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Abstract. We present a novel approach for the estimation of 3D-motion directly from two images using the Radon
transform. The feasibility of any camera motion is computed by integrating over all feature pairs that satisfy the epipolar
constraint. This integration is equivalent to taking the inner product of a similarity function on feature pairs with a
Dirac function embedding the epipolar constraint. The maxima in this five dimensional motion space will correspond
to compatible rigid motions. The main novelty is in the realization that the Radon transform is a filtering operator: If
we assume that the similarity and Dirac functions are defined on spheres and the epipolar constraint is a group action
of rotations on spheres, then the Radon transform is a correlation integral. We propose a new algorithm to compute this
integral from the spherical Fourier transform of the similarity and Dirac functions. Generating the similarity function
now becomes a preprocessing step which reduces the complexity of the Radon computation by a factor equal to the
number of feature pairs processed. The strength of the algorithm is in avoiding a commitment to correspondences, thus
being robust to erroneous feature detection, outliers, and multiple motions.
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1. Introduction

Estimation of 3D-motion from two calibrated views
has been exhaustively studied in the case where opti-
cal flow or feature correspondences are given and the
scene is rigid. Algorithms working over multiple frames
yield high-quality motion trajectories and reconstruc-
tions when feature matches are cleaned through outlier
rejection and motions independent of the camera are
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excluded. These outlier rejection and segmentation steps
are subject to the fundamental coupling of data associa-
tion and estimation: if we knew the motion estimate, data
association would be trivial; if we knew the data associ-
ation, motion estimation would be easier. Resistance to
outliers and independent motions pose severe practical
limitations to the wide application of structure from mo-
tion as a navigation tool, visual GPS, or a camera tracker.

In this paper, we propose a novel approach for struc-
ture from motion applicable in the presence of large
motions and many irrelevant features resulting from re-
duced overlap of the fields of view. Our approach is
based on the naive principle that an exhaustive search
over all possible correspondence configurations for all
motion hypotheses would yield all 3D-motions compat-
ible with these two views. Such a search is intractable
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when we use a large field of view in an arbitrary, possibly
unstructured environment with thousands of features.

The contribution of this paper is in the re-formulation
of this Hough-reminiscent approach as a filtering prob-
lem: Assuming a similarity function between any two
features in the first and second view, we convolve this
function with a kernel that checks the compatibility
of a correspondence pair with the epipolar constraint
for a given motion hypothesis. The resulting integral
is a Radon transform known from computer tomog-
raphy where a material density is integrated over a
ray path. In our case, this path is the subset of the
cross product of all features that satisfies the epipolar
constraint.

The question is: can we efficiently compute this inte-
gral avoiding the combinatorially infeasible summation
over all correspondences compatible with the epipolar
constraint? The answer is yes, because this is a convo-
lution integral and we can compute it through multipli-
cation in the Fourier domain. The final motion space is
obtained through a five dimensional inverse rotational
Fourier transform on the motion parameters. An ex-
haustive search finds the maxima corresponding to rigid
motions. The number of spherical Fourier coefficients
preserved determines the resolution of the motion space.
Obviously, the approach can work on arbitrarily large
motions.

We present a complete end-to-end system, from im-
ages to motion parameters where the only tuning pa-
rameter is the coupled resolution of the image and the
motion space. We extract SIFT features (Lowe, 2004) for
which we define their similarity function proportional
to the Euclidean norm of the attribute vectors and we
compute the spherical harmonics of the similarity func-
tion as the input to the correlation integral. In the exper-
iments, we use as input hemispherical omnidirectional
images. A projective plane can always be mapped to the
sphere and the field of view has to be large for any struc-
ture from motion algorithm to succeed (Daniilidis and
Spetsakis, 1996; Oliensis, 2000). The results on real se-
quences are compared to a robust estimation of the es-
sential matrix using RANSAC. Before continuing with
the related work we summarize the main contributions
of this paper:

• We propose a new integral transform that maps a sim-
ilarity function between two calibrated images to the
strength of a motion hypothesis without assuming any
correspondences.

• We show that this Radon/Hough transform can be
written as a convolution/correlation integral which can
be computed from the spherical harmonic coefficients
of the image similarity function much faster than com-
puting directly the Hough transform.

The inspiring idea of this work has first been drafted in
Geyer et al. (2004) where a Hough transform is com-
puted on the essential manifold. A short version of the
current paper has appeared in Makadia et al. (2005). In
this paper, we will present a complete theoretical and
experimental treatment of our approach. In the next sub-
section we will discuss related approaches. Then we will
motivate the Radon transform by explaining how the
well-known Hough line detection can be written as a
Radon integral (Deans, 1981). In Section 2 we elabo-
rate on the spherical and rotational Fourier transforms.
We extend this to incorporate the epipolar geometry and
we show how to compute the Radon transform in the fre-
quency domain. We describe the algorithm in a form that
can be easily replicated and we finish with experiments.

1.1. Related Work

Structure from motion without correspondences has a
history since the 80’s. Most of the approaches, called di-
rect motion computation, assumed a temporally dense
sequence so that computation of spatio-temporal deriva-
tives is feasible. When assuming the projection of a
plane (Negahdaripour and Horn, 1987; Szeliski and
Kang, 1995), the eight optical flow parameters can be
estimated directly from the brightness change constraint
equation. When no assumption about structure is made,
several computation schemes have been proposed (Horn
and Weldon, 1988). The main constraint used is depth-
positiveness and usually a variational problem is solved
where depth is the unknown function over the image. Di-
rect approaches based on normal optical flow or even just
its direction have been thoroughly studied by Fermuller
and Aloimonos (1995) who also established formal con-
ditions for ambiguity and instability of solutions. Jin
et al. (2003) have applied a direct method for simultane-
ous matching of regions and 3D-motion estimation over
time by exploiting photometric constraints.

