Skip to main content
Log in

Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The computation of a rigid body transformation which optimally aligns a set of measurement points with a surface and related registration problems are studied from the viewpoint of geometry and optimization. We provide a convergence analysis for widely used registration algorithms such as ICP, using either closest points (Besl and McKay, 1992) or tangent planes at closest points (Chen and Medioni, 1991) and for a recently developed approach based on quadratic approximants of the squared distance function (Pottmann et al., 2004). ICP based on closest points exhibits local linear convergence only. Its counterpart which minimizes squared distances to the tangent planes at closest points is a Gauss–Newton iteration; it achieves local quadratic convergence for a zero residual problem and—if enhanced by regularization and step size control—comes close to quadratic convergence in many realistic scenarios. Quadratically convergent algorithms are based on the approach in (Pottmann et al., 2004). The theoretical results are supported by a number of experiments; there, we also compare the algorithms with respect to global convergence behavior, stability and running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardini, F. and Rushmeier, H. 2002. The 3D model acquisition pipeline. Computer Graphics Forum, 21:149–172.

    Article  Google Scholar 

  • Besl, P.J. and McKay, N.D. 1992. A method for registration of 3D shapes. IEEE Trans. Pattern Anal. and Machine Intell., 14:239–256.

    Article  Google Scholar 

  • Bottema, O. and Roth, B. 1990. Theoretical Kinematics. Dover: New York.

  • Chen, Y. and Medioni, G. 1991. Object modeling by registration of multiple range images. Proc. IEEE Conf. on Robotics and Automation.

  • Do Carmo, M.P. 1976. Differential Geometry of Curves and Surfaces. Prentice Hall.

  • Eggert, D.W., Fitzgibbon, A.W., and Fisher, R.B. 1998. Simultaneous registration of multiple range views for use in reverse engineering of CAD models. Computer Vision and Image Understanding, 69:253–272.

    Article  Google Scholar 

  • Eggert, D.W., Lorusso, A., and Fisher, R.B. 1997. Estimating 3-D rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9:272–290.

    Article  Google Scholar 

  • Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. 2003. Geometrically stable sampling for the ICP algorithm, Proc. Intl. Conf. on 3D Digital Imaging and Modeling.

  • Faugeras, O.D. and Hebert, M. 1986. The representation, recognition, and locating of 3-D objects. Int. J. Robotic Res., 5:27–52.

    Google Scholar 

  • Fletcher, R. 1987. Practical Methods of Optimization. Wiley: New York.

  • Geiger, C. and Kanzow, C. 2002. Theorie und Numerik restringierter Optimierungsaufgaben. Springer: Heidelberg.

  • Hofer, M., Pottmann, H., and Ravani, B. 2004. From curve design algorithms to motion design. Visual Computer, 20:279–297.

    Google Scholar 

  • Hofer, M. and Pottmann, H. 2004. Algorithms for constrained minimization of quadratic functions–-geometry and convergence analysis. Tech. Rep. 121, TU Wien, Geometry Preprint Series. http://www.geometrie.tuwien.ac.at/ig/papers/foot_tr121.pdf.

  • Horn, B.K.P. 1987. Closed form solution of absolute orientation using unit quaternions. Journal of the Optical Society A, 4:629–642.

    Article  Google Scholar 

  • Huber, D. and Hebert, M. 2003. Fully Automatic Registration of Mutiple 3D Data Sets. Image and Vision Computing, 21:637–650.

    Article  Google Scholar 

  • Ikemoto, L., Gelfand, N., and Levoy, M. 2003. A hierarchical method for aligning warped meshes. Proc. Intl. Conf. on 3D Digital Imaging and Modeling.

  • A. E. Johnson. Spin Images: A Representation for 3D Surface Matching. PhD thesis, Carnegie Mellon Univ., 1997.

  • Kelley, C.T. 1999. Iterative Methods for Optimization. SIAM: Philadelphia.

  • R. Kimmel, R. Malladi, N. Sochen. Images as embedded %maps and minimal surfaces: movies, color, texture and volumetric %medical images. Intl. J. Computer Vision 39 (2000), 111–129.

    Article  MATH  Google Scholar 

  • Leopoldseder, S., Pottmann, H., and Zhao, H. 2003. The d2-tree: A hierarchical representation of the squared distance function, Tech. Rep. 101, Institute of Geometry, Vienna University of Technology.

  • S. Manay, B.-W. Hong, A. J. Yezzi, S. Soatto. Integral %invariant signatures. Proceedings of ECCV'04, Springer LNCS 3024, %2004, pp. 87–99.

  • Mian, A.S., Bennamoun, M., and Owens, R. 2004. Matching tensors for automatic correspondence and registration. Proceedings of ECCV'04, Springer LNCS 3022, pp. 495–505.

  • Mitra, N., Gelfand, N., Pottmann, H., and Guibas, L. 2004. Registration of point cloud data from a geometric optimization perspective. Proc. Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 23–32.

  • Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.P. 2003. Multi-level partition of unity implicits. ACM Trans. Graphics, 22:153–161.

    Article  Google Scholar 

  • Planitz, B.M., Maeder, A.J, and Williams, J.A. 2005. The correspondence framework for 3D surface matching algorithms. Computer Vision and Image Understanding, 97:347–383.

    Article  Google Scholar 

  • Pottmann, H. and Hofer, M. 2003. Geometry of the squared distance function to curves and surfaces. In: H.-C. Hege and K. Polthier, (Eds.), Visualization and Mathematics III, Springer, pp. 221–242.

  • Pottmann, H., Leopoldseder, S., and Hofer, M. 2004. Registration without ICP. Computer Vision and Image Understanding, 95:54–71.

    Article  Google Scholar 

  • H. Pottmann, T. Randrup. Rotational and helical surface reconstruction for reverse engineering. Computing 60 (1998), 307–322.

    MathSciNet  MATH  Google Scholar 

  • Pottmann, H. and Wallner, J. 2001. Computational Line Geometry. Springer-Verlag. %% ISBN 3-540-42058-4

  • Rodrigues, M., Fisher, R., and Liu, Y. (Eds.). 2002. Special issue on registration and fusion of range images. Computer Vision and Image Understanding, 87:1–131.

    Google Scholar 

  • Rusinkiewicz, S. and Levoy, M. 2001. Efficient variants of the ICP algorithm. Proc. 3rd Int. Conf. on 3D Digital Imaging and Modeling, Quebec.

  • Sharp, G.C., Lee, S.W., and Wehe, D.K. 2002. ICP registration using invariant features, IEEE Trans. Pattern Analysis and Machine Intelligence, 24:90–102.

    Article  Google Scholar 

  • Spivak, M. 1975. A Comprehensive Introduction to Differential Geometry. Publish or Perish.

  • Tsin, Y. and Kanade, T. 2004. A correlation-based approach to robust point set registration. Proceedings of ECCV'04, Springer LNCS 3023, pp. 558–569.

  • Tucker, T.M. and Kurfess, T.R. 2003. Newton methods for parametric surface registration, Part 1: Theory. Computer-Aided Design, 35:107–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Pottmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pottmann, H., Huang, QX., Yang, YL. et al. Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes. Int J Comput Vision 67, 277–296 (2006). https://doi.org/10.1007/s11263-006-5167-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-006-5167-2

Navigation