) �→ U EV �.
(44)

By the derivative of this group action the usual canonical
Riemannian metric on SO3 × SO3 induces a Riemannian

metric on the essential manifold which is called the nor-
mal Riemannian metric onE (see e.g. Helmke and Moore,
1994) for details about this construction. Moreover, by
exploiting Corollary 3.1 one can show that via this group
action geodesics on SO3 × SO3 are mapped to geodesics
on E . We refer to Mahony (1994), Theorem 5.9.2, for a
proof of this fact in a more general context. Moreover, in
the Appendix we will discuss the main differences to the
Riemannian metric introduced by Ma et al. (2001).

The mapping μ(U,V ) maps straight lines in R5 through
the origin onto geodesics of E

t �→ U e�1(t x) E0 e−�2(t x) V � (45)

with respect to the normal Riemannian metric on E . Thus
μ−1

(U,V ) defines the Riemannian normal coordinates. Such
a chart has the feature that the Riemannian metric ex-
pressed in this chart evaluated at zero is represented by
the identity.

Example 3.2. In the same spirit as in Example 3.1 we
can define the Cayley parameterization. Recall, that the
Cayley transformation Cay(�)

Cay : so3 → SO3,

� �→ (
I + 1

2�
) (

I − 1
2�

)−1

serves as a second order approximation to the matrix ex-
ponential e� of skew-symmetric matrices. This Cayley
mapping on so3 is well known to be a local diffeomor-
phism around 0 ∈ so3. The Cayley parameterization is
then

μ
Cay
(U,V ) : R5 →E,

μ
Cay
(U,V )(x) :=U Cay(�1(x))E0 Cay(−�2(x))V �.

(46)

Analogously to Example 3.1, one can show that μ
Cay
(U,V )

satisfies condition (i)–(iii) of Definition 3.1.

Example 3.3. The third example we consider is the SVD
parameterization. Let �1(x) and �2(x) be defined as in
(35) and (36), respectively. The orthogonal projection
of R3×3 onto E with respect to the Frobenius norm is
achieved via the singular value decomposition

πSVD : R3×3 → E,

X = U�V � �→ U E0V �,
(47)

where U, V ∈ SO3 are computed such that the singular
values � = diag(σ1, σ2, σ3) are ordered as σ1 ≥ σ2 ≥
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σ3 ≥ 0. Thus define a map

μSVD
(U,V ) : R5 → E,

x �→ UπSVD(E0 + �1(x)E0 − E0�2(x))V �.

(48)

Note that the smallest singular value of E0 + �1(x)E0 −
E0�2(x) is simple for x in a sufficiently small
neighborhood of 0 in R5. Thus μSVD

(U,V ) is smooth on a
neighborhood of 0, as is seen by the following lemma,
see the Appendix for a proof. The Properties (i)–(iii) of
Definition 3.1 are then easily checked.

Lemma 3.2. Let

U := {X ∈ R3×3 | smallest singular value is simple}.
(49)

U ⊂ R3×3 is an open subset and the projection

πSVD : U → E,

X �→ X̂

is smooth.

3.2. Cost Function

3.2.1. Cost Function on the Essential Manifold. Let
M (i) := m̂(i)

2 m̂(i)�
1 , where m̂(i)

1 , m̂(i)
2 ∈ R3 correspond to

the normalized i-th point image pair in the left and in
the right camera, respectively, for which the correspon-
dence is assumed to be known. Our task is to develop a
constrained least squares approach for solving the linear
equations

m̂(i)�
1 Em̂(i)

2 = 0, i = 1, . . . , n. (50)

It is desirable that the possibly large number of data points
be preprocessed to achieve a useful compressed form.
Thus let

M :=

⎡⎢⎣vec�(M (1)� )
...

vec�(M (n)� )

⎤⎥⎦ , R9×9 � M := 1
n (M�M) ≥ 0.

(51)

Consider the smooth function

f : E → R,

f (E) = 1
2n

n∑
i=1

(
m̂(i)�

1 Em̂(i)
2

)2

= 1
2n

n∑
i=1

tr2 (
M (i) E

)
=: 1

2‖vec(E)‖2
M.

(52)

The global minimization of this cost function presents
the main computational task addressed in this paper. Note
that, according to the symmetry of f , with an essential
matrix E also −E is a critical point of f . Thus criti-
cal points of the cost function come in pairs E, −E and
therefore the number of critical points is even. Note, by
the Mountain Pass Lemma and the nontrivial topology
of E , that f must have saddle points for generic data.
These saddle points are local attractors for any Newton
method, unless gradient descent modifications such as
e.g. Gauss-Newton methods are used.

3.2.2. Noise-free Solution. The value of this cost func-
tion attains zero if and only if there is an essential ma-
trix which fulfills the epipolar constraint m̂(i)�

1 Em̂(i)
2 = 0

for each image point pair. That is, in the noise free case
the global minimum value is zero and yields the de-
sired solutions. It should be clear also that in the noise
free case vec(E) is an eigenvector corresponding to the
zero eigenvalue of M, and so there is a means to cal-
culate this, as in the so-called normalized 8-point al-
gorithm (Hartley and Zisserman, 2003), within a scale
factor.

