Skip to main content
Log in

An A Contrario Decision Method for Shape Element Recognition

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Shape recognition is the field of computer vision which addresses the problem of finding out whether a query shape lies or not in a shape database, up to a certain invariance. Most shape recognition methods simply sort shapes from the database along some (dis-)similarity measure to the query shape. Their main weakness is the decision stage, which should aim at giving a clear-cut answer to the question: “do these two shapes look alike?” In this article, the proposed solution consists in bounding the number of false correspondences of the query shape among the database shapes, ensuring that the obtained matches are not likely to occur “by chance”. As an application, one can decide with a parameterless method whether any two digital images share some shapes or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adjeroh, A.A. and Lee, M.C. 2000. An occupancy model for image retrieval and similarity evaluation. IEEE Transactions on Image Processing, 9(1):120–131.

    Article  Google Scholar 

  • Almansa, A., Desolneux, A., and Vamech, S. 2003. Vanishing point detection without any a priori information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4):502–507.

    Article  Google Scholar 

  • Alvarez, L., Guichard, F., Lions, P.-L., and Morel, J.-M. 1993. Axioms and fundamental equations of image processing: Multiscale analysis and P.D.E. Archive for Rational Mechanics and Analysis, 16(9):200–257.

    MathSciNet  Google Scholar 

  • Asada, H. and Brady, M. 1986. The curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):2–14.

    Article  Google Scholar 

  • Åström, K. 1995. Fundamental limitations on projective invariants of planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1):77–81.

    Article  Google Scholar 

  • Attneave, F. 1954. Some informational aspects of visual perception. Psychological Review, 61(3):183–193.

    Google Scholar 

  • Bellman, R. 1961. Adaptive Control Processes: A Guided Tour, Princeton University Press.

  • Cao, F. 2004. Application of the Gestalt principles to the detection of good continuations and corners in image level lines. Computing and Visualisation in Science, 7(1):3–13.

    Article  MATH  Google Scholar 

  • Cao, F., Delon, J., Desolneux, A., Musé, P., and Sur, F. 2005. A unified framework for detecting groups and application to shape recognition. Technical Report 5766, INRIA.

  • Cao, F., Musé, P., and Sur, F. 2004. Extracting meaningful curves from images. Journal of Mathematical Imaging and Vision, 22(2–3):159–181.

    Google Scholar 

  • Chapple, P.B., Bertilone, D.C., Caprari, R.S., and Newsam, G.N. 2001. Stochastic model-based processing for detection of small targets in non-gaussian natural imagery. IEEE Transactions on Image Processing, 10(4):554–564.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., and Morel, J.-M. 2000. Meaningful alignments. International Journal of Computer Vision, 40(1):7–23.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., and Morel, J.-M. 2001. Edge detection by Helmholtz principle. Journal of Mathematical Imaging and Vision, 14(3):271–284.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., and Morel, J.-M. 2005. Computational Gestalt Theory. Lecture Notes in Mathematics, Springer Verlag, To appear.

  • Devijver, P.A. and Kittler, J. 1982. Pattern Recognition—A Statistical Approach. Prentice Hall.

  • Fischler, M.A. and Bolles, R.C. 1986. Perceptual organization and curve partitioning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):100–105.

    Google Scholar 

  • Frosini, P. and Landi, C. 2001. Size functions and formal series. Applicable Algebra in Engineering, Communication and Computing, 12:327–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Gousseau, Y. 2003. Comparaison de la composition de deux images, et application à la recherche automatique. In proceedings of GRETSI 2003, Paris, France.

  • Grimson, W.E.L. and Huttenlocher, D.P. 1991. On the verification of hypothesized matches in model-based recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(12):1201–1213.

    Article  Google Scholar 

  • Kanizsa, G. 1996. La Grammaire du Voir. Diderot, Original title: Grammatica del vedere. French translation from Italian.

  • Lamdan, Y., Schwartz, J.T., and Wolfson, H.J. 1988. Object recognition by affine invariant matching. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Ann Arbor, Michigan, U.S.A. pp. 335–344.

  • Lindenbaum, M. 1997. An integrated model for evaluating the amount of data required for reliable recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11):1251–1264.

    Article  Google Scholar 

  • Lisani, J.L. 2001. Shape Based Automatic Images Comparison. PhD thesis, Université Paris 9 Dauphine, France.

