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Abstract

We propose a variational algorithm to jointly estimate the shape, albedo, and light configuration of a

Lambertian scene from a collection of images taken from different vantage points. Our work can be thought of

as extending classical multi-view stereo to cases where point correspondence cannot be established, or extending

classical shape from shading to the case of multiple views with unknown light sources. We show that a first

naive formalization of this problem yields algorithms that are numerically unstable, no matter how close the

initialization is to the true geometry. We then propose a computational scheme to overcome this problem,

resulting in provably stable algorithms that converge to (local) minima of the cost functional. We develop a new

model that explicitly enforces positivity in the light sources with the assumption that the object is Lambertian

and its albedo is piecewise constant and show that the new model significantly improves the accuracy and

robustness relative to existing approaches.

1 Introduction

We address the problem of recovering the three-dimensional shape of a scene or object that has diffuse, or “Lam-

bertian,” reflection, seen from multiple images taken from different vantage points. We assume that both intrinsic

and extrinsic calibration parameters of the camera that took the images are known. We do not assume that we
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know the illumination, and explicitly estimate the ambient illumination level and the position and intensity of one

or more point light sources.

This problem can be thought of as the multi-view extension of the problem of “shape from shading” [8, 19, 44,

25, 26, 43, 29, 30, 18, 6, 28] where one makes the assumption that the objects in the scene have homogeneous

material, and therefore the shading effects seen on the image are due to their shape, that can be retrieved modulo a

bas-relief ambiguity [2, 41]. However, in our model we allow the objects to have piecewise homogeneous materials,

a common trait of most man-made objects. Also, we have multiple views available, which allow us to estimate the

position and intensity of the light source along with the shape of the observed scene.

The problem also relates to “multi-view stereo”, where one is given multiple views of an object and estimates

its shape together with the radiance (“texture map”) of the scene [22, 7, 13, 10, 33]. We refer the reader to [33] for

evaluations of some of the recent algorithms. However, while in multi-view stereo one has to rely on the gradient

being non-zero everywhere, and no knowledge on the reflectance properties of the scene (other than Lambertian) is

enforced, we can explicitly make use of the assumption of piecewise constancy of the reflectance, and we also retrieve

the lighting configuration, which is not addressed in multi-view stereo. Let us underline here that our scenario

is different from other ones which deal with multiple images and varying illumination [42, 5]. More germane to

our approach is the work of [31] which estimates the lighting direction and the work of [32] which has also been

prior attempts to combine stereo and shape from shading, although this is different than ours because we do not

attempt to establish direct correspondence.

Finally, this problem relates to segmentation, or better to multi-view, or stereoscopic, segmentation [39], in

the sense that scenes for which point-to-point correspondence cannot be easily established (for instance because

they do not have distinctive enough gradient profiles) are typically easy to segment, and vice-versa. For a recent

reformulation of stereoscopic segmentation based on a probabilistic treatment of individual voxels we refer to [20].

Our goal is to ultimately be able to integrate all cues, and arrive at a coherent 3-D reconstruction framework that

can exploit any available knowledge on the scene, and arrive at a consistent estimate of its shape.

Such an algorithm potentially has important applications in 3-D reconstruction for computer-added design,

manufacturing, mapping, robotic navigation, visual recognition, and computer graphics, specifically image-based

modeling and rendering.

To simplify the problem, we assume that the scene of interest is surrounded by a background with uniform radi-

ance and has a piecewise constant albedo. We show how the problem can be formalized as an infinite-dimensional

optimization task. Unfortunately the naive algorithm, based on an iterative procedure designed to have the

first-order optimality conditions as its fixed point, yields a numerically unstable flow, and therefore cannot be

implemented except for a few special cases. We therefore introduce a different model, based on an auxiliary
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vector field. This auxiliary vector field, which is directly responsible for shading effects, is then coupled to the

normal field to the shape of the scene via an energy term. This artifice, which can be interpreted as a relaxation,

allows us to have a provably stable flow, that has the added benefit of not depending on any derivative of the

image, resulting in increased robustness with respect to noise.

Another challenge that we had to overcome, that was a limitation in the prior art, was the enforcing of physical

constraints such as the positivity of the light sources. We show that the resulting model yields successful results

where prior algorithms failed, as we demonstrate experimentally on synthetic and real image datasets designed to

challenge the assumptions underlying our model.

We implement our algorithm in the level set framework, that yields the added benefit of automatically allowing

changes of topology both in the shape of the scene, and in the radiance profile, where the boundary between

constant materials can split and merge.