3.2.3. Closed Form Initial Estimate in the Noisy Case.
In the noisy case, which is of main interest in applica-
tions, there is in general no zero eigenvalue of M, and
a zero value cost function will not be attained. It nev-
ertheless makes sense to search for a minimum of this
cost function even in the presence of noise. Heuristically,
the global minima can be expected to be least squares
approximations to the true essential matrix solution, thus
motivating the use of the 8-point algorithm for initializa-
tion. Thus one can start the optimization algorithm with
an estimate Ê of E , ‖Ê‖ = √

2, such that vec(Ê) is an
eigenvector that corresponds to the smallest eigenvalue
λmin(M) of M. In general, Ê is not on the manifold E ,
so we project Ê to the manifold of essential matrices via
a singular value decomposition. Thus we achieve a first
estimate E1 of E via

Mvec(Ê) = λmin(M)vec(Ê),
Ê = Û�V̂ �, E1 = Û E0V̂ �, (53)
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that we use to initialize our algorithm. This is the nor-
malized eight point algorithm solution (see also Hartley
and Zisserman, 2003), Section 11.2. Note that the 8-point
algorithm gives numerically meaningful results only in
the case where the smallest eigenvalue is well separated
from the others. This can be assumed, unless the noise
level is too high.

3.2.4. Quadratic Model of the Cost Function. The cost
function f : E → R in a neighborhood of E ∈ E can
be expressed in local parameter space coordinates (37)
as follows.

f ◦ μ(U,V ) : R5 → R,

f ◦ μ(U,V )(x) = 1
2
∥∥vec(U e�1(x) E0 e−�2(x) V �)

∥∥2
M

= 1
2
∥∥(V ⊗ U )vec

(
e�1(x) E0 e−�2(x))∥∥2

M.

(54)

Here “⊗” and “vec” denote the matrix Kronecker product
and vec-operation, that is stacking columns, respectively.

The second order Taylor polynomial of f ◦ μ(U,V )
around 0 ∈ R5 is

f ◦ μ(U,V )(0) + D
(

f ◦ μ(U,V )
)
(0)h

+ 1
2 D2 (

f ◦ μ(U,V )
)
(0)(h, h). (55)

(i) The constant term is(
f ◦ μ(U,V )

)
(0) = 1

2‖vec(E)‖2
M. (56)

(ii) The linear term is

d
d t f ◦ μ(U,V )(th)

∣∣
t=0

= D
(

f ◦ μ(U,V )
)
(0)h

= (∇(
f ◦ μ(U,V )

)
(0)

)� · h
= 〈grad f (U E0V �), U (�1(h)E0 − E0�2(h))V �〉
= vec�(E)Mvec(U (�1(h)E0 − E0�2(h))V �).

(57)

Here, ∇( f ◦ μ(U,V ))(0) denotes the standard Eu-
clidean gradient of f ◦ μ(U,V ) : R5 → R evaluated
at zero. Moreover,

grad f (U E0V �)
= D μ(U,V ))(0) · ∇( f ◦ μ(U,V ))(0) (58)

is the Riemannian gradient of f : E → R with
respect to the normal Riemannian metric 〈 , 〉 on E .

To calculate the Euclidean gradient and Hessian,
respectively, let

vec(�1(x)) := Q1x,

vec(�2(x)) := Q2x,
(59)

where

Q1 :=
[
vec

( 1√
2 Qx

)
vec

( 1√
2 Qy

)
vec

( 1
2 Qz

)
0 0

]
∈ R9×5,

Q2 :=
[
0 0 vec

(− 1
2 Qz

)
vec

( 1√
2 Qx

)
vec

( 1√
2 Qy

)]
∈R9×5,

(60)

and Qx , Qy, Qz from (10). Then, the explicit for-
mula for the Euclidean gradient of the local cost
function at zero is

∇(
f ◦ μ(U,V )

)
(0) = J�Mvec(E), (61)

where

J := (V ⊗ U )((E0 ⊗ I )Q1 − (I ⊗ E0)Q2). (62)

(iii) The quadratic term in h consists of a sum of two
terms. The first one,

‖vec(U (�1(h)E0 − E0�2(h))V �)‖2
M

=: h�Ĥ f ◦μ(U,V ) (0)h,

is a quadratic form on R5 with the corresponding ma-
trix Ĥ f ◦μ(U,V ) (0) being positive (semi) definite for all
U, V ∈ SO3. Note, that by inspection Ĥ f ◦μ(U,V ) (0) is
seen as positive definite if and only if the data matrix
M is positive definite.
The second term is given as

h�H̃ f ◦μ(U,V ) (0)h
:= vec�(E)Mvec

(
U

(
�2

1(h)E0 + E0�
2
2(h)

− 2�1(h)E0�2(h)
)
V �)

. (63)

Hence, the Hessian matrix of the local cost function
evaluated at zero is,

H f ◦μ(U,V ) (0) = Ĥ f ◦μ(U,V ) (0) + H̃ f ◦μ(U,V ) (0), (64)

where

Ĥ f ◦μ(U,V ) (0) = J�MJ ≥ 0, (65)

and by denoting

vec(D) := (V � ⊗ U�)Mvec(E) (66)
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we have

