
International Journal of Computer Vision 73(1), 95–119, 2007
c© 2007 Springer Science + Business Media, LLC. Manufactured in the United States.

DOI: 10.1007/s11263-006-9352-0

Binet-Cauchy Kernels on Dynamical Systems and its Application
to the Analysis of Dynamic Scenes∗

S.V.N. VISHWANATHAN AND ALEXANDER J. SMOLA
Statistical Machine Learning Program, National ICT Australia, Canberra, 0200 ACT, Australia

SVN.Vishwanathan@nicta.com.au

Alex.Smola@nicta.com.au

RENÉ VIDAL
Center for Imaging Science, Department of Biomedical Engineering, Johns Hopkins University, 308B Clark Hall,

3400 N. Charles St., Baltimore, MD 21218
rvidal@cis.jhu.edu

Received November 22, 2005; Revised May 30, 2006; Accepted May 31, 2006

First online version published in July 2006

Abstract. We propose a family of kernels based on the Binet-Cauchy theorem, and its extension to Fredholm
operators. Our derivation provides a unifying framework for all kernels on dynamical systems currently used in
machine learning, including kernels derived from the behavioral framework, diffusion processes, marginalized
kernels, kernels on graphs, and the kernels on sets arising from the subspace angle approach. In the case of linear
time-invariant systems, we derive explicit formulae for computing the proposed Binet-Cauchy kernels by solving
Sylvester equations, and relate the proposed kernels to existing kernels based on cepstrum coefficients and subspace
angles. We show efficient methods for computing our kernels which make them viable for the practitioner.

Besides their theoretical appeal, these kernels can be used efficiently in the comparison of video sequences of
dynamic scenes that can be modeled as the output of a linear time-invariant dynamical system. One advantage
of our kernels is that they take the initial conditions of the dynamical systems into account. As a first example,
we use our kernels to compare video sequences of dynamic textures. As a second example, we apply our kernels
to the problem of clustering short clips of a movie. Experimental evidence shows superior performance of our
kernels.

Keywords: Binet-Cauchy theorem, ARMA models and dynamical systems, sylvester equation, kernel methods,
reproducing kernel Hilbert spaces, dynamic scenes, dynamic textures

1. Introduction

The past few years have witnessed an increasing in-
terest in the application of system-theoretic techniques
to modeling visual dynamical processes. For instance,

∗Parts of this paper were presented at SYSID 2003 and NIPS 2004.

Doretto et al. (2003) and Soatto et al. (2001) model the
appearance of dynamic textures, such as water, foliage,
hair, etc. as the output of an Auto-Regressive Mov-
ing Average (ARMA) model; Saisan et al. (2001) use
ARMA models to represent human gaits, such as walk-
ing, running, jumping, etc.; Aggarwal et al. (2004) use
ARMA models to describe the appearance of moving



96 Vishwanathan, Smola and Vidal

faces; and Vidal et al. (2005) combine ARMA mod-
els with GPCA for clustering video shots in dynamic
scenes.

However, in practical applications we may not only
be interested in obtaining a model for the process (iden-
tification problem), but also in determining whether
two video sequences correspond to the same process
(classification problem) or identifying which process
is being observed in a given video sequence (recogni-
tion problem). Since the space of models for dynamical
processes typically has a non-Euclidean structure,1 the
above problems have naturally raised the issue of how
to do estimation, classification and recognition on such
spaces.

The study of classification and recognition problems
has been the mainstream areas of research in machine
learning for the past decades. Among the various meth-
ods for nonparametric estimation that have been devel-
oped, kernel methods have become one of the mainstays
as witnessed by a large number of books (Vapnik, 1995,
1998; Cristianini and Shawe-Taylor, 2000; Herbrich,
2002; Schölkopf and Smola, 2002). However, not much
of the existing literature has addressed the design of ker-
nels in the context of dynamical systems. To the best of
our knowledge, the metric for ARMA models based on
comparing their cepstrum coefficients (Martin, 2000) is
one of the first papers to address this problem. De Cock
and De Moor (2002) extended this concept to ARMA
models in state-space representation by considering the
subspace angles between the observability subspaces.
Recently, Wolf and Shashua (2003) demonstrated how
subspace angles can be efficiently computed by using
kernel methods. In related work, Shashua and Hazan
(2005) show how tensor products can be used to con-
struct a general family of kernels on sets.

A downside of these approaches is that the resulting
kernel is independent of the initial conditions. While
this might be desirable in many applications, it might
cause potential difficulties in others. For instance, not
every initial configuration of the joints of the human
body is appropriate for modeling human gaits.

1.1. Paper Contributions

In this paper, we attempt to bridge the gap between
nonparametric estimation methods and dynamical sys-
tems. We build on previous work using explicit embed-
ding constructions and regularization theory (Smola
and Kondor, 2003; Wolf and Shashua, 2003; Smola and
Vishwanathan, 2003) to propose a family of kernels ex-

plicitly designed for dynamical systems. More specif-
ically, we propose to compare two dynamical systems
by computing traces of compound matrices of order q
built from the system trajectories. The Binet-Cauchy
theorem (Aitken, 1946) is then invoked to show that
such traces satisfy the properties of a kernel.

We then show that the two strategies which have been
used in the past are particular cases of the proposed
unifying framework.

– The first family is based directly on the time-
evolution properties of the dynamical systems
(Smola and Kondor, 2003; Wolf and Shashua, 2003;
Smola and Vishwanathan, 2003). Examples include
the diffusion kernels of Kondor and Lafferty (2002),
the graph kernels of Gärtner et al. (2003) Kashima
et al. (2003), and the similarity measures between
graphs of Burkhardt (2004). We show that all these
kernels can be found as particular cases of our frame-
work, the so-called trace kernels, which are obtained
by setting q = 1.

– The second family is based on the idea of extract-
ing coefficients of a dynamical system (viz. ARMA
models), and defining a metric in terms of these
quantities. Examples include the Martin distance
(Martin, 2000) and the distance based on subspace
angles between observability subspaces (De Cock
and De Moor, 2002). We show that these metrics
arise as particular cases of our framework, the so-
called determinant kernels, by suitable preprocess-
ing of the trajectory matrices and by setting the order
of the compound matrices q to be equal to the or-
der of the dynamical systems. The advantage of our
framework is that it can take the initial conditions of
the systems into account explicitly, while the other
methods cannot.

Finally, we show how the proposed kernels can be
used to classify dynamic textures and segment dynamic
scenes by modeling them as ARMA models and com-
puting kernels on the ARMA models. Experimental
evidence shows the superiority of our kernels in cap-
turing differences in the dynamics of video sequences.

1.2. Paper Outline

We briefly review kernel methods and Support Vec-
tor Machines (SVMs) in Section 2, and introduce
the Binet-Cauchy theorem and associated kernels
in Section 3. We discuss methods to compute the



Binet-Cauchy Kernels on Dynamical Systems 97

Binet-Cauchy kernels efficiently in Section 3.3. We
then concentrate on dynamical systems and define ker-
nels related to them in Section 4. We then move on to
ARMA models and derive closed form solutions for
kernels defined on ARMA models in Section 5. In Sec-
tion 6 we concentrate on formally showing the relation
between our kernels and many well known kernels on
graphs, and sets. We extend our kernels to deal with
non-linear dynamical systems in Section 7 and apply
them to the analysis of dynamic scenes in Section 8.
Finally, we conclude with a discussion in Section 9.

2. Support Vector Machines and Kernels

In this section we give a brief overview of binary clas-
sification with SVMs and kernels. For a more exten-
sive treatment, including extensions such as multi-class
settings, the ν-parameterization, loss functions, etc.,
we refer the reader to Schölkopf and Smola (2002),
Cristianini and Shawe-Taylor (2000), Herbrich (2002)
and the references therein.

Given m observations (xi , yi ) drawn iid (indepen-
dently and identically distributed) from a distribution
over X ×Y our goal is to find a function f : X → Y
which classifies observations x ∈ X into classes +1
and−1. In particular, SVMs assume that f is given by

f (x) = sign(〈w, x〉+ b),

where the sets {x | f (x) ≥ 0} and {x | f (x) ≤ 0} denote
half-spaces separated by the hyperplane H (w, b) :=
{x |〈w, x〉+ b = 0}.

In the case of linearly separable datasets, that is,
if we can find (w, b) such that all (xi , yi ) pairs sat-
isfy yi f (xi ) = 1, the optimal separating hyperplane
is given by the (w, b) pair for which all xi have max-
imum distance from H (w, b). In other words, it is the
hyperplane which separates the two sets with the largest
possible margin.

Unfortunately, not all sets are linearly separable,
hence we need to allow a slack in the separation of
the two sets. Without going into details (which can be
found in Schölkopf and Smola (2002)) this leads to the
optimization problem:

minimize
w,b,ξ

1
2
‖w‖2 + C

m∑

i=1

ξi

subject to yi (〈w, xi 〉+ b) ≥ 1− ξi , ξi ≥ 0,

∀1 ≤ i ≤ m.

(1)

Here the constraint ∀i yi (〈w, xi 〉+ b) ≥ 1 ensures
that each (xi , yi ) pair is classified correctly. The slack
variable ξi relaxes this condition at penalty Cξi . Fi-
nally, minimization of ‖w‖2 ensures maximization
of the margin by seeking the shortest w for which
the condition ∀i yi (〈w, xi 〉+ b) ≥ 1 − ξi is still
satisfied.

An important property of SVMs is that the optimal
solution w can be computed as a linear combination
of some of the data points via w =

∑
i yiαi xi . Typ-

ically many coefficients αi are 0, which considerably
speeds up the estimation step, since these terms can
be dropped from the calculation of the optimal sepa-
rating hyperplane. The data points associated with the
nonzero terms are commonly referred to as support
vectors, since they support the optimal separating hy-
perplane. Efficient codes exist for the solution of (1)
(Platt, 1999; Chang and Lin, 2001; Joachims, 1998;
Vishwanathan et al., 2003).

2.1. Kernel Expansion

To obtain a nonlinear classifier, one simply replaces the
observations xi by $(xi ). That is, we extract features
$(xi ) from xi and compute a linear classifier in terms
of the features. Note that there is no need to compute
$(xi ) explicitly, since $ only appears in terms of dot
products:

– 〈$(x), w〉 can be computed by exploiting the
linearity of the scalar product, which leads to∑

i αi yi 〈$(x), $(xi )〉.
– Likewise ‖w‖2 can be expanded in terms of a

linear combination scalar products by exploiting
the linearity of scalar products twice to obtain∑

i, j αiα j yi y j 〈$(xi ), $(x j )〉.

Furthermore, note that if we define

k(x, x ′) := 〈$(x), $(x ′)〉,

we may use k(x, x ′) wherever 〈x, x ′〉 occurs. The map-
ping $ now takes X to what is called a Reproducing
Kernel Hilbert Space (RKHS). This mapping is often
referred to as the kernel trick and the resulting hyper-
plane (now in the RKHS defined by k(·, ·)) leads to the
following classification function

f (x) = 〈$(x), w〉+ b =
m∑

i=1

αi yi k(xi , x) + b.