This article gathers and strongly upgrades two of our previous conferences papers, [12] and [14]. [14] presented

the work on recovering shape for piecewise constant radiance without considering the light effects. In [12], we

recover the shape and the light configuration together and solve the variational problems via level set methods. In

this new article, we combine our two preliminary works presented in [12] and [14]. We then can recover the shape,

the lighting conditions and a piecewise constant approximation of the object’s albedo. Moreover, we propose here

a physically plausible model of illumination, that explicitly enforces positivity of the sources, without the need to

revert to the concept of “negative” light sources introduced in [12]. We finally improve the algorithm by solving

some intermediate steps in closed form.

2 Problem Formulation

In this section we introduce our notation and the basic formalization of the problem, and show how it yields

numerically unstable algorithms. This serves as a motivation for our solution, introduced in the next section.

2.1 Notation and Modeling Assumptions

Let S be a smooth two-dimensional surface embedded in R3. We denote with X = [X, Y, Z]T ∈ R3 the coordinates

of a generic point on S with respect to a fixed reference frame. Our goal is to reconstruct the surface S from a

set of n images Ii : Ωi → R+, i = 1, ..., n, where Ωi ⊂ R2. The intrinsic and extrinsic calibration parameters for

each camera are assumed to be known (see e.g. Chapter 4 of [24]), so after some simple pre-processing we can

model each camera as an ideal perspective projection πi : R3 → Ωi;X 7→ xi
.= πi(X) = π(Xi) = [Xi/Zi, Yi/Zi]T ,
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where Xi = [Xi, Yi, Zi]T are the coordinates of X in the i-th camera reference frame. X and Xi are related by

a rigid body transformation, which can be represented in coordinates by a rotation matrix Ri ∈ SO(3) and a

translation vector Ti ∈ R3: Xi = RiX + Ti. We assume that there is a background B filling the field of view of

each camera, modeled as a sphere with infinite radius. For each camera we define the foreground to be the region

Qi = πi(S) ⊂ Ωi and denote its complement in Ωi, the background, by Qc
i . We also define the back-projection

π−1
i : Ωi → R3 of xi onto S, which is the first intersection of the ray through xi in the i-th camera with S.

We assume that the scene is made of Lambertian surfaces. For simplicity, we only deal with black and white

images or with the brightness of the images (even if the extension to color images is quite direct), so the reflectance

of the scene is described by positive scalar functions (called albedos): ρ : S → R+ for the foreground, and

h : B → R+ for the background. In what follows we assume that the albedo of the background is constant and

that the albedo of the foreground is piecewise constant. Furthermore, we assume that the background is uniformly

illuminated which results in a uniform radiance. We denote the radiance value by h with an abuse of notation (for

an extension to smooth backgrounds see [16]). While this may seem like a restrictive assumption, it is a rather

good approximation of most man-made objects. Besides, in lack of any assumption about albedo, there is little

one can say about the shape of the scene in the presence of changing illumination [5].

We assume that illumination can be well approximated by a superposition of two components: One is an ambient

term, with constant energy E0 radiated isotropically in all directions. This term approximates inter-reflections,

diffuse illumination and short-range effects that would be too complex to model explicitly (although see [23, 34]

for a way to exploit shading induced by ambient illumination). Again, it is a reasonable approximation in most

well-lit environments including indoors (barring black carpet floors) and outdoors on a cloudy day. The second

term consists of a number of distant point light sources. For simplicity we only allow one source (e.g. the sun on a

clear day) but extension to any number (e.g. spotlights in a theater) presents no theoretical difficulties. Using old

theorems by Wiener one can show that any positive distribution on the sphere can be approximated arbitrarily

well by such a collection of sources [36].

Using Lambert’s cosine law [24, 9], we can evaluate the radiance r at each X ∈ S via

r(X) = ρ(X)(〈N(X), L〉ξ(X) + E0),

where L ∈ R3 is a vector pointing in the direction of the light source, with norm equal to its intensity, N(X) ∈ S2

is the outward unit normal to S at X, ξ : S → {0, 1} is the visibility of the light and ρ(X) is the albedo of the

surface at X. In the case of convex objects, visibility is given by ξ = H(〈N,L〉), where H denotes the Heaviside

step function: H(x) = 1, ∀x ≥ 0 and H(x) = 0, otherwise. More in general, under the assumptions above, we
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can write the image formation model as:

I(π(X)) = ρ(X)(〈N(X), L〉ξ(X) + E0). (1)

Let us remark here that we implicitly assume that the brightness of the image I at a pixel x is equal to the

irradiance of the associated 3D point located on the retinal plane of the camera (our work can be easily extended

to more realistic models, see for example [9]).