H̃ f ◦μ(U,V ) (0)
= [

Q�
1 Q�

2
][

−(DE0 ⊗ I ) (D ⊗ E0)
(D� ⊗ E0) −(E0 D ⊗ I )

] [
Q1

Q2

]
. (67)

The Newton direction for optimizing f ◦ μ(U,V ) is

−H f ◦μ(U,V ) (0)−1∇(
f ◦ μ(U,V )

)
(0) (68)

while the Gauss-Newton direction coincides with
the gradient descent

−Ĥ f ◦μ(U,V ) (0)−1∇(
f ◦ μ(U,V )

)
(0). (69)

The quadratic term in (55)

d2

d t2

(
f ◦ μ(U,V )

)
(th)

∣∣
t=0 = H f (E)(γ̇ (0), γ̇ (0)), (70)

has the geometric interpretation that H f (E) is the
Riemannian Hessian form of f : E → R with re-
spect to the normal Riemannian metric. Here γ (t) =
μ(U,V )(th) with γ (0) = E denotes the geodesic em-
anating from E in direction γ̇ (0) = D μ(U,V )(0)h
(see e.g. Lang, 1999), pp. 342.

4. The Algorithm

The Newton-type algorithm we propose is defined by
iterating a map

s : E → E . (71)

For any U, V ∈ SO3 let xopt(U, V ) denote the solution
of

H f ◦μ(U,V ) (0) x = −∇(
f ◦ μ(U,V )

)
(0). (72)

Alternatively, let xopt
GN(U, V ) denote the solution of

Ĥ f ◦μ(U,V ) (0) · x = −∇(
f ◦ μ(U,V )

)
(0), (73)

i.e. the Gauss-Newton direction.
The algorithmic map s in the first case is given as

s(U E0V �) = ν(U,V )(xopt(U, V )) (74)

where

ν(U,V ) ∈ {
μ(U,V ), μ

Cay
(U,V ), μ

SVD
(U,V )

}
(75)

denotes one of the three previously introduced local
parameterizations. We now describe the implementation

details of the proposed algorithm. First pre-process the
data to form a 9 × 9 matrix M as in (51). Let λmin(A)
denote the smallest eigenvalue of the symmetric matrix A.

Step 0.
Determine an initial estimate of the essential
matrix E1 = U1 E0V �

1 .
Step 1.

Set k = 1 and set ε > 0 to prescribed accuracy.
Step 2. (Newton step) Given (Uk, Vk) with E =

Uk E0V �
k .

Compute the gradient ∇( f ◦μ(Uk ,Vk ))(0) ∈ R5.
Compute the Hessian H f ◦μ(Uk ,Vk ) (0) ∈ R5×5.
If λmin

(
H f ◦μ(Uk ,Vk ) (0)

)
> ε

solve for xopt
k :

H f ◦μ(Uk ,Vk ) (0)xopt
k = −∇(

f ◦ μ(Uk ,Vk )
)
(0).

Else

solve for xopt
k :

Ĥ f ◦μ(Uk ,Vk ) (0)xopt
k = −∇(

f ◦ μ(Uk ,Vk )
)
(0).

Step 3. (Projection back onto E):
Set Uk+1 = Uk e�1(xopt

k ), Vk+1 =Vk e�2(xopt
k ).

Set Ek+1 =Uk+1 E0V �
k+1.

Step 4.
If ‖∇(

f ◦ μ(Uk+1,Vk+1)
)
(0)‖ < ε

terminate.

Else

Set Uk = Uk+1, Vk = Vk+1.
Set Ek = Ek+1.

Step 5.
Set k = k + 1 and goto Step 2.

Note that the above algorithm implements the
Riemannian Newton algorithm for the normal metric,
at least on a sufficiently small neighborhood of the set
of local minima of f . Outside of such a neighborhood,
where the Riemannian Hessian is either nearly degen-
erate of indefinite, we switch to a Riemannian gradient
algorithm, using the Riemannian metric defined by the
approximate Hessian Ĥ. Thus s implements effectively a
Gauss-Newton algorithm on the manifold E . This modi-
fication of the Newton algorithm is of crucial importance
for enlarging the domain of attraction of the local minima.
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Alternative descriptions of the algorithm replace the
exponential matrix in the update step 3 by Cayley trans-
forms or SVD substitutions; see Section 4.1.

4.1. Geometric Interpretation of the Algorithm

We show that the above algorithm has the geometric in-
terpretation of iterating the map

s = π2 ◦ π1 : E → E, (76)

consisting of an optimization step π1 followed by a pro-
jection π2. The optimization step that appears in the al-
gorithm defines a map

π1 : E → Taff
E E ⊂ R3×3,

E = U E0V � �→ U (E0 + �1(xopt(U, V ))E0

−E0�2(xopt(U, V )))V �. (77)

Here, xopt ∈ R5 is a function of (U, V ) and is given by the
solution of a Newton step. The mapping π2 involves one
of three projections defined below, with relative merits as
discussed in the Simulation section.

4.1.1. Orthogonal Projection. The orthogonal projec-
tion with respect to the Frobenius norm

πSVD
2 : Taff

E E ⊂ R3×3 → E,

X = U�V � �→ U E0V �,
(78)

is given via the singular value decomposition, where
U, V ∈ SO3 are defined such that the singular values
� = diag(σ1, σ2, σ3) of X are ordered as σ1 ≥ σ2 ≥
σ3 ≥ 0.

