Skip to main content
Log in

Image Deblurring in the Presence of Impulsive Noise

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Consider the problem of image deblurring in the presence of impulsive noise. Standard image deconvolution methods rely on the Gaussian noise model and do not perform well with impulsive noise. The main challenge is to deblur the image, recover its discontinuities and at the same time remove the impulse noise. Median-based approaches are inadequate, because at high noise levels they induce nonlinear distortion that hampers the deblurring process. Distinguishing outliers from edge elements is difficult in current gradient-based edge-preserving restoration methods. The suggested approach integrates and extends the robust statistics, line process (half quadratic) and anisotropic diffusion points of view. We present a unified variational approach to image deblurring and impulse noise removal. The objective functional consists of a fidelity term and a regularizer. Data fidelity is quantified using the robust modified L 1 norm, and elements from the Mumford-Shah functional are used for regularization. We show that the Mumford-Shah regularizer can be viewed as an extended line process. It reflects spatial organization properties of the image edges, that do not appear in the common line process or anisotropic diffusion. This allows to distinguish outliers from edges and leads to superior experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, R. and Vogel, C.R., 1994. “Analysis of Total Variation Penalty Methods”, Inverse Problems, Vol. 10, pp. 1217–1229.

    Article  MATH  MathSciNet  Google Scholar 

  • Alicandro, R., Braides, A. and Shah, J., 1999. “Free-Discontinuity Problems via Functionals Involving the L1-Norm of the Gradient and their Approximation”, Interfaces and Free Boundaries, Vol. 1, pp. 17–37.

    MATH  MathSciNet  Google Scholar 

  • Ambrosio, L. and Tortorelli, V.M., 1990. “Approximation of Functionals Depending on Jumps by Elliptic Functionals via γ-Convergence”, Communications on Pure and Applied Mathematics, Vol. XLIII, pp. 999–1036.

    MathSciNet  Google Scholar 

  • Arce, G.R., Paredes, J.L. and Mullan, J., 2000. “Nonlinear Filtering for Image Analysis and Enhancement”, in Bovik, A.L. (Ed.), Handbook of Image & Video Processing, Academic Press.

  • Aubert, G. and Kornprobst, P., 2002. Mathematical Problems in Image Processing, Springer, New York.

    MATH  Google Scholar 

  • Aubert, G., Blanc-Féraud, L. and March, R., 2004. “γ-Convergence of Discrete Functionals with Nonconvex Perturbation for Image Classification”, SIAM Journal of Numerical Analysis, Vol. 42, pp. 1128–1145.

    Article  MATH  Google Scholar 

  • Banham, M. and Katsaggelos, A., 1997. “Digital Image Restoration”, IEEE Signal Processing Mag., Vol. 14, pp. 24-41.

    Article  Google Scholar 

  • Bar, L., Sochen, N. and Kiryati, N., 2004. “Variational Pairing of Image Segmentation and Blind Restoration”, Proc. ECCV′2004, Prague, Czech Republic, Part II: LNCS #3022, pp. 166–177, Springer.

  • Bar, L., Sochen, N. and Kiryati, N., 2005. “Image Deblurring in the Presence of Salt and Pepper Noise”, Proc. Scale-Space 2005, Hofgeismar, Germany: LNCS #3459, pp. 107–118, Springer.

  • Bect, J., Blanc-Féraud, L., Aubert, G. and Chambolle, A., 2004. “A L1-Unified Variational Framework for Image Restoration”, Proc. ECCV′2004, Prague, Czech Republic, Part IV: LNCS #3024, pp. 1–13, Springer.

  • Black, M.J. and Rangarajan, A., 1996. “On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision”, International Journal of Computer Vision, Vol. 19, pp. 57–92.

    Article  Google Scholar 

  • Black, M.J., Sapiro, G., Marimont, D., and Heeger, D., 1998. “Robust Anisotropic Diffusion”, IEEE Trans. Image Processing, Vol. 7, pp. 421–432.

    Article  Google Scholar 

  • Braides, A., 1998. Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics, Vol. 1694, Springer-Verlag.

  • Brook, A., Kimmel, R. and Sochen, N., 2003. “Variational Segmentation for Color Images”, International Journal of Computer Vision, Vol. 18, pp. 247–268.

    MATH  MathSciNet  Google Scholar 

  • Brox, T., Bruhn, A., Papenberg, N. and Weickert, J., 2004. “High Accuracy Optical Flow Estimation Based on a Theory for Warping”, Proc. ECCV′2004, Prague, Czech Republic, Part IV: LNCS #3024, pp. 25–36, Springer.

  • Catté, F., Lions, P.L., Morel, J.M., and Coll, T., 1992. “Image Selective Smoothing and Edge Detection by Nonlinear Diffusion”, SIAM Journal of Numerical Analysis, Vol. 29, pp. 182–193.

    Article  MATH  Google Scholar 

  • Chan, R.H., Ho, C. and Nikolova, M., 2005. “Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Detail-preserving Regularization”, IEEE Transactions on Image Processing, 14:1479–1485.

    Article  Google Scholar 

  • Chan, T.F. and Wong, C., 1998. “Total Variation Blind Deconvolution”, IEEE Trans. Image Processing, Vol. 7, pp. 370–375

    Article  Google Scholar 

  • Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M., 1997. “Deterministic Edge-Preserving Regularization in Computed Imaging”, IEEE Trans. Image Processing, Vol. 6, pp. 298–311.

    Article  Google Scholar 

  • Chen, T. and Wu, H.R., 2001. “Space Variant Median Filters for the Restoration of Impulse Noise Corrupted Images”, IEEE Trans. Circuits and Systems II, Vol. 48, pp. 784–789.