Among the approaches which do not use spatio-
temporal derivatives and thus can afford any amount
of motion, the closest to ours are the ones by Dellaert
et al. (2000), Antone and Teller (2002), and Roy and
Cox (1996). In Dellaert et al. (2000), all possible as-
signments of 3D-points to image features are considered
and the correct correspondence is established through
an iterative expectation-maximization scheme where the
E-step computes assignment weights and the M-step
structure and motion parameters. In Antone and Teller
(2002), images are already de-rotated using vanishing
point correspondences and the translation is initialized
via a Hough transform over all possible feature corre-
spondences. Antone and Teller are the only ones who
use the epipolar constraint and address the complexity
of such a Hough transform. They propose ways to prune
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the search space through feature similarity as well as
limits in the parameter space. In Roy and Cox (1996),
an exhaustive search in the 5D parameter space is per-
formed where for each motion hypothesis a cost func-
tion between points in the first image and segments of
the corresponding epipolar line in the second image is
computed. Our approach is also related to the learning of
the epipolar geometry (Wexler et al., 2003) though ours
is not data-driven but requires a calibrated camera. Our
approach is superior to Dellaert et al. (2000) and Antone
and Teller (2002) because it is not based on an iterative
process which can possibly run through all assignments.
While we use an exhaustive search in parameter space,
the computation of the associated “likelihood” is accom-
plished without iteration but directly from the spherical
harmonic coefficients. Our approach is superior to Roy
and Cox only in the efficient computation of each motion
hypothesis. We have not described here work on motion
segmentation given correspondences. The reader is re-
ferred to the application of normalizepd cuts (Shi and
Malik, 1998) and the generalized PCA (Vidal and Ma,
2004) among tens of other papers on the subject. Re-
garding other applications of spherical harmonic analy-
sis in computer vision, readers are referred to Basri and
Jacobs (2003), Mahajan et al. (2006), and Schröder and
Sweldens (1995).

2. Radon Transform

The first steps of state-of-the-art motion estimation algo-
rithms invariably involve generating and matching fea-
tures between image pairs. The assumption is that a suf-
ficient number of these hypothesized pairs will reflect
true correspondences. Any subsequent processing, such
as a RANSAC motion estimation, will then terminate
quickly and correctly. The problem arises when this re-
quirement cannot be satisfied. When dealing with image
pairs with small overlap, or a particularly noisy scene
for feature detection, the true correspondences within a
group of matched features may be very small. Our de-
sire to process images with small overlap and to resist
outliers leads us to revisit classical robust accumulation
algorithms like the Hough transform. In lieu of filtering
sets of image features in search of the best matches, we
will treat all possible feature pairs between two images.
The only discriminating measure we will consider is a
similarity between features. Our signal is not an image
of greyscale intensities, but rather a function which maps
feature pairs to their similarities. We will accomplish our
robust accumulation via a filtering which, for any camera
motion, collects and counts all the feature pairs which
satisfy a geometrical motion constraint. The counting
will be weighted by the feature similarities (see Fig. 1).
The filtering result provides the score for a particular

Figure 1. Concept: Instead of searching for corresponding points be-

tween images, we consider all feature pairs. The motion which is sat-

isfied by the largest subset of feature pairs (weighted by a similarity

measure) is considered to be the true camera motion. In the example

above a weighting could be generated from the similarity between lo-

cal blob structure.

motion, and in this way we can evaluate all the possible
camera motions. Before presenting the concrete specifi-
cation of our formulation, we introduce necessary nota-
tion and definitions which we will use throughout this
section.

Consider a camera moving rigidly in space. Assum-
ing the intrinsic calibration parameters of the camera
are known (meaning we can associate with each im-
age pixel a ray in space), we can assume that the cam-
era model is spherical perspective. This is useful since
many single-viewpoint camera systems ranging from
traditional CCD cameras to fish-eye lenses and even om-
nidirectional cameras can be treated with a spherical pro-
jection model. In this setting, points P ∈ R3 in the world
project to points on the unit sphere: p ∈ S2, where p =
P/||P||. We will identify rigid camera motions with el-
ements of the Euclidean motion group SE(3), with one
notable irregularity. Since camera translations can only
be recovered up to scale, we fix the scale of the transla-
tional motion component to have unit length. Although
the set of all possible camera movements can be iden-
tified with SE(3), we can represent any full observable
camera motion with a pair (R, T ) ∈ {R ∈ SO(3), T ∈
R3, ‖T ‖ = 1}. We will parameterize SO(3) with ZYZ
Euler angles such that R(α, β, γ ) = Rz(γ )Ry(β)Rz(α).
The projection geometry in stereo pairs has been exten-
sively studied, and it is well known that if points p and
q represent projections of the same scene point in cam-
eras separated by a motion (R, T ), they must obey the
coplanarity (epipolar) constraint:

(Rp × q)T T = 0 (1)

We are now prepared to concretely develop our accu-
mulation. As we mentioned earlier, we will not be treat-
ing an image of intensities for our robust accumulation,
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but rather a function on feature pairs. We declare g(p, q)
to measure the similarity between points pairs in two im-
ages. Assuming an image has n pixels, the number of
possible point pairs considered would be n2, of which
clearly no more than n pairs can represent true corre-
spondences. With such a miniscule percentage of inlying
point pairs, it is essential that we construct a sufficiently
discriminating weighting function g(p, q). In our setting
it is clear a simple image-based neighborhood similarity
will not suffice. Instead of using intensity information
directly, we have chosen to use the popular SIFT fea-
tures (Lowe, 2004), which histogram neighborhood gra-
dient orientations. These histograms typically make up a
128-dimensional vector (which we will denote with p̃),
which affords us many options in selecting a similarity
function. For example, our weighting could depend in-
versely on the Euclidean distance between two feature
vectors:

g(p, q) = e−|| p̃−q̃|| (2)

Alternatively, we could choose a step function:

g(p, q) =
{

1 if ‖ p̃ − q̃‖ ≤ Threshold

0 otherwise
(3)

Notice the value of g(p, q) is only defined for the point
pairs where we have detected features. We set g(p, q) =
0 whenever features were not detected at both p and q .