4.1.2. Exponential Map Projection. Let �1 and �2 be
defined as in (35) and (36), respectively. Note that for
x ∈ R5 the element U (E0 + �1(x)E0 − E0�2(x))V �

paramterizes arbitrary affine tangent vectors and there-
fore defines a smooth mapping

π
exp
2 : T aff

E E→E,

U (E0+�1(x)E0−E0�2(x))V ��→U e�1(x) E0 e−�2(x)V �

= μ(U,V )(x). (79)

4.1.3. Cayley Projection. Let �1 and �2 be defined
as in (35) and (36), respectively. Consider the smooth

mapping

π
Cay
2 : T aff

E E → E,

U (E0+�1(x)E0−E0�2(x))V � �→ U Cay(�1(x))E0

Cay(−�2(x))V �

= μ
Cay
(U,V )(x). (80)

In summary, one algorithmic step of s consists of two
partial steps, namely π1 sending a point E on the essen-
tial manifold E to an element of the affine tangent space
T aff

E E , followed by π2 that projects that element back to
E . Our key theoretical contribution is a local quadratic
convergence result for the Newton method, assumed to
be started in the domain of attraction of a local minimum.

4.2. Local Quadratic Convergence

Before stating and proving the main convergence result
of this paper we begin with some preliminaries. Consider
the local parameterization

μ(U,V ) : R5 → E,

μ(U,V )(x) := U e�1(x) E0 e−�2(x) V � (81)

which is smooth with respect to (U, V ) ∈ SO3 × SO3
and x ∈ R5. Moreover, it is a local diffeomorphism at
0 ∈ R5. Let U ⊂ R5 be an open neighborhood of 0. The
Newton step is defined as the map

N
(

f ◦ μ(U,V )
)

: U →R5,

x �→ (
H f ◦μ(U,V ) (x)

)−1 ∇(
f ◦ μ(U,V )

)
(x).
(82)

Here, ∇g(x) and Hg(x) denote the standard gradient vec-
tor and Hessian matrix, respectively, of the smooth func-
tion g : R5 → R. In the sequel, we will always make the
assumption that the Hessian H f ◦μ(U,V ) (0) at the point of
interest (U, V ) is invertible. Certainly, this is locally true
around a nondegenerate critical point of f .

Consider the map

s̄ : SO3 × SO3 → E,

s̄(U, V ) := μ(U,V )
(
N

(
f ◦ μ(U,V )

)
(0)

) (83)

and the corresponding algorithmic map

s : E → E,

s(U E0V �) := s̄(U, V ).
(84)

We define

�± :=
[

R± 0
0 ±1

]
∈ SO3 (85)
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E

π1πSVD
2

πCay
2

πexp
2

Figure 3. Three different projection steps.

where

R± =
[

c − s
±s ±c

]
with c2 + s2 = 1, (86)

i.e. R+ ∈ SO2 is a rotation and R− ∈ O2 is a reflection
of determinant det R− = −1. Using �1, �2 : R5 → so3,
defined by (35) and (36), respectively, we have

�±�1(x)��
± = 1√

2

⎡⎢⎢⎣
0 ∓ x3√

2
± x3√

2 0 ±R± ·
[

x2
−x1

]
∓ [

x2 −x1
] · R�

± 0

⎤⎥⎥⎦

�±�2(x)��
± = 1√

2

⎡⎢⎢⎣
0 ± x3√

2
∓ x3√

2 0 ±R±

[
x5

−x4

]
∓ [

x5 − x4
] · R�

± 0

⎤⎥⎥⎦ .

(87)

Therefore,

�±�i (x)��
± = �i (L±x), for i = 1, 2, (88)

where

L± : R5 → R5,

L± = ±

⎡⎢⎣R± 0 0
0 1 0
0 0 R±

⎤⎥⎦ .
(89)

Thus we obtain for any �± and L± as in (85) and (89),
respectively, the invariance property

μ(U�±,V �±)(x) = U�± e�1(x) E0 e−�2(x) ��
±V �

= U e�1(L±x) E0 e−�2(L±x) V �
(90)= μ(U,V )(L±x).

We can now state the following lemma.

Lemma 4.1. The algorithmic map s is well defined and
smooth on an open neighborhood of the set of nondegen-
erate critical points of f .

Proof: Using (90) we have

U E0V � =Ū E0V̄ � ⇐⇒ (Ū , V̄ ) = (U�±, V �±).
(91)

Note that for any �± and L± as in (85) and (89), respec-
tively, the gradient and Hessians are

∇(
f ◦ μ(U�±,V �±)

)
(x) = L�

± · ∇(
f ◦ μ(U,V )

)
(L±x),

H f ◦μ(U�± ,V �± )(x) = L�
± · H f ◦μ(U,V ) (L±x) · L±.