Since the albedo ρ is piecewise constant, for simplicity we assume that it partitions S into two regions D1 and D2,

which can have several connected components. We denote by C the union of the curves dividing D1 and D2, and

assume they are smooth and closed. Therefore, ρ can be described as

ρ(X) = ρj ∈ R for X ∈ Dj , j = 1, 2.

Note that model (1) is not minimal in the sense that there is a multiplicity ambiguity between ρ, L and E0 as they

appear together in products. We shall address this issue later. Extensions of the albedo model to more than two

phases are straight forward using respective multiphase level set formulations [37, 3].

2.2 Formalization of the Problem in a Variational Framework

The scene is described by the three-dimensional (3-D) surface S, and by its reflectance, that given the as-

sumptions above is determined by the 2-D curves C on S and the two scalars ρ1 and ρ2. The intensity of the

background h and the light sources, L and E0, are nuisance parameters, in the sense that they are unknown and

not necessarily of direct interest, but they affect the measured images, and we will therefore recover them along

with the description of the scene.

In order to recover a 3-D model of the scene, we wish to solve an optimization problem whereby we find, among

all possible scenes, the one(s) that generate “virtual” images that most closely resemble the given (measured)

ones. In other words, we wish to minimize the discrepancy, for instance the squared L2 distance, between the

right-hand-side and the left-hand-side of (1). We call such a discrepancy Edata, in the sense that it depends on the
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measured images

Edata
.=

n∑
i=1

∫
πi(D1)

(
Ii(xi)− ρ1

(
〈N,L〉ξ(π−1

i (xi)) + E0

))2

dΩi

+
n∑

i=1

∫
πi(D2)

(
Ii(xi)− ρ2

(
〈N,L〉ξ(π−1

i (xi)) + E0

))2

dΩi (2)

+
n∑

i=1

∫
Qc

i

(Ii(xi)− h)2dΩi.

Among the unknowns, ρ1, ρ2, E0, L, h, C, S, the latter two are infinite-dimensional. Therefore, one needs to impose

additional assumptions, for instance in the form of regularization, to arrive at a well-posed problem. The most

obvious choice is to search for a solution that maximizes the regularity of C and S. That can be easily achieved

by adding terms to the energy functionals, for instance

Esmooth
.=
∫

S

dA (3)

that measures the area of S and, when minimized, forces regularity, and similarly for the curves C

Ecurv
.=
∫

C

ds, (4)

where dA and ds are the area form of S and the arc length of C respectively. Unfortunately, even considering the

composite functional Edata + αEsmooth + βEcurv, where α and β are positive weighting factors, is not sufficient to

yield a well-posed problem, as we illustrate next.

2.3 Stable Formulation by Decoupling the Normal Field

The minimization of the energy functional just described represents an ill-posed problem. To illustrate this

phenomenon, consider a simpler version of the energy above, where we neglect the background term and we

consider only a constant albedo foreground, ρ1 = ρ2 = ρ. In other words, we concentrate only on the first line of

(2), and for simplicity we neglect the visibility term, so ξ(X) = 1, ∀ X ∈ S. After some calculations, the reader

can verify that the curvature-dependent term of the first-order variation of Edata is given by [11]

n∑
i=1

2H
(
(Ii − E0)2 + 2ρ2 − 3 〈ρL,N〉2

)
− 2ρ2Π(N × L) (5)

where H denotes the mean curvature and Π the second fundamental form. In regions where the surface faces

the light (and therefore 〈L,N〉 → 1) and where the modeled directional intensity ρ2 exceeds the measured one
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(Ii − E0)2, the coefficients of both H and Π are negative. This amounts to a backward heat flow, that models

a physically unrealizable process and is well-known to be numerically unstable. Therefore, a local gradient-based

minimization algorithm based on the first-order optimality condition is bound to be numerically unstable no matter

how close the initial conditions are.

The above instability arises due to the strong coupling between surface appearance, as measured by the image,

and its normal vector field N . In the presence of noise in the image, with fixed illumination, the surface will bend

and ripple to fit the data. To circumvent this instability, we propose a relaxed cost functional in which the normal

is decoupled from the surface through an auxiliary unit vector field V , defined as

V : S → S2, X 7→ V (X), (6)

where S2 ⊂ R3 is the unit sphere of dimension 2. V will take the place of the unit normal in modeling the shading

effects. We will show that the induced surface flow lacks the potentially unstable curvature-based diffusion terms.