To perform our robust accumulation, we need a way
to filter and collect all the feature pairs (p, q) from the
similarity function g which satisfy the epipolar geometry
given by a particular motion. To this end, we introduce
the Epipolar Delta Filter (EDF). The EDF has the effect
of counting all the feature pairs (p, q) which satisfy the
motion constraint (weighted by their feature similarities
g(p, q)), through an inner product with g. As the EDF
captures the geometry of the epipolar constraint, it must
encode the possible locations of an image point p after
a camera motion. We choose the most straightforward
definition constructed from the epipolar constraint:

�(R,T )(p, q) = δ((Rp × q)T T ) (4)

Here δ(x) is a unit impulse:

δ(x) =
{

1 if x = 0

0 otherwise

We can now write our robust accumulation as a filtering
of a similarity function g with the EDF:

G(R, T ) =
∫

p∈S2

∫
q∈S2

g(p, q)�(R,T )(p, q)dpdq (5)

Effectively, G(R, T ) is a global likelihood function as
the relative likelihoods of all possible motions are com-
puted. The correct camera motion is expected to coincide
with the global peak in this grid. To generate our likeli-
hoods, we must compute the integral (Eq. (5)) as many
times as the number of samples we are considering in
our discrete motion space.

If N is the number of samples in each dimension of
the motion space, and M the number of features iden-
tified in each image, then the complexity of this direct
approach would be on the order of O(N 5 M2). This is
an unacceptable load for almost any practical applica-
tion. In the following sections we will demonstrate an
efficient algorithm to generate the values of G(R, T ).

3. Motion Estimation as Correlation

In choosing to develop our global likelihood grid as a
spherical filtering process, it is naturally revealed that
the similarity function g is independent of the motion
parameters and the EDF is independent of any feature
information. For now, we will focus our attention on the
EDF �(R,T ). As the direction of camera translation is the
unit vector T ∈ S2, we can represent T with a rotation
Rt ∈ SO(3): T = Rt e3. Here e3 is the standard Euclidean
basis vector associated with the Z axis. This allows us to
parameterize the space of camera motions with a rotation
pair (R, Rt ) ∈ SO(3) × SO(3). The EDF can now be
redefined as

�(R,Rt )(p, q) = δ
(
(Rp × q)T Rt e3

)
= δ

((
R−1

t Rp × R−1
t q

)T
e3

)
(6)

If we write Rc = R−1 Rt for the composite rotation em-
bedding the rotational and translational terms, we see
that the EDF simplifies to

�(Rc,Rt )(p, q) = δ
((

R−1
c p × R−1

t q
)T

e3

)
(7)

Defining the rotation operator �R1,R2
(�R1,R2

f (p, q) =
f (R−1

1 p, R−1
2 q)), the EDF can be seen as just a spherical

rotation of the EDF given by (Rc, Rt ) = (I, I ):

�(Rc,Rt )(p, q) = δ
((

R−1
c p × R−1

t q
)T

e3

)
= �(I,I )

(
R−1

c p, R−1
t q

)
= �(Rc,Rt )�(I,I )(p, q) (8)

We call �(I,I ) the canonical EDF for our parameteriza-
tion. To simplify notation, we will write �(p, q) in place
of �(I,I )(p, q). Notice that the canonical EDF �(p, q)
captures a translation along the Z axis and a rotation
of either 0◦ or 180◦ about the Z axis. With the evolu-
tion of the EDF into Eq. (8), we can revisit our original
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Figure 2. Here we show a 4D plot of the EDF �(θ1, φ1, θ2, φ2) in a 2D grid. Each plot on the sphere is a plot over (θ2, φ2) and different positions

in the grid of spherical plots correspond to different choices of (θ1, φ1). The arrows (red in color) show the direction of (θ1, φ1). For the canonical

EDF, corresponding to pure translation of the camera along the Z -axis, �(θ1, φ1, θ2, φ2) is peaked when the corresponding points are along the same

longitude, i.e. when θ1 = θ2. Thus each arrow goes through a peak of �.

formulation of the global likelihood grid (Eq. (4)):

G(Rc, Rt ) =
∫

p

∫
q

g(p, q)�(Rc,Rt )�(p, q)dpdq (9)

This shows us that our likelihoods can be computed as a
correlation between spherical functions. Figure 2 depicts
the canonical EDF �(p, q). In the next section we will
explore the theory of generalized Fourier analysis to help
alleviate some of the computational burden in evaluating
our likelihood function.

4. Harmonic Analysis

The spherical correlation we are considering recalls the
classical signal correlations on the real line or plane. Ap-
plications of such methods include standard techniques
in pattern matching. In such problems the search is for a
planar shift (translational and/or rotational) which aligns
a template pattern with a query image, where the loca-
tion of highest correlation marks the correct alignment.
These methods exploit the fact that correlations on the
plane can be expressed as convolutions, and the well-
known convolution theorem allows temporal convolu-
tions to be replaced with pointwise multiplication in the
spectral domain. Unfortunately, this property does not
extend simply to the sphere, as convolutions and corre-
lations on the sphere have different interpretations. Since
it is not immediately clear what the relationship between
the two formulations are, we will give a brief explana-
tion. For background material, readers should consult
(Helgason, 2000; Maslen and Rockmore, 1995; Sugiura,
1990).

A general definition of convolution can be given as

( f 
 h)(x) =
∫

g∈G
f (g)h(g−1x)dg

Here f (x) and h(x) are defined on some group G, and
g, x ∈ G. If we take the real plane R2 to be a group
with the action of translations, the convolution can be
specifically written as

( f 
 h)(x1, x2)

=
∫

g1

∫
g2

f (g1, g2)h(x1 − g1, x2 − g2)dg1dg2

This equation is the traditional form of planar convo-
lution. Unfortunately, although the sphere is a mani-
fold, it is not a group. We must find an alternate defi-
nition for the convolution of functions on the sphere. It
is well known that the sphere is a homogeneous space of
the group of 3D rotations SO(3), with the isotropy sub-
group of one dimensional rotations SO(2) which keeps
the north pole fixed (Gallier, 2005). A general definition
of convolutions on homogeneous spaces can be given as

( f 
 h)(x) =
∫

g∈G
f (gη)h(g−1x)dg

Here f (x) and h(x) are defined on some homogeneous
space of a group G, and η is given as the fixed point of
the isotropy subgroup. The convolution of two functions
on the sphere is given as