(92)

Therefore

N
(

f ◦ μ(U�±,V �±)
)
(0) = L�

± · N (
f ◦ μ(U,V )

)
(0) (93)
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and thus

s̄(U�±, V �±) = U�± e�1(L�
±N ( f ◦μ(U,V ))(0))

×E0 e−�2(L�
±N ( f ◦μ(U,V ))(0)) ��

±V �

= U�±��
± e�1(N ( f ◦μ(U,V ))(0))

×E0 e−�2(N ( f ◦μ(U,V ))(0)) �±��
±V �

= s̄(U, V ). (94)

This shows that s is well defined. Smoothness of s follows
from the smoothness of s̄ and the fact that

π : SO3 × SO3 → E,

(U, V ) �→ U E0V � (95)

is a principle bundle with commuting diagram

From now on we assume that

E∗ := U∗E0V �
∗ (96)

is a nondegenerate critical point of

f : E → R. (97)

Recall, that

D μ(U∗,V∗)(0) : R5 → TE∗E,

x �→ U∗(�1(x)E0−E0�2(x))V �
∗

(98)

is a linear isomorphism. Moreover,

μ̄(U∗,V∗) : R5 → SO3 × SO3,

x �→ (
U∗ e�1(x), V∗ e�2(x) ) (99)

is smooth and the derivative

D μ̄(U∗,V∗)(0) : R5 → T(U∗,V∗)(SO3 × SO3) (100)

maps R5 linearly and isomorphically onto the
5-dimensional linear subspace

T := {(U∗�1(x), V∗�2(x))|x ∈ R5}. (101)

In the subsequent proof of local quadratic convergence of
the algorithm we need to compute the Fréchet derivative
of the map

(U, V ) �→∇(
f ◦ μ(U,V )

)
(0) ∈ R5 at (U∗, V∗). (102)

This Fréchet derivative is denoted as

D(U,V ) ∇
(

f ◦ μ(U,V )
)
(0)

∣∣
(U∗,V∗) : T(U∗,V∗)(SO3 × SO3) → R5.

(103)

Lemma 4.2. For any x ∈ R5 one has

D(U,V )∇
(

f ◦μ(U,V )
)
(0)

∣∣
(U∗,V∗)(U∗�1(x), V∗�2(x))

= H f ◦μ(U∗ ,V∗ )(0)x (104)

Proof: For any y, z ∈ R5 and (U, V ) ∈ SO3 × SO3

D f
(
μ(U,V )(y)

) · D μ(U,V )(y) · z =D
(

f ◦ μ(U,V )
)
(y) · z

= 〈∇(
f ◦ μ(U,V )

)
(y), z

〉
.

(105)

Differentiating (105) with respect to y at y = 0 we get
for any x ∈ R5

D2 f (E∗)
(

D μ(U∗,V∗)(0) · z, D μ(U∗,V∗)(0) · x
)

= 〈
H f ◦μ(U∗ ,V∗ )(0)x, z

〉
, (106)

while differentiating (105) for y = 0 with respect to
(U, V ) at (U, V ) = (U∗, V∗) in direction (U̇ , V̇ ) :=
(U∗�1(x), V∗�2(x)) yields〈

D(U,V ) ∇( f ◦ μ(U,V ))(0)
∣∣
(U∗,V∗)(U̇ , V̇ ), z

〉
= D2 f (E∗)

(
D(U,V ) μ(U,V )(0)

∣∣
(U∗,V∗)(U̇ , V̇ ),

D μ(U∗,V∗)(0) · z
)

= D2 f (E∗)
(

D μ(U∗,V∗)(0) · x, D μ(U∗,V∗)(0) · z
)
,

(107)

since

μ(U,V )(0) = U E0V � (108)

and therefore

D(U,V ) μ(U,V ))(0)
∣∣
(U∗,V∗)(U∗�1(x), V∗�2(x))

= U∗(�1(x)E0 − E0�2(x))V �
∗

= D μ(U∗,V∗)(0) · x .

(109)

Since x, z ∈ R5 are arbitrary the result follows.

We can now state and prove the main local quadratic
convergence result.



130 Helmke et al.

Theorem 4.1. Let E∗ = U∗E0V �
∗ ∈ E be a nonde-

generate critical point of f : E → R. Then the Fréchet
derivative of the algorithmic map s : E → E satisfies

D s(E∗) = 0 (110)

and therefore our algorithm converges locally quadrati-
cally fast to E∗.

Proof: The tangent map

D π (U∗, V∗) : T(U∗,V∗)(SO3 × SO3) → TE∗E (111)

maps T defined by (101) linearly isomorphically onto
TE∗E . Thus D s(E∗) = 0 if and only if

D s̄(U∗, V∗)(U∗�1(x), V∗�2(x)) = 0 (112)

for all x ∈ R5. By differentiating

s̄(U, V ) = μ(U,V )
(
N

(
f ◦ μ(U,V )

)
(0)

)
(113)

with respect to (U, V ) at (U∗, V∗) we get for all x ∈ R5

D s̄(U∗, V∗)(U∗�1(x), V∗�2(x))
= D(U,V ) μ(U,V )(0)

∣∣
(U∗V∗) (U∗�1(x), V∗�2(x))

+ D μ(U∗,V∗)(0) D(U,V ) N
(

f ◦ μ(U,V )
)
(0)

∣∣
(U∗V∗)

(U∗�1(x), V∗�2(x))
= U∗(�1(x)E0 − E0�2(x))V �

∗ − D μ(U∗,V∗)(0)(
(H f ◦μ(U∗ ,V∗ ))(0))−1 D(U,V ) ∇(

f ◦ μ(U,V )
)
(0)

∣∣
(U∗V∗)

(U∗�1(x), V∗�2(x))
)

= U∗(�1(x)E0 − E0�2(x))V �
∗

− D μ(U∗,V∗)(0)
(
(H f ◦μ(U∗ ,V∗ ))(0))−1 H f ◦μ(U∗ ,V∗ ))(0) · x

)
= U∗(�1(x)E0 − E0�2(x))V �

∗
− D μ(U∗,V∗)(0) · x

= 0.