98 Vishwanathan, Smola and Vidal

The family of methods which relies on the kernel
trick are popularly called kernel methods and SVMs
are one of the most prominent kernel methods. The
main advantage of kernel methods stems from the fact
that they do not assume a vector space structure on
X . As a result, non-vectorial representations can be
handled elegantly as long as we can define meaningful
kernels. In the following sections, we show how to de-
fine kernels on dynamical systems, i.e., kernels on a set
of points {xi } whose temporal evolution is governed by
a dynamical system.

3. Binet-Cauchy Kernels

In this section we provide a general framework for
defining kernels on Fredholm operators. We show that
our kernels are positive definite and hence admissible.
Finally, we present algorithms for computing our ker-
nels efficiently. While the kernels defined in this section
are abstract and generic, we will relate them to matrices
and dynamical systems in the following section.

3.1. The General Composition Formula

We begin by defining compound matrices. They arise
by picking subsets of entries of a matrix and computing
their determinants.

Definition 1 (Compound Matrix). Let A ∈ Rm×n . For
q ≤ min(m, n), define I n

q = {i = (i1, i2, . . . , iq ) : 1 ≤
i1 < · · · < iq ≤ n, ii ∈ N}, and likewise I m

q . The
compound matrix of order q, Cq (A), is defined as

[Cq (A)]i,j := det(A(ik, jl))
q
k,l=1

where i ∈ I n
q and j ∈ I m

q .

Here i, j are assumed to be arranged in lexicographical
order.

Theorem 2 (Binet-Cauchy). Let A ∈ Rl×m and,
B ∈ Rl×n. For q ≤ min(m, n, l) we have Cq (A-B) =
Cq (A)-Cq (B).

When q = m = n = l we have Cq (A) = det(A), and
the Binet-Cauchy theorem becomes the well known
identity det(A-B) = det(A) det(B). On the other hand,
when q = 1 we have C1(A) = A, and Theorem 2
reduces to a tautology.

Theorem 3 (Binet-Cauchy for Semirings). When
the common semiring (R, +, ·, 0, 1) is replaced by
an abstract semiring (K,⊕,/, 0̄, 1̄) the equality
Cq (A-B) = Cq (A)-Cq (B) still holds. Here all op-
erations occur on the monoid K, addition and multi-
plication are replaced by⊕,/, and (0̄, 1̄) take the role
of (0, 1).

For ease of exposition, in the rest of the paper we
will use the common semiring (R, +, ·, 0, 1), but with
minor modifications our results hold for general semir-
ings as well.

A second extension of Theorem 2 is to replace matri-
ces by Fredholm operators, as they can be expressed as
integral operators with corresponding kernels. In this
case, Theorem 3.2 becomes a statement about convo-
lutions of integral kernels.

Definition 4 (Fredholm Operator). A Fredholm oper-
ator is a bounded linear operator between two Hilbert
spaces with closed range and whose kernel and co-
kernel are finite-dimensional.

Theorem 5 (Kernel Representation of Fredholm Oper-
ators). Let A : L2(Y) → L2(X ) and, B : L2(Y) →
L2(Z) be Fredholm operators. Then there exists some
kA : X ×Y → R such that for all f ∈ L2(X ) we have

[A f ](x) =
∫

Y
kA(x, y) f (y)dy.

Moreover, for the composition A-B we have
kA-B(x, z) =

∫
Y kA- (x, y)kB(y, z)dy.

Here the convolution of kernels kA and kB plays the
same role as the matrix multiplication. To extend the
Binet-Cauchy theorem we need to introduce the analog
of compound matrices:

Definition 6 (Compound Kernel and Operator). De-
note by X ,Y ordered sets and let k : X ×Y → R.
Define IXq = {x ∈ X q : x1 ≤ · · · ≤ xq}, and likewise
IYq . Then the compound kernel of order q is defined as

k[q](x, y) := det(k(xk, yl))
q
k,l=1

where x ∈ IXq and y ∈ IYq .

If k is the integral kernel of an operator A we define
Cq (A) to be the integral operator corresponding to k[q].



Binet-Cauchy Kernels on Dynamical Systems 99

Theorem 7 (General Composition Formula (Pinkus,
1996)). Let X ,Y,Z be ordered sets and let A :
L2(Y) → L2(X ), B : L2(Y) → L2(Z) be Fredholm
operators. Then for q ∈ N we have

Cq (A-B) = Cq (A)-Cq (B).

To recover Theorem 2 from Theorem 7 setX = [1..m],
Y = [1..n] and Z = [1..l].

3.2. Kernels

The key idea in turning the Binet-Cauchy theorem and
its various incarnations into a kernel is to exploit the fact
that tr A-B and det A-B are kernels on operators A, B.
Following (Wolf and Shashua, 2003) we extend this
by replacing A-B with some functions ψ(A)-ψ(B)
involving compound operators.

Theorem 8 (Trace and Determinant Kernel). Let
A, B : L2(X )→ L2(Y) be Fredholm operators and let
S : L2(Y)→ L2(Y), T : L2(X )→ L2(X ) be positive
trace-class operators. Then the following two kernels
are well defined, and they are positive semi-definite:

k(A, B) = tr[S A-T B] (2)

k(A, B) = det[S A-T B]. (3)

Note that determinants are not defined in general for
infinite dimensional operators, hence our restriction to
Fredholm operators A, B in (3).

Proof: Recall that k(A, B) is a valid positive semi-
definite kernel if it can be written as ψ(A)-ψ(B) for
some function ψ(·). Observe that S and T are positive
and compact. Hence, they admit a decomposition into
S = VS V-S and T = V-T VT . By virtue of the commu-
tativity of the trace we have that

k(A, B) = tr



[VT AVS]-︸ ︷︷ ︸
ψ(A)-

[VT BVS]︸ ︷︷ ︸
ψ(B)



 .

Analogously, using the Binet-Cauchy theorem, we
can decompose the determinant. The remaining terms
VT AVS and VT BVS are again Fredholm operators for
which determinants are well defined.

Next we use special choices of A, B, S, T involving
compound operators directly to state the main theorem
of our paper.

Theorem 9 (Binet-Cauchy Kernel). Under the as-
sumptions of Theorem 8 it follows that for all q ∈ N
the kernels k(A, B) = tr Cq

[
S A-T B

]
and k(A, B) =

det Cq
[
S A-T B

]
are positive semi-definite.

Proof: We exploit the factorization S =
VS V-S , T = V-T VT and apply Theorem 7. This
yields Cq (S A-T B) = Cq (VT AVS)-Cq (VT BVS),
which proves the theorem.

Finally, we define a kernel based on the Fredholm deter-
minant itself. It is essentially a weighted combination
of Binet-Cauchy kernels. Fredholm determinants are
defined as follows (Pinkus, 1996):

D(A, µ) :=
∞∑

q=1

µq

q!
tr Cq (A).

This series converges for all µ ∈ C, and is an entire
function of µ. It suggests a kernel involving weighted
combinations of the kernels of Theorem 9. We have the
following:

Corollary 10 (Fredholm Kernel). Let A, B, S, T as
in Theorem 9 and let µ > 0. Then the following kernel
is positive semi-definite:

k(A, B) := D(A-B, µ) where µ > 0.

D(A-B, µ) is a weighted combination of the ker-
nels discussed above, and hence a valid positive semi-
definite kernel. The exponential down-weighting via
1
q! ensures that the series converges even in the case
of exponential growth of the values of the compound
kernel.

3.3. Efficient Computation

At first glance, computing the kernels of Theorem 9 and
Corollary 10 presents a formidable computational task
even in the finite dimensional case. If A, B ∈ Rm×n ,
the matrix Cq (A-B) has

(n
q

)
rows and columns and

each of the entries requires the computation of a de-
terminant of a q-dimensional matrix. A brute-force ap-
proach would involve O(q3nq ) operations (assuming
2q ≤ n). Clearly we need more efficient techniques.



100 Vishwanathan, Smola and Vidal

When computing determinants, we can take recourse
to Franke’s Theorem which states that (Gröbner, 1965):

det Cq (A) = (det A)(
n−1
q−1).

This can be seen as follows: the compound matrix of an
orthogonal matrix is orthogonal and consequently its
determinant is unity. Subsequently, use the SVD fac-
torization (Golub and Van Loan, 1996) of A to compute
the determinant of the compound matrix of a diagonal
matrix which yields the desired result. Consequently,

k(A, B) = det Cq [S A-T B] = (det[S A-T B])(
n−1
q−1).

This indicates that the determinant kernel may be of
limited use, due to the typically quite high power in the
exponent. Kernels building on tr Cq are not plagued by
this problem, and we give an efficient recursion below.
It follows from the ANOVA kernel recursion of Burges
and Vapnik (1995).

Lemma 11. Denote by A ∈ Cm×m a square matrix
and let λ1, . . . , λm be its eigenvalues. Then tr Cq (A)
can be computed by the following recursion:

tr Cq (A) = 1
q

q∑

j=1

(−1) j+1C̄q− j (A)C̄ j (A)

where C̄q (A) =
n∑

j=1

λ
q
j . (4)

Proof: We begin by writing A in its Jordan normal
form as A = P D P−1 where D is a block diagonal,
upper triangular matrix. Furthermore, the diagonal el-
ements of D consist of the eigenvalues of A. Repeated
application of the Binet-Cauchy Theorem yields

tr Cq (A) = tr Cq (P)Cq (D)Cq (P−1)

= tr Cq (D)Cq (P−1)Cq (P) = tr Cq (D)

For a triangular matrix the determinant is the product
of its diagonal entries. Since all the square submatrices
of D are upper triangular, to construct tr(Cq (D)) we
need to sum over all products of exactly q eigenvalues.
This is analog to the requirement of the ANOVA kernel
of Burges and Vapnik (1995). In its simplified version
it can be written as (4), which completes the proof.

We can now compute the Jordan normal form of
S A-T B in O(n3) time and apply Lemma 11 directly
to it to compute the kernel value.

Finally, in the case of Fredholm determinants, we can
use the recursion directly, because for n-dimensional
matrices the sum terminates after n terms. This is no
more expensive than computing tr Cq directly.

4. Kernels and Dynamical Systems

In this section we will concentate on dynamical sys-
tems. We discuss the behavioral framework and show
how the Binet-Cauchy kernels can be applied to define
kernels. In particular, we will concentrate on the trace
kernel (q = 1) and the determinant kernel (q = n).
We will show how kernels can be defined using model
parameters, and on initial conditions of a dynamical
system.