( f 
 h)(x) =
∫

g∈SO(3)

f (ge3)h(g−1x)dg x ∈ S2
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Looking closely at this definition reveals that spherical
convolution betrays the traditional concept of “measur-
ing overlap” which is implied by planar convolution.
Here, points in one sphere ( f (x)) are integrated through
entire circles on the second sphere (h(x)). The resulting
function ( f 
 h)(x) is also defined on the sphere, hence
spherical convolution reflects the properties of a filtering
operator. To achieve the effect of a template matching
operation, we must proceed to the general definition of
correlation on homogeneous spaces:

c(g) =
∫

x
f (x)h(g−1x)dx

As before f, h are defined on a homogeneous space of a
group G, and g ∈ G (alternatively, if we were interested
in correlation on groups, we could just specify f, h to
be functions on G). Identifying S2 as the homogeneous
space of SO(3) leads us to this definition of spherical
correlation:

c(g) =
∫

x∈S2

f (x)h(g−1x)dx

Here points on the sphere are given as unit vectors, and
elements of the rotation group are given with the usual
3 × 3 rotation matrices. Notice that the resulting func-
tion c(g) is defined not on the sphere but the group of
rotations. This gives us the desired effect of measuring
overlap. We rewrite this definition of spherical correla-
tion using the notation developed earlier:

G(R) =
∫

f (η)�Rh(η)dη, f, h ∈ L2(S2),

G(R) ∈ L2(SO(3)) (10)

Here L2(S2) denotes square-integrability, meaning the
set of functions f such that

∫ | f (η)|2dη is finite. If we
wish to generalize the convolution theorem to correla-
tion on the sphere, we must be able to answer three
questions: (1) How can we compute the Fourier trans-
form of f, h ∈ L2(S2) and G ∈ L2(SO(3))? (2)
How does the spectrum of h change under a rotation
�Rh? (3) How can we compute the Fourier transform
of G(R) efficiently using the answers to questions 1
and 2? To answer these questions we will present a
minimal introduction to spherical and rotational signal
processing.

4.1. Fourier Transforms on S2 and SO(3)

This treatment of spherical harmonics is based on
Arfken and Weber (1966) and Driscoll and Healy
(1994). In traditional Fourier analysis, periodic functions
on the line (or equivalently functions on the circle S1),

are expanded in a basis spanned by the eigenfunctions of
the Laplacian. Similarly, the eigenfunctions of the spher-
ical Laplacian provide a basis for f (η) ∈ L2(S2). These
eigenfunctions are the well known spherical harmonics
(Y l

m : S2 �→ C), which form an eigenspace of har-
monic homogeneous polynomials of dimension 2l + 1.
Consequently, the 2l + 1 spherical harmonics for each
l ≥ 0 form an orthonormal basis for any f (η) ∈ S2. The
(2l + 1) spherical harmonics of degree l are given as

Y l
m(θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π (l + m)!
Pl

m(cos θ )eimφ,

m = −l, . . . , l (11)

where Pl
m are the associated Legendre functions and the

normalization factor is chosen to satisfy the orthogonal-
ity relation∫

η∈S2

Y l
m(η)Y l ′

m ′ (η)dη = δmm ′δll ′ , (12)

where δab is the Kronecker delta function. Any function
f (η) ∈ L2(S2) can be expanded in a basis of spherical
harmonics:

f (η) =
∑
l∈N

l∑
m=−l

f̂ l
mY l

m(η) (13)

where f̂ l
m =

∫
η∈S2

f (η)Y l
m(η)dη (14)

The f̂ l
m are the coefficients of the Spherical Fourier

Transform (SFT). Henceforth, we will use f̂ l and Y l to
annotate vectors in C2l+1 containing all coefficients or
harmonics of degree l.

Using a similar approach as seen above, we can de-
velop a Fourier transform on the rotation group SO(3)
(Chirikjian and Kyatkin, 2000). When considering func-
tions f ∈ L2(SO(3)), the Fourier transform can be de-
scribed as a change of basis from the group elements
to the basis of irreducible matrix representations. The
spherical harmonic functions Y l

m form a complete, or-
thonormal set providing a basis for the representations
of SO(3). Furthermore, Schur’s First Lemma from fun-
damental representation theory shows that they also sup-
ply a basis for the irreducible representations of SO(3):

�RY l(η) = Ul(R)Y l(η). (15)

The matrix elements of Ul are given by

Ul
mn(R(α, β, γ )) = e−imγ Pl

mn(cos(β))e−inα

m, n = −l, . . . , l. (16)
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The Pl
mn are generalized associated Legendre polynomi-

als which can be calculated efficiently using recurrence
relations. Such an Euler angle parameterization of the
irreducible representations of SO(3) leads to a useful ex-
pansion of functions f ∈ L2(SO(3)):

f (R) =
∑
l∈N

l∑
m=−l

l∑
p=−l

f̂ l
mpUl

mp(R) (17)

where f̂ l
mp =

∫
R∈SO(3)

f (R)Ul
mp(R)d R (18)

The f̂ l
mp, with m, p = −l, . . . , l are the (2l+1)×(2l+1)

coefficients of degree l of the SO(3) Fourier transform
(SOFT).

Now that we have answered our first question, we can
try to understand how the spectrum of a function changes
under a rotation. Intuitively, we would expect a rotation
to manifest itself as a modulation of the Fourier coeffi-
cients as is the case in traditional Fourier analysis. This
is, in fact, the observed effect. As spherical functions
are rotated by elements of the rotation group SO(3), the
Fourier coefficients are “modulated” by the irreducible
representations of SO(3):

f (η) �→ �R f (η) ⇐⇒ f̂ l �→ Ul(R)T f̂ l (19)

The Ul matrix representations of SO(3) are the spectral
analogue to 3D rotations.