The data fitness term now becomes

Edata
.=

n∑
i=1

∫
πi(D1)

(
Ii(xi)− ρ1

(
〈V (π−1

i (xi)), L〉ξ(π−1
i (xi)) + E0

))2

dΩi

+
n∑

i=1

∫
πi(D2)

(
Ii(xi)− ρ2

(
〈V (π−1

i (xi)), L〉ξ(π−1
i (xi)) + E0

))2

dΩi

+
n∑

i=1

∫
Qc

i

(Ii(xi)− h)2dΩi. (7)

To stay faithful to the physically motivated interaction between the surface normal and the light source direction,

we will introduce an indirect coupling between the unit normal and the modeled surface radiance by adding a

term to our energy which penalizes the average deviation between the true unit normal of the surface and the unit

vector field V which takes its place in the new radiance model. The constraint for V is given by a penalty on the

L2 distance between V and the unit normal field N on S:

Ecoupling =
1
2

∫
S

|V (X)−N(X)|2dA =
∫

S

(
1− 〈V (X), N(X)〉

)
dA, (8)

where we have used the fact that the vectors V and N have unit length. The overall cost functional is simply a

weighted average of the several costs:

Etotal = Edata + αEsmooth + βEcurv + γEcoupling. (9)
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When minimizing Etotal, we need to guarantee that V is always a unit vector field, i.e. |V (X)|2 = 1, ∀ X ∈ S,

and that the radiance coefficients ρ1, ρ2 are positive.

Decoupling the effective normal field from the true surface normal allows us to bypass this ill-posed formulation.

As the auxiliart field does not depend upon the surface derivatives (as does the true unit normal), the optimiality

conditions for V (and the ensuing gradient flow) do not involve teh second-order derivatives contained in heat

flows.

3 Optimal Reconstruction

In order to minimize Etotal with respect to all the unknowns, we adopt an alternating minimization procedure,

evolving one step at a time in the gradient direction of each unknown. For the simplest unknowns, we will be able

to compute a closed-form solution for each iteration.

3.1 Updating of the Surface Properties: Geometry and albedos

We start with minimization with respect to S, that is the most delicate. To facilitate finding the variation of

the data fitness term with respect to S, we need to introduce two more terms. Let χi : S → {0, 1} be the

surface visibility function with respect to the i-th camera, i.e. χi(X) = 1 for points on S that are visible from

the i-th camera and χi(X) = 0 otherwise. Let σi account for the change of coordinates from dΩi to dA, i.e,

σi = dΩi

dA = 〈Xi, Ni〉 /Z3
i , where Ni the unit normal N expressed in the i-th camera reference frame, Ni = RiN .

For simplicity, we first illustrate the properties of the flow for the case of constant albedo foreground: The data

term is

n∑
i=1

∫
Qi

((
Ii − 〈V,Lξ〉 − E0

)2 − (Ii − h
)2)

dΩi +
n∑

i=1

∫
Ωi

(
Ii − h

)2
dΩi

=
n∑

i=1

∫
S

χi

((
Ii − 〈V,Lξ〉 − E0

)2 − (Ii − h
)2)

σidA +
n∑

i=1

∫
Ωi

(
Ii − h

)2
dΩi,

where the background integral over the complement Ωc
i of Qi was expressed as an the integral over the entire

domain Ωi minus an integral over Qi.
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and the gradient descent flow based on the first-order variation is given by [11]

St =
( n∑

i=1

1
Z3

i

(
(Ii − (〈V,Lξ〉+ E0))2 − (Ii − h)2

)
·
〈
∇χi, R

T
i Xi

〉
−

n∑
i=1

2χi

(
Ii − 〈V,Lξ〉 − E0

)(
ξLT∇SV RT

i Xi +
l∑

j=1

〈V,L〉 〈∇ξ,RT
i Xi〉

)
+ ( 2H(α + β)− β∇S · V )

)
N (10)

where ∇S is the Laplace-Beltrami operator. Note that the only second-order term (curvature term) in the flow (10)

is 2H(α + β)N , therefore the flow is always numerically stable (with a properly chosen time step). Another

advantage of flow (10) is that it depends only upon the image values, not the image gradients. This property

greatly increases the robustness of the resulting algorithm to image noise.