The result follows by a standard Taylor series argument.
The same argument holds for

s̄(U, V ) = ν(U,V )
(
N

(
f ◦ μ(U,V )

)
(0)

)
(114)

where ν(U,V ) denotes one of the three maps defined in
(75). This can easily be verified using the fact that

D μ(U∗,V∗)(0) = D ν(U∗,V∗)(0). (115)

It should be clear from our development that the par-
ticular parameterization scheme of Ma et al. (2001) can

also be implemented using our more general homoge-
neous space approach. We have not done this here as it
would not lead to any substantial improvement. However,
there is substantial benefit from using Gauss-Newton it-
erations on the manifold when the Hessian is not positive
semidefinite, and numerical advantage from using the
SVD or Cayley projections, as well as the computational
advantages of essentially preprocessing the data to one
9 × 9 matrix, irrespective of the number of data points.

In subsequent implementations of the Ma et al. algo-
rithm we found it necessary to use the Gaussian step when
the Hessian is not positive definite to achieve sensible
results, since simulation experiments showed otherwise
that the domain of attraction of the Newton method can
be surprisingly small.

5. Simulations

All simulations are carried out in Matlab. Each trial:

• Generates 3D points randomly in a field of view (FOV)
60◦ and depth varying from 100 to 400 units of focal
length,

• Computes the first projection matrix P = K [I3 0],
where K is the camera calibration matrix,

• Randomly generates a rotation R and a translation t,
• Computes the second projection matrix P ′ = K [R t],
• Projects the 3D points onto the two 512 × 512 image

planes using P and P ′. Only visible points will be used
in the algorithm,

• Adds Gaussian noise of mean zero and standard devi-
ation σ to the image points,

• Normalizes the image points with K and solves for
essential matrix E ,

• Stops when ‖∇( f ◦ μ)(0)‖ < 10−12,
• Computes the symmetric epipolar distance, i.e., the

average absolute distance between a point’s epipolar
line and its corresponding point in other image, defined
as

1
n

n∑
i=1

∣∣∣∣∣∣ m(i)�
2 E�m(i)

1√(
e�

1 E�m(i)
1

)2 + (
e�

2 E�m(i)
1

)2

∣∣∣∣∣∣
+

∣∣∣∣∣∣ m(i)�
1 Em(i)

2√(
e�

1 Em(i)
2

)2 + (
e�

2 Em(i)
2

)2

∣∣∣∣∣∣ ,
where

e1 :=

⎡⎢⎣1
0
0

⎤⎥⎦ , e2 :=

⎡⎢⎣0
1
0

⎤⎥⎦ .
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In the following, the algebraic cost function is denoted
f as defined in (52). We also work with the weighted
measure,

fw(E) = 1
2n

n∑
i=1

w(i)(E)2 tr2 (
M (i) E

)
= 1

2
‖vec(E)‖2

Mw
, (116)

where

W := diag{w1, w2, . . . , wn},
(117)

Mw := 1
n

(M̄�W M̄) ≥ 0 ∈ R9×9.

Here the weighting is ideally given in terms of the es-
sential matrix E , but this complicates the calculation of
the gradient and Hessian to such an extent that we here
merely express the weightings “adaptively” at each itera-
tion as the current estimate Ê . The term fdist denotes the
cost function that penalizes the socalled square symmet-
ric epipolar distance adaptively, as

fdist(E, Ê) = 1
2n

n∑
i=1

w
(i)
dist(Ê)2 tr2 (

M (i) E
)
, (118)

where, denoting the previous estimate of E by Ê ,

w
(i)
dist(Ê)2 = ((

e�
1 Êm(i)

2
)2 + (

e�
2 Êm(i)

2
)2)−1

+((
e�

1 Ê�m(i)
1

)2 + (
e�

2 Ê�m(i)
1

)2)−1
.
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Figure 4. Symmetric epipolar distance (mean) vs. noise level for f –8p algorithm (dotted line) and other algorithms ( f –MaGN, f –GNsvd, f –GNexp,
f –GNcay, fgrad–GNsvd, fgrad–GNexp, fgrad–GNcay, fdist–GNsvd, fdist–GNexp, fdist–GNcay).

Finally, the term fgrad denotes a weighted version of the
gradient based nonlinear cost function,

fgrad(E, Ê) = 1
2n

n∑
i=1

w
(i)
grad(Ê)2 tr2 (

M (i) E
)

(119)

where

w
(i)
grad(Ê)2 = ((

e�
1 Êm(i)

2
)2 + (

e�
2 Êm(i)

2
)2

+(
e�

1 Ê�m(i)
1

)2 + (
e�

2 Ê�m(i)
1

)2)−1
. (120)

Of course, we caution that this bootstrapping approach
is not necessarily guaranteed to converge since the cost
function changes from iteration to iteration.