4.2. Rotation Estimation as Correlation

We are now prepared to address the final question re-
garding a generalized theorem for spherical correla-
tion. Examining Eq. (10) more closely, we have devel-
oped the necessary tools to treat both f (η) and �Rh(η)
with their respective Spherical Fourier expansions. Re-
cently, (Kostelec and Rockmore, 2003; Makadia et al.,
2004) have explored the computation of such a corre-
lation in the spectral domain. Expanding the integral∫

f (η)�Rh(η)dη we have

G(R) =
∑

l

l∑
m=−l

∑
n

n∑
p=−n

n∑
k=−n

f̂ l
m ĥn

pU n
pk(R)

×
∫

η∈S2

Y n
k (η)Y l

m(η)dη.

Given the orthogonality of the spherical harmonic func-
tions (Eq. (12)), the only nonzero terms in the summa-
tion appear when n = l and k = m, thus

G(R) =
∑

l

l∑
m=−l

l∑
p=−l

f̂ l
m ĥl

pUl
pm(R). (20)

At this point, a direct application of the SOFT for G(R)
produces

Ĝn
qr =

∑
l

l∑
m=−l

l∑
p=−l

f̂ l
m ĥl

p

∫
R∈SO(3)

Ul
pm(R)U n

qr (R)dR

The orthogonality of the matrices Ul(R) (
∫

Ul
mp(R)

U n
qr (R)dR = δlnδmqδpr ) yields nonzero terms in the sum-

mation only when l = n, m = q , and p = r , resulting in
this simpler expression:

Ĝl
mp = f̂ l

m ĥl
p (21)

As we had initially desired, the result of the convolution
theorem can indeed be generalized to correlation on the
sphere: the SO(3) Fourier coefficients of the correlation
of two spherical functions can be obtained directly from
the multiplication of the individual SFT coefficients. In
vector form, the (2l + 1) × (2l + 1) matrix of SOFT co-
efficients Ĝl is equivalent to the outer product of the co-
efficient vectors f̂ l and ĥl . Given Ĝl , the inverse SOFT
retrieves the desired function G(R).

Recalling our original problem of filtering a fea-
ture similarity function with the Epipolar Delta Filter
(Eq. (9)), we realize that we are actually correlating two
functions on S2×S2. As one would expect, the theory we
have just introduced extends easily. The Fourier trans-
form for any function f ∈ L2(S2 × S2) is given as

f (p, q) =
∑

l1

∑
l2

l1∑
m1=−l1

l2∑
m2=−l2

f̂ l1l2
m1m2

Y l1
m1

(p)Y l2
m2

(q)

(22)

f̂ l1l2
m1m2

=
∫

p

∫
q

f (p, q)Y l1
m1 (p)Y l2

m2 (q)dpdq (23)

The spectrum of G(Rc, Rt ) from Eq. (9) can be obtained
from the Fourier transforms of g, �:

Ĝl1l2

m1m2k1k2
= f̂ l1l2

m1k1
�̂

l1l2

m2k2
(24)

As this last equation shows, the Fourier space of our
likelihood grid is six dimensional. However, we know
that the space of observable motions is only five di-
mensional. This discrepancy arises because we identify
the rotation Rt with elements of SO(3) even though the
translation direction is independent of the first Euler an-
gle of rotation:

Rz(α1)e3 = Rz(α2)e3 ∀ α1, α2

This issue is resolved easily in the following subsection.
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4.3. The Canonical EDF and its Fourier Transform

The canonical Epipolar Delta Filter � embeds the epipo-
lar geometry of the motions consistent with a rotation
R = I and translation T = e3. As defined, it is only
nonzero for point pairs (p, q) ∈ S2 × S2 such that
(p × q)T e3 = 0. For any point p, the points q which
satisfy this constraint must all lie on the same great cir-
cle. In particular, if we write image points with spher-
ical coordinates θ and φ, then the points p(θ1, φ1) and
q(θ2, φ2) can only satisfy the constraint (p × q)T e3 = 0
iff φ2 = φ1, φ1+π or p or q = ±e3. Armed with this in-
formation, we can take a closer look at the Fourier trans-
form of the EDF.

Proposition 1. The Fourier transform of the EDF
(�̂l1l2

m1m2
) is zero if and only if l1 odd, l2 odd, |m1| odd,

|m2| odd, or m1 + m2 �= 0.

Proof: Let us begin by writing out the Fourier trans-
form knowing that φ2 = φ1, φ1 + π :

�̂l1l2
m1m2

∝
[∫

Pl1
m1

(cos θ1) sin θ1dθ1

∫
Pl2

m2
(cos θ2) sin θ2dθ2

×
∫

ei(m1+m2)φ1 dφ1

]
(1 + eim1π ) (25)

Immediately we see that if |m1| is odd, then eim1π =
−1 and the �̂ = 0. Equivalently, if we had taken the
expansion making a variable substitution for φ1 instead
of φ2, we would have a trailing multiplicative term of

Figure 3. The full motion estimation algorithm.

(1 + eim2π ), giving �̂ = 0 if |m2| odd. Furthermore,
the integral

∫
Pl1

m1
(cos θ1) sin θ1dθ1 = 0 if m1 = 0 or

(l1 + m1) is odd. This means that �̂ = 0 when l1 is
odd. The same argument shows �̂ = 0 when l2 is odd.
The remaining integral

∫
e−i(m1+m2)φ1 dφ is only nonzero

when m1 + m2 = 0, which means �̂ = 0 whenever
m1 + m2 �= 0.

Now it remains to show the proposition holds in the
other direction. If �̂ = 0, then we know at least one of
the following must be true:

1.
∫

Pl1
m1

(cos θ1) sin θ1dθ1 = 0

2.
∫

Pl2
m2

(cos θ2) sin θ2dθ2 = 0

3. e−im1π = −1

4.
∫

e−i(m1+m2)φ1 dφ1 = 0

The first option can only be satisfied if l1 + m1 odd or
m1 = 0. The second option requires l2 + m2 odd or
m2 = 0. The third condition requires |m1| odd (as be-
fore, we can also derive the same requirement for |m2|
odd). The final option holds only if m1 + m2 �= 0, and
this completes our proof.