For the more general case, where we have piecewise constant albedo foreground regions separated by the contours

C, to facilitate the computing of the gradient descent flow we define the level set function φ : S → R to represent

C via D1 = {X|φ(X) > 0}, D2 = {X|φ(X) < 0} and C = {X|φ(X) = 0}. H(φ) is the Heaviside function of the

level set function φ. The gradient flow of the data term with respect to the surface S is given by [11]

St =

(
n∑

i=1

Γi

Z3
i

〈χiX , RT
i Xi〉

− χi
δ(φ)
Z3

i

((
Ii − ρ1(〈V,L〉ξ + E0)

)2 − (Ii − ρ2(〈V,L〉ξ + E0)
)2)〈∇Sφ,RT

i Xi〉

+2αk + β
δ(φ)
|∇Sφ|

Π(∇sφ×N)
)

N, (11)

where we have defined

Γi
.= H(φ)(Ii − ρ1(〈V,L〉ξ + E0))2 + (1 − H(φ))(Ii − ρ2(〈V,L〉ξ + E0))2 − (Ii − h)2.

Similarly one can derive the component of the gradient flow due to the data term for the curves C [15]:

Ct =
n∑

i=1

((Ii − ρ2(〈V,L〉ξ + E0))2 − (Ii − ρ1(〈V,L〉ξ + E0))2)σi + βkg)~n (12)

where ~n is the normal direction of a point in the segmenting curve between regions of different albedo, k is the

curvature, kg is the geodesic curvature. In our level set implementation, we implement the evolution of the level
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set function φ instead of C, as follows [15]:

φt = |∇Sφ|
n∑

i=1

(
(Ii − ρ2(〈V,L〉ξ + E0))2 − (Ii − ρ1(〈V,L〉ξ + E0))2

)
σi + β

(
δSφ− ∇T

Sφ∇2
Sφ∇Sφ

|∇Sφ|2
)
.

S and C being now updated, we then update ρ1 and ρ2 as follows:

ρ1 =

∑n
i=1

∫
πi(D1)

Ii(xi)dΩi∑n
i=1

∫
πi(D1)

(〈V,L〉ξ + E0)dΩi
, (13)

ρ2 =

∑n
i=1

∫
πi(D2)

Ii(xi)dΩi∑n
i=1

∫
πi(D2)

(〈V,L〉ξ + E0)dΩi
. (14)

The next step consists in fixing S, C, ρ1, ρ2 and in minimizing the energy with respect to V, L, E0, h while enforcing

normalization and positivity constraints.

3.2 Updating of Radiance Parameters L, E0 and h

In this step, we fix S, C, V , ρ1 and ρ2 and we minimize Etotal with respect to L, E0 and h.

Let us start with the updating of h. One can easily verify that the optimal value for h is the mean, on all the

images (Ii,Ωi), of the intensity of the pixels located in the background parts Qc
i (let us remind that Qc

i represents

the complement of the region Qi = πi(S) ⊂ Ωi); i.e.

h =

∑n
i=1

∫
Qc

i
IidΩi∑n

i=1

∫
Qc

i
dΩi

. (15)

Now, let us consider the updating of E0 and L. This step is quite more complicated than the previous one. In

effect, a basic optimization with respect to E0 would clearly involve some changes of its sign. In order to ensure

the physical plausibility of this variable at any iteration, we have then to constrain E0 to be positive

E0 ≥ 0

during the minimization process. Furthermore in order to increase the consistency and the efficiency of the

algorithm, we also minimize our energy with respect to E0 and L simultaneously.

The minimization with respect to (E0, L) then consists in a constrained optimization problem. The Kuhn-Tucker

conditions [21] provide the appropriate tools for dealing with this kind of problems. These tools provide necessary

conditions for a solution to be optimal; we then use these conditions for finding a solution as one usually does

in standard optimization. Being given the energy we are minimizing and the enforced constraint, the associated
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Lagrangian [21] is:

n∑
i=1

∫
πi(D1)

( Ii(xi)− ρ1(〈V (π−1
i (xi)), L〉ξ(π−1

i (xi)) + E0) )2dΩi

+
n∑

i=1

∫
πi(D2)

( Ii(xi)− ρ2(〈V (π−1
i (xi)), L〉ξ(π−1

i (xi)) + E0) )2dΩi

+
n∑

i=1

∫
Qc

i

(Ii(xi)− h)2dΩi + α

∫
S

dA + β

∫
C

ds

+ γ

∫
S

(1− 〈V (X), N(X)〉)dA + λE0 = 0 (16)

constrained by λ ≥ 0. The Kuhn-Tucker [21] conditions are: If (E0, L) is a local minimum, then there exists a

non-negative constant λ s.t.