4.1. Dynamical Systems

We begin with some definitions. The state of a dynam-
ical system is defined by some x ∈ H, where H is as-
sumed to be a RKHS with its kernel denoted by κ(·, ·).
Moreover, we assume that the temporal evolution of
x ∈ H is governed by

xA(t) := A(x, t) for t ∈ T ,

where t is the time of the measurement and A :
H×T → H denotes a set of operators indexed by T .
Furthermore, unless stated otherwise, we will assume
that for every t ∈ T , the operator A(·, t) : H → H
is linear and drawn from some fixed set A.2 We will
choose T = N0 or T = R+

0 , depending on whether
we wish to deal with discrete-time or continuous-time
systems.

We can also assume that x is a random variable drawn
fromH and A(·, t) is a random operator drawn from the
set A. In this case, we need to assume that both H and
A are endowed with suitable probability measures. For
instance, we may want to consider initial conditions
corrupted by additional noise or Linear Time Invariant
(LTI) systems with additive noise.

Also note that xA(t) need not be the only vari-
able involved in the time evolution process. For in-
stance, for partially observable models, we may only
see yA(t) which depends on the evolution of a hidden
state xA(t). These cases will be discussed in more detail
in Section 5.



Binet-Cauchy Kernels on Dynamical Systems 101

4.2. Trajectories

When dealing with dynamical systems, one may com-
pare their similarities by checking whether they sat-
isfy similar functional dependencies. For instance, for
LTI systems one may want to compare the transfer
functions, the system matrices, the poles and/or zeros,
etc. This is indeed useful in determining when sys-
tems are similar whenever suitable parameterizations
exist. However, it is not difficult to find rather different
functional dependencies, which, nonetheless, behave
almost identically, e.g. as long as the domain of ini-
tial conditions is sufficiently restricted. For instance,
consider the maps

x ← a(x) = |x |p and x ← b(x) = min(|x |p, |x |)

for p > 1. While a and b clearly differ, the two systems
behave identically for all initial conditions satisfying
|x | ≤ 1. On the other hand, for |x | > 1 system b is
stable while a could potentially diverge. This example
may seem contrived, but for more complex maps and
higher dimensional spaces such statements are not quite
as easily formulated.

One way to amend this situation is to compare tra-
jectories of dynamical systems and derive measures of
similarity from them. The advantage of this approach
is that it is independent of the parameterization of the
system. This approach is in spirit similar to the be-
havioral framework of (1986a, b, 1987), which iden-
tifies systems by identifying trajectories. However, it
has the disadvantage that one needs efficient mecha-
nisms to compute the trajectories, which may or may
not always be available. We will show later that in the
case of ARMA models or LTI systems such computa-
tions can be performed efficiently by solving a series
of Sylvester equations.

In keeping with the spirit of the behavioral frame-
work, we will consider the pairs (x, A) only in terms
of the trajectories which they generate. We will focus
our attention on the map

TrajA : H→ HT where TrajA(x) := A(x, ·). (5)

In other words, we define TrajA(x)(t) = A(x, t). The
following lemma provides a characterization of this
mapping.

Lemma 12. Let A : H×T → H be such that for
every t ∈ T , A(·, t) is linear. Then the mapping TrajA
defined by (5) is linear.

Proof: Let, x, y ∈ H and α, β ∈ R. For a fixed t the
operator A(·, t) is linear and hence we have

TrajA(αx + βy)(t) = A(αx + βy, t)

= α A(x, t) + β A(y, t).

Since the above holds for every t ∈ T we can write

TrajA(αx + βy) = α TrajA(x) + β TrajA(y),

from which the claim follows.

The fact that the state space H is a RKHS and TrajA
defines a linear operator will be used in the sequel to
define kernels on trajectories.

To establish a connection between the Binet-Cauchy
theorem and dynamical systems we only need to real-
ize that the trajectories Traj(x, A) are linear operators.
As we shall see, (2) and some of its refinements lead
to kernels which carry out comparisons of state pairs.
Equation (3), on the other hand, can be used to define
kernels via subspace angles. In this case, one whitens
the trajectories before computing their determinant. We
give technical details in Section 6.1.

4.3. Trace Kernels

Computing tr A-B means taking the sum over scalar
products between the rows of A and B. For trajecto-
ries this amounts to summing over κ(xA(t), x ′A(t)) =
〈xA(t), x ′A′ (t)〉with respect to t . There are two possible
strategies to ensure that the sum over t converges, and
consequently ensure that the kernel is well defined: We
can make strong assumptions about the operator norm
of the linear operator A. This is the approach followed,
for instance, by Kashima et al. (2004). Alternatively,
we can use an appropriate probability measure µ over
the domain T which ensures convergence. The expo-
nential discounting schemes

µ(t) = λ−1e−λt for T = R+
0

µ(t) = 1
1− e−λ

e−λt for T = N0

are popular choice in reinforcement learning and con-
trol theory (Sutton and Barto, 1998; Baxter and Bartlett,
1999). Another possible measure is

µ(t) = δτ (t) (6)



102 Vishwanathan, Smola and Vidal

where δτ corresponds to the Kronecker-δ for T = N0

and to the Dirac’s δ-distribution for T = R+
0 .

The above considerations allow us to extend (2) to
obtain the following kernel

k((x, A), (x ′, A′)) := Et∼µ(t)
[
κ
(
xA(t), x ′A′ (t)

)]
. (7)

Recall that a convex combination of kernels is a kernel.
Hence, taking expectations over kernel values is still a
valid kernel. We can now specialize the above equation
to define kernels on model parameters as well as kernels
on initial conditions.

Kernels on Model Parameters: We can specialize
(7) to kernels on initial conditions or model param-
eters, simply by taking expectations over a distribu-
tion of them. This means that we can define

k(A, A′) := Ex,x ′ [k((x, A), (x ′, A′))]. (8)

However, we need to show that (8) actually is posi-
tive semi-definite.

Theorem 13. Assume that {x, x ′} are drawn from
an infinitely extendable and exchangeable probabil-
ity distribution (de Finetti, 1990). Then (8) is a pos-
itive semi-definite kernel.

Proof: By De Finetti’s theorem, infinitely ex-
changeable distributions arise from conditionally in-
dependent random variables (de Finetti, 1990). In
practice this means that

p(x, x ′) =
∫

p(x |c)p(x ′|c)dp(c)

for some p(x |c) and a measure p(c). Hence we can
rearrange the integral in (8) to obtain

k(A, A′)

=
∫

[k((x, A), (x ′, A′))dp(x |c)dp(x ′|c)] dp(c).

Here the result of the inner integral is a kernel by the
decomposition admitted by positive semi-definite
functions. Taking a convex combination of such
kernels preserves positive semi-definiteness, hence
k(A, A′) is a kernel.

In practice, one typically uses either p(x, x ′) =
p(x)p(x ′) if independent averaging over the initial

conditions is desired, or p(x, x ′) = δ(x − x ′)p(x)
whenever the averaging is assumed to occur syn-
chronously.

Kernels on Initial Conditions: By the same strategy,
we can also define kernels exclusively on initial con-
ditions x, x ′ simply by averaging over the dynami-
cal systems they should be subjected to:

k(x, x ′) := EA,A′ [k((x, A), (x ′, A′))].

As before, whenever p(A, A′) is infinitely ex-
changeable in A, A′, the above equation corre-
sponds to a proper kernel.3 Note that in this fashion
the metric imposed on initial conditions is one that
follows naturally from the particular dynamical sys-
tem under consideration. For instance, differences
in directions which are rapidly contracting carry less
weight than a discrepancy in a divergent direction
of the system.

4.4. Determinant Kernels

Instead of computing traces of TrajA(x)- TrajA′ (x
′) we

can follow (3) and compute determinants of such ex-
pressions. As before, we need to assume the existence
of a suitable measure which ensures the convergence
of the sums.

For the sake of computational tractability one typi-
cally chooses a measure with finite support. This means
that we are computing the determinant of a kernel ma-
trix, which in turn is then treated as a kernel func-
tion. This allows us to give an information-theoretic
interpretation to the so-defined kernel function. Indeed,
Gretton et al. (2003) and Bach and Jordan (2002) show
that such determinants can be seen as measures of the
independence between sequences. This means that in-
dependent sequences can now be viewed as orthogonal
in some feature space, whereas a large overlap indicates
statistical correlation.

5. Kernels on Linear Dynamical Models

In this section we will specialize our kernels on dy-
namical systems to linear dynamical systems. We will
concentrate on both discrete as well as continuous
time variants, and derive closed form equations. We
also present strategies for efficiently computing these
kernels.



Binet-Cauchy Kernels on Dynamical Systems 103

5.1. ARMA Models

A special yet important class of dynamical systems are
ARMA models of the form

yt = Cxt + wt where wt ∼ N (0, R),
(9)

xt+1 = Axt + vt where vt ∼ N (0, Q),

where the driving noise wt , vt are assumed to be zero
mean iid normal random variables, yt ∈ Y are the
observed random variables at time t , xt ∈ X are the
latent variables, and the matrices A, C, Q, and R are the
parameters of the dynamical system. These systems are
also commonly known as Kalman Filters. Throughout
the rest of the paper we will assume that Y = Rm , and
X = Rn . In may applications it is typical to assume
that m 3 n.

We will now show how to efficiently compute an ex-
pression for the trace and determinant kernels between
two ARMA models (x0, A, C) and (x ′0, A′, C ′), where
x0 and x ′0 are the initial conditions.

5.1.1. Trace Kernels on ARMA Models. If one as-
sumes an exponential discounting µ(t) = e−λt with
rate λ > 0, then the trace kernel for ARMA models is

k((x0, A, C), (x ′0, A′, C ′))

:= Ev,w

[
∞∑

t=0

e−λt y-t W y′t

]

, (10)

where W ∈ Rm×m is a user-defined positive semidefi-
nite matrix specifying the kernel κ(yt , y′t ) := y-t W y′t .
By default, one may choose W = 1, which leads to the
standard Euclidean scalar product between yt and y′t .

A major difficultly in computing (10) is that it in-
volves the computation of an infinite sum. But as the
following lemma shows, we can obtain a closed form
solution to the above equation.

Theorem 14. If e−λ‖A‖‖A′‖ < 1, and the two
ARMA models (x0, A, C), and (x ′0, A′, C ′) evolve with
the same noise realization then the kernel of (10) is
given by

k = x-0 Mx ′0 + 1
1− e−λ

tr [QM + W R] , (11)

where M satisfies

M = e−λ A-M A′ + C-WC ′.

Proof: See Appendix A.

In the above theorem, we assumed that the two
ARMA models evolve with the same noise realization.
In many applications this might not be a realistic as-
sumption. The following corollary addresses the issue
of computation of the kernel when the noise realiza-
tions are assumed to be independent.

Corollary 15. Same setup as above, but the two
ARMA models (x0, A, C), and (x ′0, A′, C ′) now evolve
with independent noise realizations. Then (10) is given
by

k = x-0 Mx ′0, (12)

where M satisfies

M = e−λ A-M A′ + C-WC ′.