We only have to consider �̂
l1l2
m1,−m1

for l1, l2, |m1|, even.
We can now reduce the Fourier transform of the likeli-
hood grid in Eq. (24):

Ĝl1l2

m1m2k1−m2
= f̂ l1l2

m1k1
�̂

l1l2
m2,−m2

(26)

Now that we have made our final simplification, we
present an outline of the full algorithm in Fig. 3.
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Figure 4. On the left is an spherical image of a great circle. Ideally,

the function values are unity for any point on the circle, and zero oth-

erwise. On the right is a segment of the great circle that intersects

the north and south poles. The segment (which is highlighted on the

left image), This shows the reconstructed function values of the delta

function at the equator (±20◦). The four values of the bandwidth L
tested were 32, 64, 128, and 256. As L increases, the closer the ap-

proximation to an impulse, but because of the discontinuity there is

also a greater overshoot (Gibbs phenomenon).

Figure 5. On the left is a grid depicting the sampling of a spheri-

cal function with bandwidth L = 8. Each white square is one spheri-

cal sample, and the exact location of the sample would be the middle

of the square. The sampling theorem requires 2L uniformly spaced

samples in both coordinates θ ∈ [0, π ] and φ ∈ [0, 2π ), hence there

are 16 rows and 16 columns. The image on the right depicts the po-

sitions on the sphere of all 162 samples. The highlighted samples on

this sphere correspond to the highlighted row of samples in the left im-

age. One visible effect of this sampling theorem is that the sampling is

dense at the north and south poles but sparse at the equator.

5. Discretization and Sampling

There are some issues we must address before we can
finalize the transition from the continuous environment
(integration of functions f ∈ L2(S2)) to the discrete

Figure 6. On the left is an image from an omnidirectional sensor, with a field of view of 212◦. In the middle is a spherical image with bandwidth

L = 32 mapped onto the omnidirectional image plane. Each segment in this image corresponds to one pixel in the spherical image. This shows

the quantization or binning effect seen when mapping points from a high-res image to a low-bandwidth spherical function. On the right is the same

effect for a bandwidth L = 40.

setting (images and features). The most obvious concern
relates to the Spherical Fourier Transform of a discrete
spherical image. In addition to the existence of a sam-
pling theorem, we need to be assured that the cost or
complexity of the transform does not outweigh the ben-
efits of replacing the correlation with a multiplication in
the spectral domain. In other words, we require an algo-
rithm for a discrete and fast SFT.

The bandwidth L of a spherical function f is the
smallest degree such that f̂ l

m = 0, ∀l ≥ L . Unfor-
tunately, the signals we are dealing with (impulse
responses for the similarity function g, and great circles
for the EDF), do not have a frequency limit. The band-
width must be manually selected, and in practical terms
determines how accurately we wish to approximate our
function. Figure 4 shows the approximation of the EDF
for different bandwidth selections. From the figure we
see that even though our similarity function is repre-
sented as a sum of spherical impulses, the spectral rep-
resentation is smoothed, especially for smaller values of
L .

Given a function with bandwidth L , Driscoll and
Healy (1994) (and later refined in Rockmore et al.
(2003)), have presented a fast, discrete SFT with a
sampling theorem that requires 2L uniformly spaced
samples in each spherical coordinate (see Fig. 5). Re-
calling Eq. (11), a spherical harmonic is a product of a
Legendre polynomial (in the longitudinal parameter θ )
with a complex exponential (in the azimuthal parame-
ter φ). The SFT amounts to performing many Legen-
dre transforms in θ followed by many traditional Fourier
transforms in φ. The more complex of the two is the
Legendre transform, which can be performed fast in
O(L log2 L) (Driscoll and Healy, 1994). On the order
of L Legendre transforms must be computed, which
gives the total complexity of the SFT as O(L2 log2 L).
A similar separation-of-variables approach can be ap-
plied to derive a fast and discrete SO(3) Fourier trans-
form in O(L3log2L) (Kostelec and Rockmore, 2003),
with a similar sampling theorem.
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Figure 7. Results of a simulation testing the robust accumulation in the presence of Gaussian noise. The locations of spherical point correspon-

dences are perturbed with Gaussian noise in each spherical coordinate. The standard deviation of the noise distribution is given here in pixels, and

the error is computed by measuring the distance of the estimated solution from the correct solution in the 5D motion space. On the left is the error

in the estimated rotation (the angular distance between two rotation matrices is computed as arccos((trace(R−1
1 R2) − 1)/2)), and on the right is the

error in baseline direction. The dashed plots (in red) represent the simulation performed with bandwidth L = 24. In this case, a standard deviation

of one unit corresponds to 7.5◦ and 3.8◦ in the spherical coordinates φ and θ . The solid plots (in blue) are for L = 32, where a standard deviation of

one pixel corresponds to 5.6◦ and 2.8◦ in the spherical coordinates. For this higher bandwidth, the results are still accurate in presence of significant

noise.

Recall from Eq. (9) that we are parameterizing our
motion space with rotations, which in turn are param-
eterized with ZYZ Euler angles. Let us use the angles
α, β, γ , θ , and φ to denote each of the five dimen-
sions of our motion space, so that Rc = R(α, β, γ ),
Rt = R(0, θ, φ), and α, γ, φ ∈ [0, 2π ), β, θ ∈ [0, π ].
If we fix L as the bandwidth of our similarity function g
and EDF �, and we follow the algorithm in Fig. 3 using
the SFT and SOFT routines detailed in Rockmore et al.

Figure 8. Top Left: a parabolic catadioptric image. Bottom: the cor-

responding image on a uniformly sampled spherical grid. As the

parabolic mirror images only a little more than half the sphere, you

can see the lower portion of the spherical image contains no informa-

tion. Top Right: the spherical image as it would appear on the surface

of the sphere.

(2003) and Kostelec and Rockmore (2003), the angles α,
γ , and φ will be sampled at

α j , γ j , φ j = π j

L
, j = 0, 1, . . . , 2L − 1 (27)

The angles β, and θ will be sampled at

βk, θk = π (2k + 1)

4L
, k = 0, 1, . . . , 2L − 1 (28)

The total number of samples in G is thus 32L5. In prac-
tice, this forces us to select lower values for L , such as
32. Although we are capturing high resolution images
and locating image features with sub-pixel accuracy, the
effective resolution of one spherical image is just 2L ×
2L . The experiment detailed in Fig. 7 shows just how our
algorithm reacts when the feature locations are affected
by Gaussian noise when using such “low-resolution”
spherical images. Figure 6 shows the relationship be-
tween the uniform angular spacing of the spherical sam-
ples and the original image domains of different single-
viewpoint cameras. It is clear for small L many pix-
els from a high-res perspective or omnidirectional im-
age will map to the same spherical sample, and since we
will detect features on the original images we must clar-
ify how to generate a discrete version of our similarity
function g.