    Article  MATH  MathSciNet  Google Scholar 

  • Chipot, M., March, R., Rosati, M., and Vergara Caffarelli, G., 1997. “Analysis of a Nonconvex Problem Related to Signal Selective Smoothing”, Mathematical Models and Methods in Applied Science, Vol. 7, pp. 313–328.

    Article  MATH  MathSciNet  Google Scholar 

  • Dal Maso, G., 1993. An Introduction to γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhauser.

  • Durand, S. and Froment, J., 2003. “Reconstruction of Wavelet Coefficients Using Total Variation Minimization”, SIAM Journal of Scientific Computing, Vol. 24, pp. 1754–1767.

    Article  MATH  MathSciNet  Google Scholar 

  • Durand, S. and Nikolova, M., 2003. “Restoration of Wavelet Coefficients by Minimizing a Specially Designed Objective Function”, Proc. IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 145–152.

  • Geman, D. and Reynolds, G., 1992. “Constrained Restoration and the Recovery of Discontinuities”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 14, pp. 367–383.

    Article  Google Scholar 

  • Geman, S. and Geman, D., 1984. “Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721–741.

    Article  MATH  Google Scholar 

  • Geman, S. and McClure, D.E., 1987. “Statistical Methods for Tomographic Image Reconstruction”, Bulletin of the International Statistical Institute, LII–4, pp. 5–21.

    MathSciNet  Google Scholar 

  • Huber, P.J., 1981. Robust Statistics, John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Hwang, H. and Haddad, R.A., 1995. “Adaptive Median Filters: New Algorithms and Results”, IEEE Trans. Image Processing, Vol. 4, pp. 499–502.

    Article  Google Scholar 

  • Malgouyres, F., 2002. “Minimizing the Total Variation Under a General Convex Constraint”, IEEE Trans. Image Processing, Vol. 11, pp. 1450–1456.

    Article  MathSciNet  Google Scholar 

  • Mumford, D. and Shah, J., 1989. “Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems”, Communications on Pure and Applied Mathematics, Vol. 42, pp. 577–684.

    MATH  MathSciNet  Google Scholar 

  • Nikolova, M., 2002. “Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms: Application to the Processing of Outliers”, SIAM Journal on Numerical Analysis, Vol. 40, pp. 965–994.

    Article  MATH  MathSciNet  Google Scholar 

  • Nikolova, M., 2004. “A Variational Approach to Remove Outliers and Impulse Noise”, Journal of Mathematical Imaging and Vision, Vol. 20, pp. 99–120.

    Article  MathSciNet  Google Scholar 

  • Nordstrom, N., 1990. “Biased Anisotropic Diffusion - A Unified Regularization and Diffusion Approach to Edge Detection”, Proc. 1st European Conference on Computer Vision, pp. 18–27, Antibes, France.

  • Perona, P. and Malik, J., 1990. “Scale Space and Edge Detection Using Anisotropic Diffusion”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, pp. 629–639.

    Article  Google Scholar 

  • Pok, G., Liu, J.–C. and Nair, A.S., 2003. “Selective Removal of Impulse Noise based on Homogeneity Level Information”, IEEE Trans. Image Processing, Vol. 12, pp. 85–92.

    Article  Google Scholar 

  • Rondi, L. and Santosa, F., 2001. “Enhanced Electrical Impedance Tomography via the Mumford-shah Functional”, ESAIM: Control, Optimization and Calculus of Variations, Vol. 6, pp. 517–538.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosati, M., 2000. “Asymptotic Behavior of a Geman and McClure Discrete Model”, Applied Math. Optim., Vol. 41, pp. 51–85.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin, L. and Osher, S., 1994. “Total Variation Based Image Restoration with Free Local Constraints”, Proc. IEEE ICIP, Vol. 1, pp. 31–35, Austin TX, USA.

    Google Scholar 

  • Rudin, L., Osher, S. and Fatemi, E., 1992. “Non Linear Total Variation Based Noise Removal Algorithms”, Physica D, Vol. 60, pp. 259–268.

    Article  MATH  Google Scholar 

  • Shah, J., 1996. “A Common Framework for Curve Evolution, Segmentation and Anisotropic Diffusion”, Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 136–142.

  • Sochen, N., Kimmel, R. and Malladi, R., 1998. “A General Framework for Low level Vision” IEEE Trans. Image Processing, Vol. 7, pp. 310–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Teboul, S., Blanc-Féraud, L., Aubert, G., and Barlaud, M., 1998. “Variational Approach for Edge-Preserving Regularization Using Coupled PDE’s”, IEEE Trans. Image Processing, Vol. 7, pp. 387–397.

    Article  Google Scholar 

  • Tikhonov, A. and Arsenin, V., 1997. Solutions of Ill-posed Problems, New York.

  • Vogel, C. and Oman, M., 1998. “Fast, Robust Total Variation-based Reconstruction of Noisy, Blurred Images”, IEEE Trans. Image Processing, Vol. 7, pp. 813–824.

    Article  MATH  MathSciNet  Google Scholar 

  • Weickert, J., 1994. “Anisotropic Diffusion Filters for Image Processing Based Quality Control”, Proc. Seventh European Conference on Mathematics in Industry, Teubner, Stuttgart, pp. 355–362.

  • Weickert, J., 1999. “Coherence-Enhancing Diffusion Filtering”, International Journal of Computer Vision, Vol. 31, pp. 111–127.

    Article  Google Scholar 

  • Weisstein, E.W. et al, “Minimal Residual Method”, from MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/MinimalResidualMethod.html.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar, L., Kiryati, N. & Sochen, N. Image Deblurring in the Presence of Impulsive Noise. Int J Comput Vision 70, 279–298 (2006). https://doi.org/10.1007/s11263-006-6468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-006-6468-1

Keywords

Navigation