We denote by “8p” the standard 8-point algorithm re-
ferred to as above. For comparison purposes, we imple-
ment an enhanced version of the Riemannian Newton
algorithm proposed by Ma et al. (2001), which exploits a
Gauss-Newton step when the Hessian is not positive def-
inite. This modified version of their algorithm is termed
“MaGN” here. Furthermore, “GNsvd”, “GNexp”, “GN-
cay” stand for our proposed Gauss-Newton on manifold
algorithms with orthogonal, exponential and Cayley pro-
jection, respectively.

Sensitivity Analysis. The number of point correspon-
dences is fixed at 20 and Gaussian noise of varying stan-
dard deviation σ ∈ [0.5, 5] is introduced. The simulation
is repeated 100 times and the averaged results are shown
in Fig. 4. It is observed that the standard 8-point method
(dotted line) is relatively sensitive to noise compared to
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Figure 5. log(‖Ê − E∗‖) vs. iterations.

other methods in minimizing the cost function (52). The
plot also shows that all three proposed algorithms and
“MaGN” have equal sensitivity properties.

Rate of Local Convergence. The number of point corre-
spondences is fixed at 20 and noise level σ = 2. Figure 5
illustrates the speed at which the estimate Ê of various
algorithm converges to its corresponding fixed point E∗.
It is clear that all three proposed techniques, together
with the “MaGN” method converge at a local quadratic
rate. The algorithm “MaN” in Fig. 5(b) is the Rieman-
nian Newton presented by Ma et al. It illustrates that for
a certain initial guess, “MaN” does not converge to the
global minimum.

Computing Time. The number of matched points is
fixed at 20, noise level σ = 2 and the simulation is re-
peated 100 times. Figure 6 shows the average computing
time (implemented using Matlab’s tic and toc commands)
using different algorithms and minimizing different cost
functions. When the algebraic cost function f is used, the
standard 8-point method is the fastest technique. This is
expected since it does not involve iterations but of course
achieves an approximate solution only, as shown in Fig. 4.

Although all three proposed methods are slightly
slower than the standard 8-point method, they are at least
25 times faster than ‘MaGN’. Moreover, our proposed
methods minimizing adaptive cost function fdist and fgrad
are at least 3 times faster than “MaGN” using the func-
tion f . Note, that although the “MaGN” method is locally
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Figure 6. Computing time for various methods minimizing different cost functions: (1) f –MaGN, (2) f –GNsvd, (3) f –GNexp, (4) f –GNcay, (5)
fgrad–GNsvd, (6) fgrad–GNexp, (7) fgrad–GNcay, (8) fdist–GNsvd, (9) fdist–GNexp, (10) fdist–GNcay.

quadratically convergent as is ours (Fig. 5), its computa-
tional effort per iteration is data dependent, and so can
be prohibitive for large data sets.

6. Conclusions

This paper puts forward a new geometric optimization
framework, new to the area of computer vision, to com-
pute the essential matrix between two calibrated intensity
images, which subsequently allows the pose information
to be determined. The approach is based on successive lo-
cal parameterization of the constraint manifold. Research
contributions of this paper are:

• The algorithm uses a prior data compression technique,
so its computational effort per iteration is essentially
independent of the number of point correspondences
used.

• The iterations use Gauss or Gauss/gradient steps as
well as the Newton step, which is a well known ap-
proach for optimizing in Euclidean space, but appears
relatively new for optimizing on manifolds. We found
it necessary to apply to the Ma et al. algorithm (Ma
et al., 2001), in order to achieve convergence in the
presence of reasonable noise.

• Our algorithm achieves the same local quadratic con-
vergence rate as Ma et al. (2001), but our computational
effort per iteration is significantly lower.

• We have proposed algorithms with three different pro-
jections: the exponential map, the Cayley transforma-
tion and the orthogonal projection.

• We prove local quadratic convergence rate of the pro-
posed algorithm. This goes beyond earlier proofs for
intrinsic Newton methods on manifolds, as we use pa-
rameterizations that are not necessarily induced by any
Riemannian normal coordinates.

Appendix

A.1. Comparison with the Approach by Ma et al.

If π
exp
2 is used for the second algorithmic step π2 then

one can easily show that the overall algorithm is nothing
else than a Riemannian manifold version of Newton’s
method, the Riemannian metric being the so-called nor-
mal one. Despite the well-known fact that under mild
assumptions, the Riemannian manifold version of New-
ton’s method is locally quadratically convergent (see
Smith, 1994), Theorem 3.4, p. 57, we claim that our re-
sults go further than being just an application of this nice
result, since they cover more general situations, such as
when πSVD

2 or π
Cay
2 is used rather than π

exp
2 . We would

like to mention that our algorithm is also different from
the approach taken in Ma et al. (2001). The Rieman-
nian metric those authors use is different, as are their
geodesics. In Ma et al. (2001) the local structure of the
essential manifold being a product of Stiefel manifolds
is exploited. Here, we think of this manifold as an orbit
of SO3 × SO3 acting on R3×3 by equivalence. Some fea-
tures about these different approaches are summarized as
follows.
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A.1.1. Manifold Structure

