Skip to main content
Log in

Prior Knowledge, Level Set Representations & Visual Grouping

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose a level set method for shape-driven object extraction. We introduce a voxel-wise probabilistic level set formulation to account for prior knowledge. To this end, objects are represented in an implicit form. Constraints on the segmentation process are imposed by seeking a projection to the image plane of the prior model modulo a similarity transformation. The optimization of a statistical metric between the evolving contour and the model leads to motion equations that evolve the contour toward the desired image properties while recovering the pose of the object in the new image. Upon convergence, a solution that is similarity invariant with respect to the model and the corresponding transformation are recovered. Promising experimental results demonstrate the potential of such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bascle, B. (1994). Contributions and applications of deformable models in computer vision. PhD thesis, University of Nice/Sophia Antipolis, France.

  • Bertalmo, M., Sapiro, G., & Randall, G. (2000). Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 733.

    Article  Google Scholar 

  • Birchfield, S. (1998). Head tracking using intensity gradients and color histograms. In IEEE conference on computer vision and pattern recognition (pp. 232–237).

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1222–1239.

    Article  Google Scholar 

  • Bresson, X., Vandergheynst, P., & Thiran, P. (2003). A priori information in image segmentation: energy functional based on shape statistical model and image information. In IEEE international conference on image processing (Vol. 3, pp. 428–428).

  • Caselles, V., Catte, F., Coll, B., & Dibos, F. (1993). A geometric model for edge detection numerische mathematik. Numerische Mathematik, 66, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22, 61–79.

    Article  MATH  Google Scholar 

  • Charpiat, G., Faugeras, O., & Keriven, R. (2003). Approximation of shape metrics and applications to shape warping and empirical shape statistics. Rapport de Recherche 4820.

  • Chen, Y., Thiruvenkadam, H., Tagare, H., Huang, F., & Wilson, D. (2001). On the incorporation of shape priors int geometric active contours. In IEEE workshop on variational and level set methods in computer vision (pp. 145–152), Vancouver, Canada.

  • Chen, Y., Thiruvenkadam, S., Huang, F., Gopinath, K., & Brigg, R. (2002). Simultaneous segmentation and registration for functional MR images. In ICPR (Vol. 1, p. 747).

  • Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 790.

    Article  Google Scholar 

  • Cohen, L. (1991). On active contours and balloons. CVGIP: Image Understanding, 53, 211–218.

    Article  MATH  Google Scholar 

  • Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models—their training and applications. Computer Vision and Image Understanding, 61, 38–59.

    Article  Google Scholar 

  • Cootes, T., Beeston, C., Edwards, G., & Taylor, C. (1999). A unified framework for atlas matching using active appearance models. In IPMI (p. 322).

  • Cremers, D., Schnörr, C., & Weickert, J. (2001). Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework. In IEEE workshop in variational and level set methods (pp. 137–144).

  • Cremers, D., Sochen, N., & Schnörr, C. (2003). Towards recognition-based variational segmentation using shape priors and dynamic labeling. In Scale-space (p. 388).

  • Cremers, D., Osher, S. J., & Soatto, S. (2006). Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. International Journal of Computer Vision, 69(3), 335–351.

    Article  Google Scholar 

  • Dervieux, A., & Thomasset, F. (1979). A finite element method for the simulation of Raleigh–Taylor instability. Springer Lecture Notes in Mathematics, 771, 145–158.

    MathSciNet  Google Scholar 

  • Dervieux, A., & Thomasset, F. (1980). Multifluid incompressible flows by a finite element method. In W. Reynolds & R. MacCormack (Eds.), Lecture notes in physics: Vol. 141. Seventh international conference on numerical methods in fluid dynamics (pp. 158–163).

  • Dufour, R., Miller, E., & Galatsanos, N. (2002). Template matching based object recognition with unknown geometric parameters. IEEE Transactions on Image Processing, 11(12), 1385–1396.

    Article  MathSciNet  Google Scholar 

  • Faugeras, O., & Keriven, R. (1998). Complete dense stereovision using level set methods. In ECCV (Vol. 1, p. 379).

  • Fischler, A., & Elschlager, R. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computer, 22, 67–92.

    Article  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  • Huang, X., Paragios, N., & Metaxas, D. (2006). Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1303–1318.

    Article  Google Scholar 

  • Jehan-Besson, S., Gastaud, M., Barlaud, M., & Aubert, G. (2003). Region-based active contours using geometrical and statistical features for image segmentation. IEEE International Conference in Image Processing, 2, 643–646.

    Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1, 321–331.

    Article  Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A. (1995). Gradient flows and geometric active contour models. In IEEE international conference on computer vision (pp. 810–815).

  • Kimia, B., Tannenbaum, R., & Zucker, S. (1995). Shapes, shocks, and deformations, I: the components of 2-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15, 189–224.

    Article  Google Scholar 

  • Kimmel, R., & Bruckstein, A. (1995). Tracking level sets by level sets: a method for solving the shape from shading problem. Computer Vision and Image Understanding, 62, 47–58.

    Article  Google Scholar 

  • Leventon, M., Grimson, E., & Faugeras, O. (2000a). Level set based segmentation with intensity and curvature priors. In IEEE mathematical methods in biomedical image analysis (pp. 4–11).

  • Leventon, M., Grimson, W., & Faugeras, O. (2000b). Statistical shape influence in geodesic active contours. In CVPR (p. 1316).