Proof [Sketch]: [The second term in the RHS of (11)
is contribution due to the covariance of the noise model.
If we assume that the noise realizations are independent
(uncorrelated) the second term vanishes.

In case we wish to be independent of the initial con-
ditions, we can simply take the expectation over x0, x ′0.
Since the only dependency of (11) on the initial con-
ditions manifests itself in the first term of the sum,
the kernel on the parameters of the dynamical systems
(A, C) and (A′, C ′) is

k((A, C), (A′, C ′))

:= Ex0,x ′0 [k((x0, A, C),× (x ′0, A′, C ′))]

= tr +M + 1
1− e−λ

tr [QM + W R] ,

where + is the covariance matrix of the initial con-
ditions x0, x ′0 (assuming that we have zero mean). As
before, we can drop the second term if we assume that
the noise realizations are independent.

An important special case are fully observable
ARMA models, i.e., systems with C = I and R = 0.
In this case, the expression for the trace kernel (11)
reduces to

k = x-0 Mx ′0 + 1
1− e−λ

tr(QM), (13)



104 Vishwanathan, Smola and Vidal

where M satisfies

M = e−λ A-M A′ + W. (14)

This special kernel was first derived in Smola and
Vishwanathan (2003).

5.1.2. Determinant Kernels on ARMA Models. As
before, we consider an exponential discounting µ(t) =
e−λt , and obtain the following expression for the deter-
minant kernel on ARMA models:

k((x0, A, C), (x ′0, A′, C ′))

:= Ev,w det

[
∞∑

t=0

e−λt yt y′-t

]

. (15)

Notice that in this case the effect of the weight matrix
W is just a scaling of the kernel value by det(W ), thus,
we assume w.l.o.g. that W = I.

Also, for the sake of simplicity and in order to com-
pare with other kernels we assume an ARMA model
with no noise, i.e., vt = 0 and wt = 0. Then, we have
the following:

Theorem 16. If e−λ‖A‖‖A′‖ < 1, then the kernel of
(15) is given by

k((x0, A, C), (x ′0, A′, C ′)) = det C MC ′-, (16)

where M satisfies

M = e−λ AM A′- + x0x ′-0 .

Proof: We have

k((x0, A, C), (x ′0, A′, C ′))

= det
∞∑

t=0

e−λt C At x0x ′-0 (A′t )-C ′-

= det C MC ′-,

where, by using Lemma 18, we can write

M =
∞∑

t=0

e−λt At x0x ′-0 (A′t )-

= e−λ AM A′- + x0x ′-0 .

Note that the kernel is uniformly zero if C or M do
not have full rank. In particular, this kernel is zero if
the dimension of the latent variable space n is smaller
than the dimension of the observed space m, i.e., the
matrix C ∈ Rm×n is rectangular. This indicates that the
determinant kernel might have limited applicability in
practical situations.

As pointed out in Wolf and Shashua (2003), the
determinant is not invariant to permutations of the
columns of TrajA(x) and TrajA′ (x

′). Since different
columns or linear combinations of them are determined
by the choice of the initial conditions x0 and x ′0, this
means, as is obvious from the formula for M , that the
determinant kernel does depend on the initial condi-
tions.

In order to make it independent from initial condi-
tions, as before, we can take expectations over x0 and
x ′0. Unfortunately, although M is linear in on both x0

and x ′0, the kernel given by (16) is multi-linear. There-
fore, the kernel depends not only on the covariance
+ on the initial conditions, but also on higher order
statistics. Only in the case of single-output systems,
we obtain a simple expression

k((A, C), (A′, C ′)) = C MC ′-,

where

M = e−λ AM A′- + +,

for the kernel on the model parameters only.

5.2. Continuous Time Models

The time evolution of a continuous time LTI system
(x0, A) can be modeled as

d
dt

x(t) = Ax(t).

It is well known (cf. Chapter 2 Luenberger, 1979) that
for a continuous LTI system, x(t) is given by

x(t) = exp(At)x(0),

where x(0) denotes the initial conditions.
Given two LTI systems (x0, A) and (x ′0, A′), a pos-

itive semi-definite matrix W , and a measure µ(t) we



Binet-Cauchy Kernels on Dynamical Systems 105

can define the trace kernel on the trajectories as

k((x0, A), (x ′0, A′))

:= x-0

[∫ ∞

0
exp(At)-W exp(A′t) dµ(t)

]
x ′0.

(17)

As before, we need to assume a suitably decaying
measure in order to ensure that the above integral con-
verges. The following theorem characterizes the solu-
tion when µ(t) = e−λt , i.e., the measure is exponen-
tially decaying.

Theorem 17. Let, A, A′ ∈ Rm×m, and W ∈ Rm×m be
non-singular. Furthermore, assume that ‖A‖, ‖A′‖ ≤
,, ||W || is bounded, and µ(t) = e−λt . Then, for all
λ > 2, (17) is well defined and can be computed as

k((x0, A), (x ′0, A′)) = x-0 Mx0,

where
(

A − λ

2
I
)-

M + M
(

A′ − λ

2
I
)

= −W.

Furthermore, if µ(t) = δτ (t) we have the somewhat
trivial kernel

k((A, x0), (A′, x ′0))

= x-0 [exp(Aτ )-W exp(Aτ )]x ′0. (18)

Proof: See Appendix B.

5.3. Efficient Computation

Before we describe strategies for efficiently computing
the kernels discussed above we need to introduce some
notation. Given a matrix A ∈ Rn×m , we use A:,i to
denote the i-th column of A, Ai,: to denote the i-th
row and Ai, j to denote the (i, j)-th element of A. The
linear operator vec : Rn×m → Rnm flattens the matrix
(Bernstein, 2005). In other words,

vec(A) :=





A:,1

A:,2
...

A:,n




.

Given two matrices A ∈ Rn×m and B ∈ Rl×k the
Kronecker product A⊗B ∈ Rnl×mk is defined as Bern-
stein (2005):

A ⊗ B :=




A1,1 B A1,2 B . . . A1,m B

...
...

...
...

An,1 B An,2 B . . . An,m B



 .

Observe that in order to compute the kernels on linear
dynamical systems we need to solve for M ∈ Rn×n

given by

M = SMT + U, (19)

where S, T, U ∈ Rn×n are given. Equations of this
form are known as Sylvester equations, and can be
readily solved in O(n3) time with freely available code
(Gardiner et al., 1992).

In some cases, for instance when we are working
with adjacency matrices of graphs, the matrices S and
T might be sparse or rank deficient. In such cases, we
might be able to solve the Sylvester equations more
efficiently. Towards this end we rewrite (19) as

vec(M) = vec(SMT ) + vec(U ). (20)

Using the well known identity see proposition 7.1.9
(Bernstein, 2005)

vec(SMT ) = (T- ⊗ S) vec(M), (21)

we can rewrite (20) as

(I−T- ⊗ S) vec(M) = vec(U ), (22)

where I denotes the identity matrix of appropriate di-
mensions. In general, solving the n2 × n2 system

vec(M) = (I−T- ⊗ S)−1 vec(U ), (23)

might be rather expensive. But, if S and T are sparse
then by exploiting sparsity, and using (21) we can
compute (I−T- ⊗ S) vec X for any matrix X rather
cheaply. This naturally suggests two strategies: We
can iteratively solve for a fixed point of (23) as is
done by Kashima et al. (2004). But the main draw-
back of this approach is that the fixed point iteration
might take a long time to converge. On the other hand,
rank(T- ⊗ S) = rank(T ) rank(S), and hence one can



106 Vishwanathan, Smola and Vidal

employ a Conjugate Gradient (CG) solver which can
exploit both the sparsity of as well as the low rank of S
and T and provide guaranteed convergence (Nocedal
and Wright, 1999). Let {λi } denote the eigenvalues of S
and {µ j } denote the eigenvalues of T . Then the eigen-
values of S⊗ T are given by {λiµ j } (Bernstein, 2005).
Therefore, if the eigenvalues of S and T are bounded
(as they are in the case of a graph) and rapidly decaying
then the eigenvalues of S⊗ T are bounded and rapidly
decaying. In this case a CG solver will be able to effi-
ciently solve (23). It is worthwhile reiterating that both
the above approaches are useful only when S and T are
sparse and have low (effective) rank. For the general
case, solving the Sylvester equation directly is the rec-
ommended approach. More details about these efficient
computational schemes can be found in Vishwanathan
et al. (2006).

Computing A-C-WC ′A′ and C-WC ′ in (12) re-
quires O(nm2) time where n is the latent variable di-
mension and n 5 m is the observed variable dimen-
sion. Computation of W R requires O(m3) time, while
QM̃ can be computed in O(n3) time. Assuming that
the Sylvester equation can be solved in O(n3) time the
overall time complexity of computing (12) is O(nm2).
Similarly, the time complexity of computing (11) is
O(m3).

6. Connections with Existing Kernels

In this section we will explore connections between
Binet-Cauchy kernels and many existing kernels in-
cluding set kernels based on cepstrum coefficients,
marginalized graph kernels, and graph kernels based on
diffusion. First we briefly describe set kernels based on
subspace angles of observability subspaces, and show
that they are related to our determinant kernels. Next
we concentrate on labeled graphs and show that the
marginalized graph kernels can be interpreted as a spe-
cial case of our kernels on ARMA models. We then turn
our attention to diffusion on graphs and show that our
kernels on continuous time models yields many graph
kernels as special cases. Our discussion below points to
deeper connections between disparate looking kernels,
and also demonstrates the utility of our approach.

6.1. Kernel via Subspace Angles and Martin Kernel

Given an ARMA model with parameters (A, C) (9), if
we neglect the noise terms wt and vt , then the Hankel

matrix Z of the output satisfies

Z =





y0 y1 y2 · · ·
y1 y2 · · ·

y2
...

. . .
...




=





C
C A
C A2

...




[
x0 x1 x3 · · ·

]

= O
[
x0 x1 x3 · · ·

]
.

Since A ∈ Rn×n and C ∈ Rm×n , C A ∈ Rm×n . There-
fore, the infinite output sequence yt lives in an m-
dimensional observability subspace spanned by the m
columns of the extended observability matrix O. De
Cock and De Moor (2002) propose to compare ARMA
models by using the subspace angles among their ob-
servability subspaces. More specifically, a kernel be-
tween ARMA models (A, C) and (A′, C ′) is defined
as

k((A, C), (A′, C ′)) =
m∏

i=1

cos2(θi ), (24)

where θi is the i-th subspace angle between the col-
umn spaces of the extended observability matrices
O = [C-A-C- · · · ]- and O′ = [C ′-A′-C ′- · · · ]-.
Since the subspace angles should be independent of the
choice of a particular basis for O or O′, the calculation
is typically done by choosing a canonical basis via the
QR decomposition. More specifically, the above ker-
nel is computed as det(Q-Q′)2, where O = Q R and
O′ = Q′R′ are the Q R decompositions of O and O′,
respectively. 4 Therefore, the kernel based on subspace
angles is essentially the square of a determinant kernel 5

formed from a whitened version of the outputs (via the
QR decomposition) rather than from the outputs di-
rectly, as with the determinant kernel in (16).