• Ma et al.: The essential manifold E is locally diffeo-
morphic to the product of two Stiefel manifolds

E ∼=local S2 × SO3 (121)

• Our approach: We exploit the global diffeomorphism
of E to the set of matrices having singular values
{1, 1, 0}

E ∼= SO3 ·

⎡⎢⎣1 0 0
0 1 0
0 0 0

⎤⎥⎦ · SO3 (122)

A.1.2. Geodesics Emanating from E = ΩR = UE0V�

• Ma et al.:

t �→ (e�t � e−�t , Re�t ) (123)

where �, � ∈ so3 and � is restricted by
[�, [�, �]] = − 1

2‖�‖2�.
• Our approach:

t �→ U e�1t E0 e−�2t V � (124)

where

�1(x) = 1√
2

⎡⎢⎣ 0 − x3√
2 x2

x3√
2 0 −x1

−x2 x1 0

⎤⎥⎦ (125)

and

�2(x) = 1√
2

⎡⎢⎣ 0 x3√
2 x5

− x3√
2 0 −x4

−x5 x4 0

⎤⎥⎦ . (126)

and x1, . . . , x5 ∈ R.

A.1.3. Riemannian Metric g : TEE × TEE → R

• Ma et al.: The Euclidean Riemannian metric induced
by the canonical submanifold structure of each factor

S2 ⊂ so3 and SO3 ⊂ R3×3, (127)

or equivalently, the normal metric induced by the sim-
ilarity group action on the first factor

SO3 × S2 → S2,

(U, �) �→ U�U� (128)

and right translation on the second factor

SO3 × SO3 → SO3,

(V, R) �→ RV �.
(129)

Explicitly, for two elements of the tangent space
ξ1, ξ2 ∈ T(�,R)E , ξi = ([�i , �], R�i ), the Riemannian
metric is

g(([�1, �], R�1), ([�2, �], R�2))
= tr

(
��

1 �2
) + tr

(
��

1 �2
)

(130)

with �i , �i ∈ so3 and [�i , [�i , �]] = − 1
2‖�i‖2�

for i = 1, 2.

• Our approach: The normal Riemannian metric induced
by the equivalence group action

SO3 × SO3 × R3×3 → R3×3,

((U, V ), E) �→ U EV �.
(131)

Explicitly, for two elements of the tangent space
ξ1, ξ2 ∈ TU E0V �E with ξi = U (�i E0 − E0�i )V �,
the Riemannian metric is

g(U (�1 E0 − E0�1)V �, U (�2 E0 − E0�2)V �)
= tr

(
��

1 �2
) + tr

(
��

1 �2
)

(132)

where for i = 1, 2

�i = 1√
2

⎡⎢⎢⎣
0 − x (i)

3√
2 x (i)

2
x (i)

3√
2 0 −x (i)

1

−x (i)
2 x (i)

1 0

⎤⎥⎥⎦ ,

�i = 1√
2

⎡⎢⎢⎣
0 x (i)

3√
2 x (i)

5

− x (i)
3√
2 0 −x (i)

4

−x (i)
5 x (i)

4 0

⎤⎥⎥⎦
(133)

and x (i)
1 , . . . , x (i)

5 ∈ R. In fact, the tangent map of
μ(U,V ) defined by (39) maps the standard basis vectors
{e1, . . . , e5} in R5 into basis vectors of TEE , orthonor-
mal with respect to the normal Riemannian metric:

ei �→ D μ(0) · ei = U (�1(ei )E0 − E0�2(ei ))V �

= Uξi V �, (134)
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with

〈Uξi V �, Uξ j V �〉n.RM = tr ��
1 (ei )�1(e j )

+ tr ��
2 (ei )�2(e j )

= e�
i e j

= δi j . (135)

One can easily check by an example that the two
Riemannian metrics are indeed not the same.

A.2. Proof of Lemma 3.2

Consider

M :=
{
(U, �, V ) ∈ O3×R3×3×O3

∣∣∣�=
[

α β 0
β γ 0
0 0 δ

]
,

2|δ|<α + γ −
√

(α − γ )2+4β2
}
.

Note that

σmin

([
α β

β γ

])
= 1

2
(
α+γ −

√
(α−γ )2+4β2

)
. (136)

Thus the condition on δ implies that δ is the eigenvalue
of � with smallest absolute value. Let

M0 :=
{

(U, E0, V ) ∈ O3 × R3×3 × O3

∣∣∣E0 =
[

I2 0
0 0

]}
and

� :=
{

S =
[

� 0
0 1

]
∈ R3×3|� ∈ O2

}
.

Then

σ : � × M → M,

(S, (U, �, V )) �→ (U S, S��S, V S)

defines a smooth, proper Lie group action with smooth
orbit space M/� and the quotient map

P : M → U,

(U, �, V ) �→ U�V �,

is a principal fibre bundle with structure group �. Obvi-
ously, σ leaves M0 invariant and therefore restricts to a
smooth quotient map

P : M0 → E,

(U, E0, V ) �→ U E0V �.

Moreover, the projection map

F : M → M0,

F(U, �, V ) = (U, E0, V )

is smooth and the diagram

is commutative. By standard arguments this implies that
πSVD is smooth. This completes the proof. �
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