The sampling theorem requires 2L samples in each
angle, which means every spherical function must have
4L2 samples, and g must therefore have 16L4 samples.
Let us write (p j , qk), j, k = 1, 2, . . . , 4L2 for the sam-
ples of g. Assume we are given two input images I1, I2
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Figure 9. Timings of our algorithm for various bandwidth choices.

The execution times are for step 3 through step 7 (see Fig. 3).

on which we detect N1 and N2 features, respectively. We
denote Q as the set of all possible feature pairs (note that
Q has N1 N2 elements), and each element of Q has an as-
sociated weight given by Eq. (2) (or Eq. (3)). The value
of the discrete similarity function at a sample (p j , qk)
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Figure 10. Top: the estimated trajectory of the camera. In solid blue (light) is the Radon estimation, in dashed red (dark) is the RANSAC compu-

tation, and the yellow circle marks the starting position. Bottom Left: A projection of the trajectory onto the Z − Y plane showing the deviation of

the estimated positions from the X axis. Bottom Right: the Rt slice of the grid G where the maxima was found.

is just the sum of the weights of all elements of Q that
have this sample (p j , qk) as the nearest neighbor. This
process has the effect of just quantizing the continuous
similarity function. Whenever different point pairs are
quantized into the same discrete sample, their similarity
weights are simply combined.

6. Experiments

In this section we will present the results of the motion
estimation algorithm on real image sequences. We begin
by describing the spherical camera system which we use
for our experiments.

6.1. Spherical Image Acquisition

One of the benefits of choosing to model our camera
with a spherical perspective projection is that it enables
us to unite a number of single-viewpoint camera sys-
tems. Our experiments were performed with a cata-
dioptric camera system along with a traditional digital
camera.

The projection model of a central catadioptric sys-
tem is equivalent to a spherical projection followed by a



322 Makadia, Geyer and Daniilidis

0
0.5

10
0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X

Translation along Z axis

Y

Z

RADON

RANSAC

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

X

Y

RADON

RANSAC

φ

θ

Radon space (translational slice)

10 20 30 40 50 60

10

20

30

40

50

60

Figure 11. Left: the estimated trajectory of the camera. In solid blue (light) is the Radon estimation, in dashed red (dark) is the RANSAC compu-

tation, and the yellow circle marks the starting position. Top Right: A projection of the trajectory onto the X − Y plane showing the deviation of the

estimated positions from the Z axis. Bottom Right: the Rt slice of the grid G where the maxima was found (notice the peak is locate at θ ≈ 0, which

corresponds to the correct translation along Z).

projection onto the plane (Geyer and Daniilidis, 2001). If
calibrated, such a sensor enables us to interpolate spheri-
cal perspective images. Our system consisted of a Canon
Powershot G2 digital camera fastened to a parabolic mir-
ror attachment from RemoteRealityTM (Nayar, 1997).
Being that the mirror’s field-of-view is 212◦, the camera
captures slightly more than a hemisphere of information.
Figure 8 shows a sample catadioptric image obtained
from a parabolic mirror and its corresponding projection
onto the sphere.

6.2. Results

We proceed to show experimental results of our algo-
rithm tested on a sequence of real omnidirectional im-
ages. The running time of our algorithm for various
bandwidth choices is shown in Fig. 9. For our tests, we
assumed a function bandwidth of L = 32, which left us
with a spatial resolution of 2L = 64 samples in each
of the five dimensions of our motion space. For com-
parison, we employed RANSAC to estimate the essen-
tial matrix. Although it seems natural to use RANSAC
in the presence of outliers, there are two crucial issues

which would prevent a naive implementation from be-
ing operative. First is the volume of outliers. Assuming
the number of features detected in each of two images
is N , there are N 2 possible feature pairs of which at
most N are inliers. Since the inlier rate is no more than
1/N (for a typical scenario with N = 1000, the inlier
rate is at most 0.1%), the likelihood of selecting a min-
imal set of true correspondences is negligible. To this
end, we discarded all but the best matching pairs during
the random sampling stage. We retained only approx-
imately 0.025% of the possible feature pairs (e.g. this
translates to 250 feature pairs from a set of 106 possi-
ble pairs). The second issue is in determining the termi-
nation threshold of the RANSAC algorithm. In order to
perform a proper evaluation of our algorithm, we imple-
mented a best-case RANSAC which does not have a ter-
mination threshold but rather iterates 50, 000 times. The
essential matrix which satisfies the most feature pairs
(weighted with g(p, q)) is selected as the motion. This
ensures that a manual selection of the termination thresh-
old may not be set too low to allow termination for an in-
ferior motion. We have evaluated our Radon estimation
alongside this modified RANSAC in order to provide an
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Figure 12. A camera moving along a circular path. Top left: In solid blue (light) is the Radon estimation, in dashed red (dark) is the RANSAC. Top

right: A projection onto the X − Z plane showing the deviation from the plane of the turntable. Bottom left: An overhead view. The yellow stars are

the observed ground truth positions of the camera. Bottom right: four images from the sequence. Even though the dominant motion is rotation, the

translation is still effectively detected by the Radon.

alternate method which is comparable to ours. In some
of the following experimental results, the RANSAC per-
forms very well and this is only because we have tuned
these parameters quite finely. The similarity function in
Eq. (2) was used for the experiments depicted in Fig.
10 through Fig. 12, while Eq. (3) was used for the
remainder.