Yet another way of defining a kernel on dynamical
systems is via cepstrum coefficients, as proposed by
Martin (2000). More specifically, if H (z) is the transfer
function of the ARMA model described in (9), then the
cepstrum coefficients cn are defined via the Laplace
transformation of the logarithm of the ARMA power
spectrum,

log H (z)H∗(z−1) =
∑

n∈Z
cnz−n. (25)

The Martin kernel between (A, C) and (A′, C ′) with
corresponding cepstrum coefficients cn and c′n is



Binet-Cauchy Kernels on Dynamical Systems 107

defined as

k((A, C), (A′, C ′)) :=
∞∑

n=1

nc∗nc′n. (26)

As it turns out, the Martin kernel and the kernel based
on subspace angles are the same as shown by De Cock
and De Moor (2002).

It is worth noticing that, by definition, the Martin
kernel and the kernel based on subspace angles de-
pend exclusively on the model parameters (A, C) and
(A′, C ′), and not on the initial conditions. This could be
a drawback in practical applications where the choice
of the initial condition is important when determining
how similar two dynamical systems are, e.g. in model-
ing human gaits (Saisan et al., 2001).

6.2. ARMA Kernels on Graphs

We begin with some elementary definitions: We use e
to denote a vector with all entries set to one, ei to denote
the i-th standard basis, i.e., a vector of all zeros with
the i-th entry set to one, while E is used to denote a
matrix with all entries set to one. When it is clear from
context we will not mention the dimensions of these
vectors and matrices.

A graph G consists of an ordered and finite set of
vertices V denoted by {v1, v2, . . . , vn}, and a finite set
of edges E ⊂ V × V . We use |V | to denote the num-
ber of vertices, and |E | to denote the number of edges.
A vertex vi is said to be a neighbor of another ver-
tex v j if they are connected by an edge. G is said to
be undirected if (vi , v j ) ∈ E ⇐⇒ (v j , vi ) ∈ E
for all edges. The unnormalized adjacency matrix of
G is an n × n real matrix P with P(i, j) = 1 if
(vi , v j ) ∈ E , and 0 otherwise. If G is weighted then P
can contain non-negative entries other than zeros and
ones, i.e., P(i, j) ∈ (0,∞) if (vi , v j ) ∈ E and zero
otherwise.

Let D be an n×n diagonal matrix with entries Dii =∑
j P(i, j). The matrix A := P D−1 is then called the

normalized adjacency matrix, or simply adjacency ma-
trix. The adjacency matrix of an undirected graph is
symmetric. Below we will always work with undirected
graphs. The Laplacian of G is defined as L := D − P
and the Normalized Laplacian is L̃ := D−

1
2 L D−

1
2 =

I − D−
1
2 W D−

1
2 . The normalized graph Laplacian of-

ten plays an important role in graph segmentation
(Shi and Malik, 1997).

A walk w on G is a sequence of indices
w1, w2, . . . wt+1 where (vwi , vwi+1 ) ∈ E for all
1 ≤ i ≤ t . The length of a walk is equal to the
number of edges encountered during the walk (here:
t). A graph is said to be connected if any two pairs of
vertices can be connected by a walk; we always work
with connected graphs. A random walk is a walk where
P(wi+1|w1, . . . wi ) = A(wi , wi+1), i.e., the probability
at wi of picking wi+1 next is directly proportional to the
weight of the edge (vwi , vwi+1 ). The t-th power of the
transition matrix A describes the probability of t-length
walks. In other words, At (i, j) denotes the probability
of a transition from vertex vi to vertex v j via a walk of
length t .

Let x0 denote an initial probability distribution over
the set of vertices V . The probability distribution xt

at time t obtained from a random walk on the graph
G, can be modeled as xt = At x0. The j-th com-
ponent of xt denotes the probability of finishing a t-
length walk at vertex v j . In the case of a labeled graph,
each vertex v ∈ V is associated with an unique la-
bel from the set {l1, l2, . . . , lm}.6 The label transfor-
mation matrix C is a m × n matrix with Ci j = 1
if label li is associated with vertex v j , and 0 other-
wise. The probability distribution xt over vertices is
transformed into a probability distribution yt over la-
bels via yt = Cxt . As before, we assume that there
exists a matrix W ∈ Rm×m which can be used to de-
fine the kernel κ(yt , y′t ) = y-t W y′t on the space of all
labels.

6.2.1. Random Walk Graph Kernels The time evo-
lution of the label sequence associated with a random
walk on a graph can be expressed as the following
ARMA model

yt = Cxt
(27)

xt+1 = Axt

It is easy to see that (27) is a very special case of (9),
i.e., it is an ARMA model with no noise.

Given two graphs G1(V1, E1) and G2(V2, E2), a de-
cay factor λ, and initial distributions x0 = 1

|V1| e and
x ′0 = 1

|V2| e, using Corollary 15 we can define the fol-
lowing kernel on labeled graphs which compares ran-
dom walks:

k(G1, G2) = 1
|V1||V2|

e- M e,



108 Vishwanathan, Smola and Vidal

where

M = e−λ A-1 M A2 + C-1 WC2.

We now show that this is essentially the geometric
graph kernel of Gärtner et al. (2003). Towards this end,
applying vec and using (21), we write

k(G1, G2) = 1
|V1||V2|

vec(e- vec(M) e)

= 1
|V1||V2|

e- vec(M). (28)

Next, we set C1 = C2 = I, W = ee-, and e−λ = λ′.
Now we have

M = λ′A-1 M A2 + ee-.

Applying vec on both sides and using (21) we can
rewrite the above equation as

vec(M) = λ′ vec(A-1 M A2) + vec(ee-)

= λ′(A-2 ⊗ A-1 ) vec(M) + e.

The matrix A× := A-2 ⊗ A1 is the adjacency matrix of
the product graph (Gärtner et al., 2003). Recall that we
always deal with undirected graphs, i.e., A1 and A2 are
symmetric. Therefore, the product graph is also undi-
rected and its adjacency matrix A× is symmetric. Using
this property, and by rearranging terms, we obtain from
the above equation

vec(M) = (I−λ′A×)−1 e.

Plugging this back into (28) we obtain

k(G1, G2) = 1
|V1||V2|

e-(I−λ′A×)−1 e.

This, modulo the normalization constant, is exactly the
geometric kernel defined by Gärtner et al. (2003).

The marginalized graph kernels between labeled
graphs (Kashima et al., 2004) is also essentially equiv-
alent to the kernels on ARMA models. Two main
changes are required to derive these kernels: A stopping
probability, i.e., the probability that a random walk ends
at a given vertex, is assigned to each vertex in both the
graphs. The adjacency matrix of the product graph is
no longer a Kronecker product. It is defined by kernels
between vertex labels. This can be viewed as an ex-
tension of Kronecker products to incorporate kernels.

More details about these extensions, and details about
the relation between geometric kernels and marginal-
ized graph kernels can be found in Vishwanathan et al.
(2006).

6.2.2. Diffusion Kernels If we assume a continuous
diffusion process on graph G(V, E) with graph Lapla-
cian L the evolution of xt can be modeled as the fol-
lowing continuous LTI system

d
dt

x(t) = Lx(t).

We begin by studying a very simple case. Set A =
A′ = L , W = I, x0 = ei , and x ′0 = e j in (18) to obtain

k((L , ei ), (L , e j )) = [exp(Lτ )- exp(Lτ )]i j .

Observe that this kernel measures the probability that
any other node vl could have been reached jointly from
vi andv j (Kondor and Lafferty, 2002). In other words, it
measures the probability of diffusing from either node
vi to node v j or vice versa. The n× n kernel matrix K
can be written as

K = exp(Lτ )- exp(Lτ ),

and viewed as a covariance matrix between the distri-
butions over vertices. In the case of a undirected graph,
the graph Laplacian is a symmetric matrix, and hence
the above kernel can be written as

K = exp(2Lτ ).

This is exactly the diffusion kernel on graphs proposed
by Kondor and Lafferty (2002).

6.3. Inducing Feature Spaces

Burkhardt (2004) uses features on graphs to derive in-
variants for the comparison of polygons. More specif-
ically, they pick a set of feature functions, denoted by
the vector $(x, p), defined on x with respect to the
polygon p and they compute their value on the entire
trajectory through the polygon. Here x is an index on
the vertex of the polygon and the dynamical system
simply performs the operation x → (x mod n) + 1,
where n is the number of vertices of the polygon.

Essentially, what happens is that one maps the poly-
gon into the trajectory ($(1, p), . . . , $(n, p)). For a



Binet-Cauchy Kernels on Dynamical Systems 109

fixed polygon, this already would allow us to compare
vertices based on their trajectory. In order to obtain a
method for comparing different polygons, one needs to
rid oneself of the dependency on initial conditions: the
first point is arbitrary. To do so, one simply assumes
a uniform distribution over the pairs (x, x ′) of initial
conditions. This distribution satisfies the conditions of
de Finetti’s theorem and we can therefore compute the
kernel between two polygons via

k(p, p′) = 1
nn′

n,n′∑

x,x ′=1

〈$(x, p), $(x ′, p′)〉. (29)

Note that in this context the assumption of a uniform
distribution amounts to computing the Haar integral
over the cyclical group defined by the vertices of the
polygon.

The key difference to Burkhardt (2004) and (29)
is that in our framework one is not limited to a
small set of polynomials which need to be constructed
explicitly. Instead, one can use any kernel function
k((x, p), (x ′, p′)) for this purpose.

This is but a small example of how rich features on
the states of a dynamical system can be used in the com-
parison of trajectories. What should be clear, though,
is that a large number of the efficient computations has
to be sacrificed in this case. Nonetheless, for discrete
measures µ with a finite number of nonzero steps this
can be an attractive alternative to a manual search for
useful features.

7. Extension to Nonlinear Dynamical Systems

In this section we concentrate on non-linear dynamical
systems whose time evolution is governed by

xt+1 = f (xt ). (30)

The essential idea here is to map the state space of the
dynamical system into a suitable higher dimensional
feature space such that we obtain a linear system in
this new space. We can now apply the results we ob-
tained in Section 5 for linear models. Two technical
difficulties arise. First, one needs efficient algorithms
for computing the mapping. Second, we have a lim-
ited number of state space observations at our disposal,
while the mapped dynamical system evolves in a rather
high dimensional space. Therefore, to obtain meaning-
ful results, one needs to restrict the solution further.

We discuss methods to overcome both these difficulties
below.