  • Lipson, P., Yuille, A., Keeffe, D., Cavanaugh, J., Taaffe, J., & Rosenthal, D. (1990). Deformable templates for feature extraction from medical images. In ECCV (p. 413).

  • Malladi, R., & Sethian, J. (1998). A real-time algorithm for medical shape recovery. In IEEE international conference in computer vision (pp. 304–310), Bombay, India.

  • Malladi, R., Sethian, J., & Vemuri, B. (1994). Evolutionary fronts for topology-independent shape modeling and recovery. In ECCV (Vol. 1, p. 3).

  • Metaxas, D. (1997). Physics-based deformable models: applications to computer vision, graphics and medical imaging. In Graphics and medical imaging.

  • Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 22–26).

  • Osher, S., & Paragios, N. (2003). Geometric level set methods in imaging, vision and graphics. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Osher, S. J., & Sethian, J. A. (1988). Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Paragios, N., & Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. The International Journal of Computer Vision, 46(3), 223–247.

    Article  MATH  Google Scholar 

  • Paragios, N., Rousson, M., & Ramesh, V. (2002). Matching distance functions: a shape-to-area variational approach for global-to-local registration. In ECCV (Vol. 2, p. 775).

  • Paragios, N., Rousson, M., & Ramesh, V. (2003). Non-rigid registration using distance functions. Computer Vision and Image Understanding, 23, 142–165.

    Article  Google Scholar 

  • Paragios, N., Chen, Y., & Faugeras, O. (2005). Handbook of mathematical models in computer vision. New York: Springer.

    MATH  Google Scholar 

  • Rousson, M., & Cremers, D. (2005). Efficient Kernel density estimation of shape and intensity priors for level set segmentation. In International conference on medical image computing and computer-assisted intervention (MICCAI) (Vol. 2, pp. 757–764).

  • Rousson, M., & Deriche, R. (2002). A variational framework for active and adaptive segmentation of vector valued images. In IEEE workshop on motion and video computing (pp. 56–61), Orlando, FL.

  • Rousson, M., & Paragios, N. (2002). Shape priors for level set representations. In A. Heyden, G. Sparr, M. Nielsen, & P. Johansen (Eds.), Proceedings of the 7th European conference on computer vision (Vol. 2, pp 78–92), Copenhagen, Denmark.

  • Rousson, M., Paragios, N., & Deriche, R. (2004). Implicit active shape models for 3D segmentation in MR imaging. In MICCAI (Vol. 1, p. 209).

  • Samson, C., Blanc-Feraud, L., Aubert, G., & Zerubia, J. (1999). A level set method for image classification. In International conference on scale space theories in computer vision (pp. 306–317).

  • Sapiro, G. (2001). Geometric partial differential equations and image analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Sethian, J. (1996). Level set methods. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Staib, L., & Duncan, J. (1992). Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 1061.

    Article  Google Scholar 

  • Sussman, M., Smereka, P., & Osher, S. (1994). A level set method for computing solutions of incompressible two-phase flows. Journal of Computational Physics, 114, 146–159.

    Article  MATH  Google Scholar 

  • Taron, M., Paragios, N., & Jolly, M. (2005). Modelling shapes with uncertainties: higher order polynomials, variable bandwidth kernels and nonparametric density estimation. In ICCV ’05: Proceedings of the tenth IEEE international conference on computer vision (pp. 1659-1666), Washington, DC, USA.

  • Tek, H., & Kimia, B. (1995). Image segmentation by reaction-diffusion bubbles. In ICCV (p. 156).

  • Tikhonov, A. (1992). Ill-posed problems in natural sciences. Coronet.

  • Tsai, A., Wells, A. Y. A. W., Tempany, C., Tucker, D., Fan, A., Grimson, A., & Willsky, A. (2001). Model-based curve evolution technique for image segmentation. In IEEE conference on computer vision and pattern recognition (pp. 463–468).

  • Tsai, A., Yezzi, A., Jr., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., & Willsky, A. (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22, 137.

    Article  Google Scholar 

  • Veltkamp, R., & Hagedoorn, M. (1999). State-of-the-art in shape matching. Technical report, Utrecht University, Department of Computer Science.

  • Vese, L., & Chan, T. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50, 271.

    Article  MATH  Google Scholar 

  • Wang, Y., & Staib, L. (1998). Boundary finding with correspondence using statistical shape models. In CVPR (p. 338).

  • Yezzi, A., & Soatto, S. (2003). Stereoscopic segmentation. International Journal of Computer Vision, 53, 31.

    Article  Google Scholar 

  • Yezzi, A., Zollei, L., & Kapur, T. (2001). A variational framework for joint segmentation and registration. In IEEE mathematical methods in biomedical image analysis (pp. 44–51).

  • Yuille, A. (1991). Deformable templates for face recognition. Journal of Cognitive Neuroscience, 3, 59–70.

    Article  Google Scholar 

  • Yuille, A., Hallinan, P., & Cohen, D. (1992). Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8, 99–111.

    Article  Google Scholar 

  • Zhao, K., Chan, T. F., Merriman, B., & Osher, S. (1996). A variational level set approach to multiphase motion. Journal of Computational Physics, 127, 179.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu, S., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/Mdl for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 884–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Rousson.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousson, M., Paragios, N. Prior Knowledge, Level Set Representations & Visual Grouping. Int J Comput Vis 76, 231–243 (2008). https://doi.org/10.1007/s11263-007-0054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0054-z

Keywords

Navigation