1)
∑n

i=1

∫
πi(D1)

(Ii(xi)− ρ1(〈V,L〉ξ + E0)) ρ1V ξ dΩi

+
∑n

i=1

∫
πi(D2)

(Ii(xi)− ρ2(〈V,L〉ξ + E0)) ρ2V ξ dΩi = 0,

2) −
∑n

i=1

∫
πi(D1)

(Ii(xi)− ρ1(〈V,L〉ξ + E0)) ρ1 dΩi

−
∑n

i=1

∫
πi(D2)

(Ii(xi)− ρ2(〈V,L〉ξ + E0)) ρ2 dΩi + λ = 0,

3) λE0 = 0.

(17)

In the equations above, 1) is derived by differentiating Eq. (16) with respect to L and 2) is derived by differentiating

(16) with respect to E0.

We now focus on the domain of definition of the above equations. If a solution is retrieved within the domain

{ E0 | E0 > 0 }, then λ = 0. Thus according to the first and second equations of (17), we have



L =
[
ρ2
1

∑n
i=1

∫
πi(D1)

V V T ξdΩi + ρ2
2

∑n
i=1

∫
πi(D2)

V V T ξdΩi

]−1

·
(

ρ1

∑n
i=1

∫
πi(D1)

(Ii(xi)− ρ1E0)V ξdΩi

+ρ2

∑n
i=1

∫
πi(D2)

(Ii(xi)− ρ2E0)V ξdΩi

)
,

E0 =
(∑n

i=1

∫
πi(D1)

(Ii(xi)− ρ1〈V,L〉ξ)ρ1dΩi

+
∑n

i=1

∫
πi(D2)

(Ii(xi)− ρ2〈V,L〉ξ)ρ2dΩi

)
· 1/(

∑n
i=1

∫
πi(D1)

ρ2
1dΩi +

∑n
i=1

∫
πi(D2)

ρ2
2dΩi),

(18)

where [.]−1 denotes the matrix inverse operator.
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In order to simplify the above equations, we let



A = ρ1

∑n
i=1

∫
πi(D1)

Ii(xi)dΩi + ρ2

∑n
i=1

∫
πi(D2)

Ii(xi)dΩi,

V ∗ = ρ2
1

∑n
i=1

∫
πi(D1)

V ξdΩi + ρ2
2

∑n
i=1

∫
πi(D2)

V ξdΩi,

M = ρ2
1

∑n
i=1

∫
πi(D1)

V V T ξdΩi + ρ2
2

∑n
i=1

∫
πi(D2)

V V T ξdΩi,

p∗ = ρ1

∑n
i=1

∫
πi(D1)

Ii(xi)V ξdΩi + ρ2

∑n
i=1

∫
πi(D2)

Ii(xi)V ξdΩi,

B = ρ2
1

∑n
i=1

∫
πi(D1)

dΩi + ρ2
2

∑
πi(D2)

dΩi.

(19)

where A ∈ R, V ∗ ∈ R3, M ∈ M3×3(R), p∗ ∈ R3 and B ∈ R+. Let us note here that, even if for all X ∈ S the

matrix V (X)V T (X) is not invertible (its rank is 1), it is reasonable to assume that M is. Moreover, as soon as

the surface S is visible from any camera, then B > 0. By using the above abbreviations, which are all known

quantitites in this phase of the optimization, we simplify the equations as follows:


L = M−1(p∗ − E0V

∗),

E0 = (A− 〈V ∗, L〉)/B.

(20)

By combining the two equations above, we have

L = M−1

(
p∗ − (A− 〈V ∗, L〉)V ∗/B

)
,

so

L = 〈V ∗, L〉(M−1V ∗)/B + M−1(p∗ −AV ∗/B). (21)

In order to simplify this last equation, we introduce two new vector variables, a and b:

a = (M−1V ∗)/B ∈ R3, (22)

and

b = M−1(p∗ −AV ∗/B) ∈ R3. (23)

We have then

L = aV ∗T L + b. (24)
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L is then the solution of the linear system

WL = b, (25)

where W = Id3×3 − aV ∗T .

It is therefore a simple matter of linear algebra to retrieve L from the equation above, since all other terms are

known.