7.1. Linear in Feature Space

Given a non-linear dynamical system f , whose state
space is X , we seek a bijective transformation $ :
X 9→ H and a linear operator A such that in the new
coordinates zt := $(xt ) we obtain a linear system

zt+1 = Azt . (31)

Furthermore, we assume that H is a RKHS endowed
with a kernel κ(·, ·). If such a φ and A exist then we
can define a kernel on the nonlinear models f and f ′

as

knonlinear((x0, f ), (x ′0, f ′)) = klinear((z0, A), (z′0, A′))

where klinear is any of the kernels for linear models
defined in the previous sections.

The above construction can be immediately applied
whenever f and f ′ are feedback-linearizable. Condi-
tions for f to be feedback-linearizable as well as an
algorithm for computing $ and A from f can be found
in Isidori (1989).

However, a given f is in general not feedback-
linearizable. In such cases, we propose to find a ARMA
model whose time evolution is described by

$′(yt ) = C$(xt ) + wt

$(xt+1) = A$(xt ) + vt .

Here $ and $′ are appropriate non-linear transforms,
and as before wt and vt are IID zero mean Gaussian
random variables. In case the model is fully observable
the time evolution is governed by

$(xt+1) = A$(xt ) + vt . (32)

In the following, we only deal with the fully observ-
able case. We define kernels on the original dynamical
system by simply studying the time evolution of $(xt )
instead of xt .

Unfortunately, such a transformation need not al-
ways exist. Moreover, for the purpose of comparing
trajectories it is not necessary that the map $ be bijec-
tive. In fact, injectivity is all we need. This means that
as long as we can find a linear system such that (32)
holds we can extend the tools of the previous sections



110 Vishwanathan, Smola and Vidal

to nonlinear models. In essence this is what was pro-
posed in Ralaivola and d’Alché Buc (2003) and Bakir,
et al. (2003) in the context of time-series prediction.

The problem with (32) is that once we spell it out
in feature space using $ the matrix A turns into an
operator. However, we have only a finite number of
observations at our disposition. Therefore, we need to
impose further restrictions on the operators for a useful
result.

7.2. Solution by Restriction

We impose the restriction that the image of A be con-
tained in the span of the $(xi ). This means that we can
find an equivalent condition to (32) via

κ(xi , xt+1) := 〈$(xi ), $(xt+1)〉H
= 〈$(xi ), A$(xt )〉H︸ ︷︷ ︸

:= Ãi t

+〈$(xi ), vt 〉H. (33)

For a perfect solution we “only” need to find an operator
A for which

K T+ = Ã, (34)

where T+ ∈ Rm×m−1 is the shift operator, that is,
(T+)i j = δi, j−1. Moreover K is the kernel matrix
κ(xi , x j ). For a large number of kernel matrices K with
full rank, such a solution always exists regardless of the
dynamics, which leads to overfitting problems. Conse-
quently we need to restrict A further.

A computationally attractive option is to restrict the
rank of A further so that

A :=
∑

i, j∈S

αi j$(xi )$(x j )- (35)

for some subset S. We choose the same basis in both
terms to ensure that the image of A and of its adjoint
operator A- lie in the same subspace. We define the
matrix K̃ ∈ Rm×|S| as K̃i j = κ(xi , x j ) (where j ∈ S).
Now we can rewrite (34) in order to obtain the following
equivalent condition:

K T+ = K̃α K̃ T−. (36)

Here T− ∈ Rm×m−1 is the inverse shift operator, that is
(T−)i j = δi j . One option to solve (36) is to use pseudo-

inverses. This yields

α = K̃ †(K T+)(K̃ T−)†. (37)

7.3. Sylvester Equations in Feature Space

Finally, one needs to solve the Sylvester equations, or
QR factorizations of determinants in feature space. We
will only deal with the Sylvester equation below. Using
derivations in Wolf and Shashua (2003) it is easy to
obtain analogous expressions for the latter cases.

We begin with (14). Without loss of generality we
assume that W = I (other cases can be easily incor-
porated into the scalar product directly, hence we omit
them). Moreover we assume that A, A′ have been ex-
panded using the same basis $(x j ) with j ∈ S.

The RHS of (14) has the same expansion as A, hence
we can identify M uniquely by observing the action
of M on the subspace spanned by $(xi ). Using M =∑

i, j∈S ηi j$(xi )$(x j )- and K̄i j := k(xi , x j ) we obtain

$(xi )-M$(x j ) = [K̄ηK̄ ]i j

= e−λ[K̄α- K̄α′ K̄ ]i j (38)

+ e−λ[K̄α- K̄ηK̄α′ K̄ ]i j

Assuming that K̃ has full rank (which is a reasonable
assumption for a set of vectors used to span the image
of an operator), we can eliminate K̄ on both sides of
the equation and we have the following new Sylvester
equation:

η = e−λα- K̄α′ + e−λα- K̄ηK̄α′. (39)

Finally, computing traces over finite rank operators can
be done simply by noting that

tr
∑

i, j

αi j$(xi )$(x j )- = tr
∑

i, j

αi j$(x j )-$(xi )

= tr K̃α. (40)

8. Application to the Analysis of Dynamic Scenes

Applications of kernel methods to computer vision
have so far been largely restricted to methods which
analyze a single image at a time, possibly with some



Binet-Cauchy Kernels on Dynamical Systems 111

post-processing to take advantage of the fact that im-
ages are ordered. Essentially there are two main ap-
proaches (Heisele et al., 2001): kernels which oper-
ate directly on the raw pixel data (Schölkopf, 1997;
Blanz et al., 1996), such as the Haussdorff kernel which
matches similar pixels in a neighborhood (Barla et al.,
2002), and kernels which exploit the statistics of a small
set of features on the image, such as intensity, texture,
and color histograms (Chapelle et al., 1999). However,
when dealing with video sequences, such similarity
measures are highly inadequate as they do not take the
temporal structure of the data into account.

The work of Doretto et al. (2003) and Soatto et
al. (2001) points out a means of comparing dynamic
textures by first approximating them with an ARMA
model, and subsequently computing the subspace an-
gles between the observability subspaces of such mod-
els. In this section, we present experiments showing
that the proposed Binet-Cauchy kernels outperform the
subspace angle based approach when used for compar-
ing dynamic textures. In addition, we show that our ker-
nels can be effectively used for clustering video shots
in dynamic scenes.

8.1. Setup

We restrict our attention to video sequence of dynamic
scenes whose temporal evolution can be modeled as the
output of a linear dynamical model. This assumption
has proven to be very reasonable when applied to a
large number of common phenomena such as smoke,
fire, water flow, foliage, wind etc., as corroborated by
the impressive results of Doretto et al. (2003).

More specifically, let It ∈ Rm for t = 1, . . . , τ be
a sequence of τ images, and assume that at every time
step we measure a noisy version yt = It + wt where
wt ∈ Rm is Gaussian noise distributed as N (0, R). To
model the sequences of observed images as a Gaussian
ARMA model, we will assume that there exists a pos-
itive integer n 5 m, a process xt ∈ Rn and symmetric
positive definite matrices Q ∈ Rn×n and R ∈ Rm×m

such that (9) holds. Without loss of generality, the scal-
ing of the model is fixed by requiring that

C-C = I .

Given a sequence of τ noisy images {yt }, the identi-
fication problem is to estimate A, C , Q and R. Optimal
solutions in the maximum likelihood sense exist, e.g.
the n4sidmethod in systems identification toolbox of

MATLAB, but they are very expensive to compute for
large images. Instead, following Doretto et al. (2003),
we use a sub-optimal closed form solution. The advan-
tage of this approach is twofold: (a) It is computation-
ally efficient and (b) it allows us to compare our results
with previous work.

Set Y := [y1, . . . , yτ ], X := [x1, . . . , xτ ], and
W := [w1, . . . , wτ ], and solve

min ||Y − C X ||F = min ||W ||F ,

where C ∈ Rm×n , C-C = I, and ||·||F is used to denote
the Frobenius norm. The unique solution to the above
problem is given by C = Un and X = +n V-n where
Un+n V-n is the best rank n approximation of Y . Un , +n

and Vn can be estimated in a straightforward manner
from Y = U+V-, the Singular Value Decomposition
(SVD) of Y (Golub and Van Loan, 1996).

In order to estimate A we solve min ||AX − X ′||F

where X ′ = [x2, . . . , xτ ], which again has a closed
form solution using SVD. Now, we can compute vi =
xi − Axi−1 and set

Q = 1
τ − 1

τ∑

i=1

viv
-
i .

The covariance matrix R can also be computed from
the columns of W in a similar manner. For more infor-
mation including details of efficient implementation we
refer the interested reader to Doretto et al. (2003).

8.2. Parameters

The parameters of the ARMA model deserve some
consideration. The initial conditions of a video clip
are given by the vector x0. This vector helps in dis-
tinguishing scenes which have a different stationary
background, but the same dynamical texture in the fore-
ground.7 In this case, if we use identical initial con-
ditions for both systems, the similarity measure will
focus on the dynamical part (the foreground). On the
other hand, if we make use of x0, we will be able to
distinguish between scenes which only differ in their
background.

Another important factor which influences the value
of the kernel is the value of λ. If we want to provide
more weightage to short range interactions due to dif-
ferences in initial conditions it might be desirable to
use a large values of λ since it results in heavy attenu-
ation of contributions as time t increases. On the other



112 Vishwanathan, Smola and Vidal

hand, when we want to identify samples of the same
dynamical system it might be desirable to use small
values of λ.

Finally, A, C determine the dynamics. Note that
there is no requirement that A, A′ share the same di-
mensionality. Indeed, the only condition on the two
systems is that the spaces of observations yt , y′t agree.
This allows us, for instance, to determine the approxi-
mation qualities of systems with various levels of detail
in the parametrization.

8.3. Comparing Video Sequences of Dynamic
Textures

In our experiments we used some sequences from
the MIT temporal texture database. We enhanced this
dataset by capturing video clips of dynamic textures
of natural and artificial objects, such as trees, water
bodies, water flow in kitchen sinks, etc. Each sequence
in this combined database consists of 120 frames. For
compatibility with the MIT temporal texture database
we downsample the images to use a grayscale colormap
(256 levels) with each frame of size 115 × 170. Also,
to study the effect of temporal structure on our kernel,
we number each clip based on the sequence in which
it was framed. In other words, our numbering scheme

Figure 1. Some sample textures from our dataset.

implies that clip i was filmed before clip i +1. This also
ensures that clips from the same scene get labeled with
consecutive numbers. Figure 1 shows some samples
from our dataset.

We used the procedure outlined in Section 8.1 for
estimating the model parameters A, C , Q, and R.
Once the system parameters are estimated we com-
pute distances between models using our trace kernel
(11) as well as the Martin distance (26). We varied the
value of the down-weighting parameter λ and report
results for two values λ = 0.1 and λ = 0.9. The dis-
tance matrix obtained using each of the above meth-
ods is shown in Fig. 2. Darker colors imply smaller
distance value, i.e., two clips are more related ac-
cording to the value of the metric induced by the
kernel.