  • Lisani, J.L., Moisan, L., Monasse, P., and Morel, J.-M. 2003. On the theory of planar shape. SIAM Multiscale Modeling and Simulation, 1(1):1–24.

    Article  MathSciNet  MATH  Google Scholar 

  • Lowe, D.G. 1985. Perceptual Organization and Visual Recognition. Kluwer Academic Publisher.

  • Lowe, D.G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110.

    Article  Google Scholar 

  • Marr, D. 1982. Vision. Freeman Publishers.

  • Mikolajczyk, K. and Schmid, C. 2005. A performance evaluation of local descriptors. To appear in IEEE Pattern Analysis and Machine Intelligence.

  • Moisan, L. 1998. Affine plane curve evolution: A fully consistent scheme. IEEE Transactions on Image Processing, 7(3):411–420.

    Article  MATH  MathSciNet  Google Scholar 

  • Moisan, L. and Stival, B. 2004. A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal on Computer Vision, 57(3):201–218.

    Article  Google Scholar 

  • Musé, P. 2004. On the definition and recognition of planar shapes in digital images. PhD thesis, École Normale Supérieure de Cachan.

  • Musé, P., Sur, F., Cao, F., and Gousseau, Y. 2003. Unsupervised thresholds for shape matching. In Proceedings of IEEE International Conference on Image Processing, Barcelona, Spain.

  • Musé, P., Sur, F., and Morel, J.-M. 2003. Sur les seuils de reconnaissance des formes. Traitement du Signal, 20(3):279–294.

    Google Scholar 

  • Olson, C. and Huttenlocher, D.P. 1997. Automatic target recognition by matching oriented edge pixels. IEEE Transactions on Image Processing, 6(12):103–113.

    Article  Google Scholar 

  • Olson, C.F. 1998. Improving the generalized Hough transform through imperfect grouping. Image and Vision Computing, 16(9–10):627–634.

    Article  Google Scholar 

  • Orrite, C., Blecua, S., and Herrero, J.E. 2004. Shape matching of partially occluded curves invariant under projective transformation. Computer Vision and Image Understanding, 93(1):34–64.

    Article  Google Scholar 

  • Pennec, X. 1998. Toward a generic framework for recognition based on uncertain geometric features. Videre: Journal of Computer Vision Research, 1(2):58–87.

    Google Scholar 

  • Rothwell, C.A. 1995. Object Recognition Through Invariant Indexing. Oxford Science Publication.

  • Sapiro, G. and Tannenbaum, A. 1993. Affine invariant scale-space. International Journal of Computer Vision, 11(1):25–44.

    Article  Google Scholar 

  • Schmid, C. 1999. A structured probabilistic model for recognition. In Proceedings of Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA. Vol 2, pp. 485–490.

  • Silvey, S.D. 1975. Statistical Inference. Chapman and Hall.

  • Sur, F. 2004. A Contrario Decision for Shape Recognition. PhD thesis, Université Paris Dauphine.

  • Veltkamp, R. and Hagedoorn, M. 2001. State-of-the-art in shape matching. Principles of Visual Information Retrieval, In M.S. Lew, (eds.) volume 19. Springer Verlag.

  • Watson, G.H. and Watson, S.K. 1996. Detection of unusual events in intermittent non-gaussian images using multiresolution background models. Optical Engineering, 35(11):3159–3171.

    Article  Google Scholar 

  • Wertheimer, M. 1923. Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung, (4):301–350. Translation published as Laws of Organization in Perceptual Forms, in Ellis, W. (1938). A source book of Gestalt psychology (pp. 71-88). Routledge & Kegan Paul.

  • Wolfson, H.J. and Rigoutsos, I. 1997. Geometric hashing: an overview. IEEE Computational Science & Engineering, 4(4):10–21.

    Article  Google Scholar 

  • Zhang, D. and Lu, G. 2004. Review of shape representation and description techniques. Pattern Recognition, 37(1):1–19.

    Article  MATH  Google Scholar 

  • Zhu, S.C. 1999. Embedding Gestalt laws in Markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):1170–1187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Musé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musé, P., Sur, F., Cao, F. et al. An A Contrario Decision Method for Shape Element Recognition. Int J Comput Vision 69, 295–315 (2006). https://doi.org/10.1007/s11263-006-7546-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-006-7546-0

Keywords

Navigation