E0 can now be derived from L using equation (20). If it is greater than zero, then it is what we are searching

for and so L and E0 are obtained. Otherwise, we have to look for the minimum such that E0 = 0. This problem

is significantly easier. We can directly derive L from equation (20):

L = M−1p∗. (26)

3.3 Updating of the Auxiliary Vector Field V

Having fixed S, C, ρ1, ρ2, L, E0 and h, we now minimize the energy with respect to V . Recall that we have

to guarantee

|V | = 1,

that is to say that V has to stay on the manifold S2 (the unit sphere). In our previous conference paper [12], we

proposed to update the auxiliary field V by an iterated process. Here we propose a “closed-form” solution.

For any Riemannian manifold M ⊂ Rm and any differentiable energy E : Rm → R, we have the following

(necessary) optimality condition: if x ∈ M is a local minima of E|M, then ∇E(x) is orthogonal to the tangent

plane TM(x), i.e.

∇E(x) ∈
(
TM(x)

)⊥
.

Here, ∇E(x) denotes the classical gradient of E : Rm → R at point x defined in the framework of the differential

calculus. Also, the above statement directly results from the chain rule and the classical optimality condition in

the differential calculus framework; see for example [35, 1, 4].

Now, let us remark that for any point V on the unit sphere S2, the vector V is orthogonal to the tangent plane

to the sphere at point V , i.e.

∀V ∈ S2, V ∈ ( TS2(V ) )⊥.

13



In the case where M = S2, since the dimension of ( TS2(V ) )⊥ is one, then the above optimality condition becomes:

if V ∈ S2 is a local minima of E|S2 , then ∇E(V ) ∝ V. (27)

Beyond this, the terms of Etotal which depend on V are Edata and Ecoupling. Let us stress that, even if V is

indirectly regularized by the coupling term Ecoupling (which forces V to be close to N which is smooth because of

the regularity constraint on the surface S), our energy Etotal does not directly contain a regularization term for

the auxiliary vector field V . The values V (X) of V at different points X on the surface S are then decorrelated.

The optimal vector field V (.) minimizing Edata + γEcoupling (and then Etotal) is then the vector field V such that

for all X in S, V (X) is given by:

V (X) = arg min
Ṽ ∈S2

γ
(
1 −

〈
Ṽ , N(X)

〉)
+

n∑
i=1

χi(X)
(
Ii(πi(X)) − ρ(X)

(〈
Ṽ , Lξ(X)

〉
− E0

))2

σi(X). (28)

Accordingly to (27) and (28), the vector field V (.) which minimizes Etotal verifies: for all fixed X ∈ S, there

exists a real scalar ν (depending on X) such that

νV (X) =
n∑

i=1

χi(X) ( Ii(πi(X)) − ρ(X)(〈V (X), L〉 ξ(X) + E0) ) ρ(X)Lξ(X) σi(X) +
γ

2
N(X). (29)

If ξ(X) = 0, obviously the solution is V (X) = N(X)
|N(X)| , else we have

νV (X) = −

(
n∑

i=1

χi(X)σi(X)

)
ρ2(X) 〈V (X), L〉 L

+
n∑

i=1

χi(X)
(

Ii(πi(X))− ρ(X)E0

)
ρ(X)Lσi(X) +

γ

2
N(X). (30)

If we denote

H =

(
n∑

i=1

χiσi

)
ρ2 L LT ∈ M3×3(R) (31)

and

B =
n∑

i=1

χi ( Ii(xi)− ρE0 ) ρLσi +
γ

2
N ∈ R3 (32)

(for simplicity, we have removed the X in the equations; xi denotes πi(X))
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then (30) becomes

(νId3×3 + H) V = B. (33)

Thus V has to verify: there exists ν in R such that


∣∣ [ν Id3×3 + H

]−1
B
∣∣ = 1,

V =
[
ν Id3×3 + H

]−1
B,

(34)

where [.]−1 is the matrix inverse operator (as in section 3.2).

In the above equations, H and B are known. We get ν via Newton methods applied to the first equation of (34).

The initial value ν0 used in this iterative process is determined from the previous value of V (we denote V̂ ) and

other parameters of equation (29). More precisely, we get ν0 by solving the following linear minimization problem

ν0 = arg min
ν

∣∣∣ n∑
i=1

χi(Ii(xi)− ρ
(
〈V̂ , L〉+ E0

)
) Lσiρ +

γ

2
N − νV̂

∣∣∣2. (35)

After calculating ν, we get V from the second equation of (34). Thus the computed V fulfills the requirement of

|V | = 1 and it minimizes Etotal on the manifold S2. While this is not strictly speaking a closed-form solution, it is

simple and efficient to implement.