As mentioned before, clips that are closer to each
other on an axis are closely related, that is, they are
either from similar natural phenomena or are extracted
from the same master clip. Hence a perfect distance
measure will produce a block diagonal matrix with a
high degree of correlation between neighboring clips.
As can be seen from our plots, the kernel using trajecto-
ries assigns a high similarity to clips extracted from the
same master clip, while the Martin distance fails to do
so. Another interesting feature of our approach is that
the value of the kernel seems to be fairly independent



Binet-Cauchy Kernels on Dynamical Systems 113

Figure 2. Distance matrices obtained using the trace kernel (top
two plots) and the Martin kernel (bottom plot). We used a value of
λ = 0.9 for the first plot and a value of λ = 0.1 for the second plot.
The matrix W = 1 was used for both plots. Clips which are closer
to each other on an axis are closely related.

of λ. The reason for this might be because we consider
long range interactions averaged out over infinite time
steps. Two dynamic textures derived from the same
source might exhibit very different short term behav-
ior due to the differences in the initial conditions. But
once these short range interactions are attenuated we
expect the two systems to behave in a more or less
similar fashion. Hence, an approach which uses only
short range interactions might not be able to correctly
identify these clips.

To further test the effectiveness of our method, we in-
troduced some “corrupted” clips (clip numbers 65–80).
These are random clips which clearly cannot be mod-
eled as dynamic textures. For instance, we used shots
of people and objects taken with a very shaky camera.
From Figs. 2 and 3 it is clear that our kernel is able
to pick up such random clips as novel. This is because
our kernel compares the similarity between each frame
during each time step. Hence if two clips are very dis-
similar our kernel can immediately flag this as novel.

8.4. Clustering Short Video Clips

We also apply our kernels to the task of clustering short
video clips. Our aim here is to show that our kernels are
able to capture semantic information contained in scene
dynamics which are difficult to model using traditional
measures of similarity.

In our experiment we randomly sample 480 short
clips (120 frames each) from the movie Kill Bill Vol. 1,
and model each clip as the output of a linear ARMA
model. As before, we use the procedure outlined in
Doretto et al. (2003) for estimating the model param-
eters A, C , Q, and R. The trace kernel described in
Section 4 was applied to the estimated models, and the
metric defined by the kernel was used to compute the k-
nearest neighbors of a clip. Locally Linear Embedding
(LLE) (Roweis and Saul, 2000) was used to cluster,
and embed the clips in two dimensions using the k-
nearest neighbor information obtained above. The two
dimensional embedding obtained by LLE is depicted
in Fig. 4. Observe the linear cluster (with a project-
ing arm) in Fig. 4. This corresponds to clips which are
temporally close to each other and hence have similar
dynamics. For instance, clips in the far right depict a
person rolling in the snow while those in the far left
corner depict a sword fight while clips in the center
involve conversations between two characters. To vi-
sualize this, we randomly select a few data points from



114 Vishwanathan, Smola and Vidal

Figure 3. Typical frames from a few samples are shown. The first column shows four frames of a flushing toilet, while the last two columns
show corrupted sequences that do not correspond to a dynamic texture. The distance matrix shows that our kernel is able to pick out this anomaly.



Binet-Cauchy Kernels on Dynamical Systems 115

0 1 2 3 4

0

1

2

Figure 4. LLE Embeddings of random clips from Kill Bill.

Fig. 4 and depict the first frame of the corresponding
clip in Fig. 5.

A naive comparison of the intensity values or a dot
product of the actual clips would not be able to extract
such semantic information. Even though the camera an-
gle varies with time our kernel is able to successfully
pick out the underlying dynamics of the scene. These
experiments are encouraging and future work will con-
centrate on applying this to video sequence querying.

9. Summary and Outlook

The current paper sets the stage for kernels on dynami-
cal systems as they occur frequently in linear and affine
systems. By using correlations between trajectories we
were able to compare various systems on a behavioral
level rather than a mere functional description. This
allowed us to define similarity measures in a natural
way.

In particular, for a linear first-order ARMA process
we showed that our kernels can be computed in closed
form. Furthermore, we showed that the Martin distance

used for dynamic texture recognition is a kernel. The
main drawback of the Martin kernel is that it does not
take into account the initial conditions and might be
very expensive to compute. Our proposed kernels over-
come these drawbacks and are simple to compute. An-
other advantage of our kernels is that by appropriately
choosing downweighting parameters we can concen-
trate on either short term or long term interactions.

While the larger domain of kernels on dynamical
systems is still untested, special instances of the the-
ory have proven to be useful in areas as varied as
classification with categorical data (Kondor and Laf-
ferty, 2002; Gärtner et al., 2003) and speech pro-
cessing (Cortes et al., 2002). This gives reason to
believe that further useful applications will be found
shortly. For instance, we could use kernels in com-
bination with novelty detection to determine unusual
initial conditions, or likewise, to find unusual dynam-
ics. In addition, we can use the kernels to find a met-
ric between objects such as Hidden Markov Models
(HMMs), e.g. to compare various estimation meth-
ods. Preliminary work in this direction can be found in
Vishwanathan (2002).



116 Vishwanathan, Smola and Vidal

Figure 5. LLE embeddings of a subset of our dataset.

Future work will focus on applications of our ker-
nels to system identification, and computation of closed
form solutions for higher order ARMA processes.

Appendix A. Proof of Theorem 14

We need the following technical lemma in order to
prove Theorem 14.

Lemma 18. Let S, T ∈ Rn×n. Then, for all λ such
that e−λ‖S‖‖T ‖ < 1 and for all W̄ ∈ Rn×n the series

M :=
∞∑

t=0

e−λt St W̄ T t

converges, and M can be computed by solving the
Sylvester equation e−λSMT + W̄ = M.

Proof: To show that M is well defined we use the
triangle inequality, which leads to

‖M‖ =
∥∥∥∥∥

∞∑

t=0

e−λt St W̄ T t

∥∥∥∥∥ ≤
∞∑

t=0

∥∥e−λt St W̄ T t
∥∥

≤ ‖ W̄ ‖
∞∑

t=0

(
e−λ‖S‖‖T ‖

)t

= ‖ W̄ ‖
1− e−λ‖S‖‖T ‖

.

The last equality follows because e−λ‖S‖‖T ‖ < 1.
Next, we decompose the sum in M and write

M =
∞∑

t=0

e−λt St W̄ T t =
∞∑

t=1

e−λt St W̄ T t + W̄

= e−λS

[
∞∑

t=0

e−λt St W̄ T t

]

T + W̄

= e−λSMT + W̄ . !
We are now ready to prove the main theorem.



Binet-Cauchy Kernels on Dynamical Systems 117

Proof: By repeated substitution of (9) we see that

yt = C

[

At x0 +
t−1∑

i=0

Aivt−1−i

]

+ wt .

Hence, in order to compute (10) we need to take ex-
pectations and sums over 9 different terms for every
y-t W y′t . Fortunately, terms involvingvi alone,wi alone,
and the mixed terms involving vi , w j for any i, j , and
the mixed terms involving vi , v j for i := j vanish since
we assumed that all the random variables are zero mean
and independent. Next note that

Ewt

[
w-t Wwt

]
= tr W R,

where R is the covariance matrix of wt , as specified in
(9). Taking sums over t yields

∞∑

t=0

e−λt tr WR = 1
1− e−λ

tr WR. (41)

Next, in order to address the terms depending only on
x0, x ′0 we define

W̄ := C-WC ′,

and write

∞∑

t=0

e−λt (C At x0)-W (C ′A′t x ′0)

= x-0

[
∞∑

t=0

e−λt (At )- W̄ A′t
]

x ′0

= x-0 Mx ′0, (42)

where, by Lemma 18, M is the solution of

M = e−λ A-M A′ + C-WC ′.

The last terms to be considered are those depending on
vi . Recall two facts: First, for i := j the random vari-
ables vi , v j are independent. Second, for all i the ran-
dom variable vi is normally distributed with covariance

Q. Using these facts we have

Evt

[
∞∑

t=0

t−1∑

j=0

e−λt (C A jvt−1− j )-W (C ′A′ jvt−1− j )

]

= tr Q

[
∞∑

t=0

e−λt
t−1∑

j=0

(A j )- W̄ A′ j
]

= tr Q

[
∞∑

j=0

e−λ j

1− e−λ
(A j )- W̄ A′ j

]

(43)

= 1
1− e−λ

tr QM. (44)

Here (43) follows from rearranging the sums, which is
permissible because the series is absolutely convergent
as e−λ‖A‖‖A′‖ < 1. Combining (41), (42), and (44)
yields the result.

Appendix B. Proof of Theorem 17

Proof: We begin by setting

M =
∫ ∞

0
e−λt exp(At)-W exp(A′t) dt.

To show that M is well defined we use the triangle
inequality, the fact that λ > 2,, and ||W || < ∞ to
write

‖M‖ ≤
∫ ∞

0
e−λt‖ exp(At)-W exp(A′t)‖ dt

≤
∫ ∞

0
exp((−λ + 2,)t)‖W‖ dt <∞.

Using integration by parts we can write

M = (A-)−1e−λt (exp(At))-W exp(A′t)
∣∣∞
0

−
∫ ∞

0
(A-)−1e−λt (exp(At))-W

× exp(A′t)(A′ − I λ) dt

= −(A-)−1W − (A-)−1 M(A′ − λ I).

Here we obtained the last line by realizing that the
integrand vanishes for t →∞ (for suitable λ) in order
to make the integral convergent. Multiplication by A-

shows that M satisfies

A-M + M A′ − λM = −W.



118 Vishwanathan, Smola and Vidal

Rearranging terms, and the fact that multiples of the
identity matrix commute with A, A′ proves the first
part of the theorem.

To obtain (18) we simply plug in Dirac’s δ-
distribution into (17), and observe that all terms for
t := τ vanish.

Acknowledgments

We thank Karsten Borgwardt, Stéphane Canu, Laurent
El Ghaoui, Patrick Haffner, Daniela Pucci de Farias,
Frederik Schaffalitzky, Nic Schraudolph, and Bob
Williamson for useful discussions. We also thank
Gianfranco Doretto for providing code for the es-
timation of linear models, and the anonymous ref-
erees for providing constructive feedback. National
ICT Australia is supported by the Australian Govern-
ment’s Program Backing Australia’s Ability. SVNV
and AJS were partly supported by the IST Pro-
gramme of the European Community, under the Pas-
cal Network of Excellence, IST-2002-506778. RV
was supported by a by Hopkins WSE startup funds,
and by grants NSF-CAREER ISS-0447739 and ONR
N000140510836.

Notes

1. For instance, the model parameters of a linear dynamical model
are determined only up to a change of basis, hence the space of
models has the structure of a Stiefel manifold.

2. If further generality is required A(·, t) can be assumed to be non-
linear, albeit at the cost of significant technical difficulties.