We begin with a pure translational sequence of im-
ages. By fixing and sliding our camera along a rigid
beam, we were able to generate two sequences of trans-
lational motion along the X and Z axes of the camera
frame. Fixing the magnitude of motion between each
frame, we were able to plot the estimated camera tra-
jectory in Fig. 10. In general, there are four possible
rotation and translation pairs which will satisfy a par-
ticular epipolar constraint. These solutions correspond

to the true solution, a baseline reversal, a camera rota-
tion of 180◦ about the baseline (commonly referred to as
the “twisted pair” configuration), or a twisted pair with
baseline reversal. If the true motion is given by (R, T ),
the other three motions which satisfy the same epipo-

lar constraint are given by (R, −T ), (eT̂ π R, T ), and

(eT̂ π R, −T ) (note that eT̂ π gives a rotation of 180◦ about
the T axis). In order to identify the expected locations
of the four peaks in our likelihood space for the correct
motion, we must remember that we identify elements of
this five dimensional motion space with the pair (Rc, Rt )
where R = Rt R−1

c , T = Rt e3. If we define R′
t =

Rz(γ )Ry(β) so that −T = R′
t e3, then we can expect

the four peaks to be located at (R−1 Rt , Rt ), (R−1 R′
t , R′

t ),

((eT̂ π R)−1 Rt , Rt ), and ((eT̂ π R)−1 R′
t , R′

t ). In the figures,
for example, when we show a 2D translational slice
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Figure 13. Top row: two representative images from a sequence of outdoor images. The motion between image positions is over five meters.

At each position, the equatorial plane of the spherical image is roughly aligned to be parallel with the ground plane to provide a rough, partial

ground truth of the motion. The image sequence also contains some dynamic scene content as there were people moving throughout the scene as the

images were taken. The bottom two images are the spherical projections of the original omni images. Only the visible band on the sphere is shown

here.

with a peak at R′
t , this slice can be generated from

the bins corresponding to the rotation R−1 R′
t . In Fig.

10, the slice shown depicts a peak at Rt (0, π
2
, π )e3 =

−e1.
A similar experiment was performed with the cam-

era moving along the Z axis. The motion was recovered
from pairs of consecutive images, with the estimated
camera path shown in Fig. 11. Our Radon estimation
has a smaller deviation from the observed ground truth
Z axis than the RANSAC estimation.

In order to test both rotations and translations while
recording ground-truth observations, we positioned the
camera at the outside edge of a turntable. This al-
lowed us to capture images from the camera moving
around in a circle. There was a 45◦ rotation between
each of the images in this sequence, and the estimated
camera positions are shown in Fig. 12. Although the
Radon’s trajectory estimate deviates slightly from the
plane, the positions as seen from the overhead view

coincide with the recorded ground truth more accurately
than the RANSAC estimation. After 6 pairwise tests,
there was little error accumulation in estimating the
trajectory.

We now discuss results of an experiment from a
sequence of images from an outdoor environment.
Figure 13 shows a representative selection of images
from this sequence. Figure 14 shows some results from
the motion estimation. Epipolar lines are drawn to allow
visual confirmation of the method’s accuracy. Figure 15
displays the obtained camera trajectory using the visual-
ization tools provided in the Epipolar Geometry Toolbox
(Mariottini and Prattichizzo, 2005). This same trajectory
is projected onto the X − Z plane in Fig. 16 to show the
deviation from the ground plane which is known to be
(approximately) the correct plane of motion. This planar
motion also restricts the axis of rotation to align with the
Z axis, and Fig. 17 shows just how closely the measured
rotations reflect this property.
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Figure 14. On the top row are a pair of images from a sequence for which the motion was estimated. The bottom two rows show the images after

they have been rotationally aligned. Epipolar circles have been overlaid onto the images. Since the images have been rotationally aligned, points

which lie along these circles in one image will lie along the same circle in the second image. The intersection of these circles mark the focus of

expansion and contraction, which define the direction of translation between this image pair. The rotation between image pairs was estimated at

approximately 45◦, and as the focus of expansion shows the translation was roughly in the equatorial plane.
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Figure 15. This figure shows the camera trajectory estimated from a sequence of images (see Fig. 13 for sample images). The camera frames drawn

with solid (blue) lines depict the trajectory estimated using the Radon transform, while the dashed (red) lines show the RANSAC trajectory. In this

sequence the motion is known to be approximately planar in the equatorial plane. Since the magnitude of camera motion cannot be recovered from

pairs of images alone, we have fixed the distance between camera positions to be 10 units for visual purposes.
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Figure 16. This figure shows the camera trajectory estimated from a

sequence of images (see Fig. 13 for sample images), projected onto the

Z X plane. The camera frames drawn with solid (blue) lines depict the

trajectory estimated using the Radon transform, while the dashed (red)

lines show the RANSAC trajectory. The motion is known to be planar

(on the equatorial plane) and the Radon estimate reflects this more

accurately. Since the magnitude of camera motion cannot be recovered

from images alone, we have set the distance between camera positions

to be 10 units for visual purposes.
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Figure 17. As the camera motion in this sequence (see Fig. 13 for

sample images) is known to be roughly planar, we know that the axis

of rotation must align with the Z axis. This plot shows for all eight

image pairs in the sequence the distance in degrees of the estimated

axis of rotation from the Z axis. The solid line (blue) is the estimate

from our Radon integral, and the dashed line (red) is the RANSAC

estimate.

7. Conclusion

We have presented a novel approach for the computation
of 3D-motion from two views without correspondences.
It is based on the generation of a global likelihood func-
tion on the space of all observable camera motions.
Given today’s computing power, it is not the search
through this likelihood function but rather the combina-
torial explosion of all possible correspondences that is
intractable. Instead of traversing all possible correspon-
dence assignments, our method computes for each mo-
tion hypothesis a correlation function which considers
only feature pairs satisfying the epipolar constraint. Such
a formulation can be expressed as a correlation integral
if the integration path can be written as a group action
over the domain of integration. In this case, the integral
can be computed as an inner-product in the Fourier do-
main. The bandwidth limitation affects directly the reso-
lution of the parameter space and it is indeed our future
work to establish a “space localization” using wavelets.
Such a localization in the parameter space would also
allow a constrained search when prior distributions of

motion are established causally through time. In that
case, we could also achieve near real-time performance
which right now is impossible in all correspondence-free
approaches.
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