3. Note that we made no specific requirements on the parameteriza-
tion of A, A′. For instance, for certain ARMA models the space of
parameters has the structure of a manifold. The joint probability
distribution, by its definition, has to take such facts into account.
Often the averaging simply takes additive noise of the dynamical
system into account.

4. As shown in De Cock and De Moor (2002), the squared
cosines of the principal angles between the column spaces
of O and O′ can be computed as the n eigenvalues of
(O-O)−1O-O′(O′-O′)−1O′-O. From the QR decomposi-
tion Q-Q = Q′-Q′ = I, hence

∏n
i=1 cos2(θi ) =

det(O-O′)2/(det(O-O) det(O-O)).
5. Recall that the square of a kernel is a kernel thanks to the product

property.
6. For ease of exposition we will ignore labels on edges. If desired,

they can be incorporated into our discussion in a straightforward
manner.

7. For example, consider sequence with a tree in the foreground
with lawn in the background versus a sequence with a tree in the
foreground and a building in the background.

References

Aggarwal, G., Roy-Chowdhury,A., and Chellappa, R. 2004. A sys-
tem identification approach for video-based face recognition. In
Proc. Intl. Conf. Pattern Recognition, Cambridge, UK.

Aitken, A.C. 1946. Determinants and Matrices, 4th edition. Inter-
science Publishers.

Bach, F.R. and Jordan, M.I. 2002. Kernel independent compo-
nent analysis. Journal of Machine Learning Research, 3:1–
48.

Bakir, G., Weston, J., and Schölkopf, B. 2003. Learning to find pre-
images. In Advances in Neural Information Processing Systems
16. MIT Press.

Barla, A., Odone, F., and Verri, A. 2002. Hausdorff kernel for 3D
object acquisition and detection. In European Conference on Com-
puter Vision ’02, number 2353 in LNCS, pp. 20. Springer.

Baxter, J. and Bartlett, P.L. 1999. Direct gradient-based reinforce-
ment learning: Gradient estimation algorithms. Technical report,
Research School of Information, ANU Canberra.

Bernstein D.S. 2005. Matrix Mathematics. Princeton University
Press.

Blanz, V., Schölkopf, B., Bülthoff H., Burges, C., Vapnik, V., and
Vetter, T. 1996. Comparison of view-based object recognition al-
gorithms using realistic 3D models. In C. von der Malsburg, W. von
Seelen, J.C. Vorbrüggen, and B. Sendhoff (eds.), Artificial Neu-
ral Networks ICANN’96, vol. 1112 of Lecture Notes in Computer
Science, pp. 251–256. Berlin: Springer-Verlag.

Burges, C.J.C. and Vapnik, V. 1995. A new method for constructing
artificial neural networks. Interim technical report, ONR contract
N00014-94-c-0186, AT&T Bell Laboratories.

Burkhardt, H. 2004. Invariants on skeletons and polyhedrals. Tech-
nical report, Universität Freiburg, in preparation.

Chang, C.C. and Lin, C.J. 2001. LIBSVM: a library for sup-
port vector machines, 2001. Software available at http://www.
csie.ntu.edu.tw/ cjlin/libsvm.

Chapelle, O., Haffner, P., and Vapnik, V. 1999. SVMs for histogram-
based image classification. IEEE Transactions on Neural Net-
works, 10(5).

De Cock, K. and De Moor, B. 2002. Subspace angles between ARMA
models. Systems and Control Letter, 46:265–270.

Cortes, C., Haffner, P., and Mohri, M. 2002. Rational kernels. In
Advances in Neural Information Processing Systems 15, vols. 14.
Cambridge, MA: MIT Press.

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support
Vector Machines. Cambridge University Press, Cambridge, UK.

de Finetti, B. 1990. Theory of probability, vol. 1–2. John Wiley and
Sons, 1990. reprint of the 1975 translation.

Doretto, G., Chiuso, A., Wu, Y.N., and Soatto, S. 2003. Dynamic
textures. International Journal of Computer Vision, 51(2):91–109.

Gardiner, J.D., Laub, A.L., Amato, J.J., and Moler, C.B. 1992.
Solution of the Sylvester matrix equation AX B- + C X D- =
E . ACM Transactions on Mathematical Software, 18(2):223–
231.

Gärtner, T., Flach, P.A., and Wrobel, S. 2003. On graph kernels:
Hardness results and efficient alternatives. In B. Schölkopf and
M.K. Warmuth, (eds.) Sixteenth Annual Conference on Compu-
tational Learning Theory and Seventh Kernel Workshop, COLT.
Springer.

Golub, G.H. and Van Loan, C.F. 1996. Matrix Computations, 3rd
edition. Baltimore, MD: John Hopkins University Press.



Binet-Cauchy Kernels on Dynamical Systems 119

Gretton, A., Herbrich, R., and Smola, A.J. 2003. The kernel mutual
information. In Proceedings of ICASSP.

Gröbner, W. 1965. Matrizenrechnung. BI Hochschultaschenbücher.
Heisele, B., Ho, P., and Poggio, T. 2001. Face recognition with sup-

port vector machines: Global versus component-based approach.
In Proceedings of the Eighth International Conference On Com-
puter Vision (ICCV-01), pp. 688–694. Los Alamitos, CA: IEEE
Computer Society.

Herbrich, R. 2002. Learning Kernel Classifiers: Theory and Algo-
rithms. MIT Press.

Isidori, A. 1989. Nonlinear Control Systems. 2nd edition. Springer.
Joachims, T. 1998. Text categorization with support vector machines:

Learning with many relevant features. In Proceedings of the Eu-
ropean Conference on Machine Learning, pp. 137–142. Berlin:
Springer.

Kashima, H., Tsuda, K., and Inokuchi, A. 2003. Marginalized ker-
nels between labeled graphs. In Proceedings of the 20th Inter-
national Conference on Machine Learning (ICML), Washington,
DC, United States.

Kashima, H., Tsuda, K., and Inokuchi, A. 2004. Kernels on graphs.
In K. Tsuda, B. Schölkopf, and J.P. Vert (Eds.), Kernels and Bioin-
formatics, Cambridge, MA: MIT Press.

Kondor, I.R. and Lafferty, J.D. 2002. Diffusion kernels on graphs
and other discrete structures. In Proceedings of the ICML.

Luenberger, D.G. 1979. Introduction to Dynamic Systems: Theory,
Models, and Applications. New York, USA:John Wiley and Sons,
Inc., ISBN 0–471 - 02594 - 1.

Martin, R.J. 2000. A metric for ARMA processes. IEEE Transactions
on Signal Processing, 48(4):1164–1170.

Nocedal, J. and Wright, S.J. 1999. Numerical Optimization. Springer
Series in Operations Research. Springer.

Pinkus, A. 1996. Spectral properties of totally positive kernels and
matrices. In M. Gasca and C.A. Miccheli (eds.), Total Positivity
and its Applications, vol. 359 of Mathematics and its Applications,
pp. 1–35. Kluwer.

Platt, J. 1999. Fast training of support vector machines using sequen-
tial minimal optimization. In B. Schölkopf, C.J.C. Burges, and
A.J. Smola (eds.), Advances in Kernel Methods—Support Vector
Learning, pp. 185–208, Cambridge, MA: MIT Press.

Ralaivola, L. and d’Alché Buc, F. 2003. Dynamical modeling with
kernels for nonlinear time series prediction. In Se. Thrun, La.
Saul, and Be. Schölkopf, (eds.) Advances in Neural Information
Processing Systems 16. MIT Press.

Roweis, S. and Saul, L.K. 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290:2323–2326.

Saisan, P., Doretto, G., Wu, Y.N., and Soatto, S. 2001. Dynamic
texture recognition. In Proceedings of CVPR, vol. 2, pp. 58–63.

Schölkopf, B. 1997. Support Vector Learning. R. Oldenbourg Verlag,
Munich, Download: http://www.kernel-machines.org.

Schölkopf, B. and Smola, A. 2002. Learning with Kernels. Cam-
bridge, MA: MIT Press.

Shashua, A., and Hazan, T. 2005. Algebraic set kernels with applica-
tions to inference over local image representations. In L.K. Saul, Y.
Weiss, and L. Bottou (eds.), Advances in Neural Information Pro-
cessing Systems 17, pp. 1257–1264, Cambridge, MA: MIT Press.

Shi, J. and Malik, J. 1997. Normalized cuts and image segmentation.
IEEE Conf. Computer Vision and Pattern Recognition.

Smola, A.J. and Kondor, I.R. 2003. Kernels and regularization
on graphs. In B. Schölkopf and M.K. Warmuth (eds.), Pro-
ceedings of the Annual Conference on Computational Learn-
ing Theory, Lecture Notes in Computer Science, pp. 144–158.
Springer.

Smola, A.J. and Vishwanathan, S.V.N. 2003. Hilbert space embed-
dings in dynamical systems. In Proceedings of the 13th IFAC sym-
posium on system identification. Rotterdam, Netherlands.

Soatto, S. Doretto, G., and Wu: Y.N. 2001. Dynamic textures. In Pro-
ceedings of the Eighth International Conference On Computer Vi-
sion (ICCV-01), pp. 439–446. Los Alamitos, CA: IEEE Computer
Society.

Sutton, R.S. and Barto, A.G. 1998. Reinforcement Learning: An In-
troduction. MIT Press.

Vapnik, V. 1995. The Nature of Statistical Learning Theory. New
York: Springer .

Vapnik, V. 1998. Statistical Learning Theory. New York: John Wiley
and Sons.

Vidal, R., Ma, Y., and Sastry, S. 2005. Generalized Principal Com-
ponent Analysis (GPCA). IEEE Transactions on Pattern Analysis
and Machine Intelligence, In press.

Vishwanathan, S.V.N. 2002. Kernel Methods: Fast Algorithms and
Real Life Applications. PhD thesis, Indian Institute of Science,
Bangalore, India.

Vishwanathan, S.V.N., Borgwardt, K., and Schraudolph, Nicol N.
2006. Faster graph kernels. In International Conference on Ma-
chine Learning, submitted.

Vishwanathan, S.V.N., Smola, A.J., and Murty, M.N. 2003. Sim-
pleSVM. In T. Fawcett and N. Mishra (eds.), Proceedings of
the 20th International Conference on Machine Learning (ICML),
Washington DC, AAAI press.

Willems, J.C. 1986b. From time series to linear system. I. Finite-
dimensional linear time invariant systems. Automatica J. IFAC,
22(5):561–580.

Willems, J.C. 1986a. From time series to linear system. II. Exact
modelling. Automatica J. IFAC, 22(6):675–694.

Willems, J.C. 1987. From time series to linear system. III. Approxi-
mate modelling. Automatica J. IFAC, 23(1):87– 115.

Wolf, L. and Shashua, A. 2003. Learning over sets using kernel
principal angles. Jounal of Machine Learning Research, 4:913–
931.