3.4 Ambiguities in illumination

As we previously mentioned in Section 2.1, model (1) is not minimal and there is a multiplicity ambiguity. In

particular, when minimizing the energy with respect to ρ1, ρ2, L,E0, we have that if (ρ1, ρ2, E0, L, C, S) is a

solution, then so is (δρ1, δρ2, E0/δ, L/δ, C, S) with δ ∈ R+.

Although the ambiguity makes it impossible to extract the albedo and illumination exactly, we could still

recover ρE0; |L|/E0;L/|L|, i.e., reconstruct the parameters up to a scalar transformation, or recover ρ1/ρ2. When

we know the maximum albedo on the object, we would still expect to generate the exact albedos and the amplitude

of ambient term and point light source as well. In practice, in each iterative step, we fix E0 to a constant.

4 Experiments

In the first set of experiments, we took 28 calibrated images of a doll figure of approximately uniform albedo

standing on a table. The background is dark, and the doll is illuminated both by standard fluorescent overhead

lamps and by an additional strong spotlight. Note that the actual environment only approximately satisfies the
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Figure 1: Example views of the input data set consisting 28 images of a dancer statuette.

Figure 2: Final shape estimated using [38]. The algorithm fails to reconstruct the doll, notably the legs and the
back, because the assumption of constant radiance of the object is violated.

Positive spot light Negative spot light

Figure 3: Shape estimated by using the algorithm [12] with either a positive (left) or a negative (right) directional
light. Compared with Figure 2, we obtained improved reconstructions in both light configurations over that of
[38]. However, the results are still not satisfactory.

conditions for which the algorithm is designed, but this is on purpose. In the next experiment we will illustrate the

behaviour of the algorithm quantitatively on synthetic sequences generated to satisfy the assumptions precisely.

Figure 1 shows 4 representative views that show how the light modulates the image intensity from light (front of

the head) to dark (upper back). Notice also the non-trivial topology of the object, which is handled automatically

by our algorithm as a side benefit of implementing the gradient flow within the level set framework [27].

The first test consisted in testing the stereoscopic segmentation algorithm [38] on this dataset. This corresponds

to iterating the surface evolution in Section 3, without directional lighting, i.e. L = 0. The underlying assumption

is that radiance, not just albedo, is constant, which is patently not the case for the dataset in question. As expected,

the algorithm fails to converge to a viable estimate of the shape of the statuette (see Figure 2). In particular, the

darker parts of the legs and back are ascribed to the background.
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In the second test, we introduce one light source into the reconstruction problem. Figure 3 shows the results

obtained from the algorithm presented in [12] with one punctual light source. In [12], the positivity of the light

source was not enforced, and the underlying image-formation model was

I(π(X)) = ρ(X)

(∑
i

λi〈N(X), Li〉ξi(X) + E0

)

where the λi and E0 could be negative. The signs of these variables could change during the optimization process

(see section 4.3 of [12]) and the final sign of the lights (returned after the convergence) depends on the initialization.

Figure 3 shows two typical examples of reconstruction obtained from the algorithm of [12]; according to the

initialization of the position of the light source, the light converged towards a positive (left image) or negative

sign (right image). In either case the results improve stereoscopic segmentation [38], where light is not explicitly

modeled. In order to improve the model [12], one needs two light sources; by using a positive and a negative light,

one can obtain reasonable results such as those displayed in Figure 4. However, since the algorithm in [12] does

not impose positivity, the resulting lighting configuration is physically impossible.

Next we tested the full-fledged algorithm described in the previous sections. Contrary to [12], here we enforce the

positivity of the light sources. Figure 6 shows the results obtained with a single light source; the improvement over

[12] are evident from Fig. 3, including the version with two light sources illustrated in Fig. 4. The improvement

is particularly clear on details of the surface reconstruction, especially on the hands and lower back (Figure 7,

compare with Figure 5).

In order to gain a more quantitative understanding of the operation of the algorithm, we tested it on various

synthetic sequences, one of which we report in Figure 8 as an example. It is a sphere with constant albedo

illuminated by an ambient light and a point light source. The results of the algorithm are shown in Figure 9, and

the table in Figure 10 summarizes the numerical results.

In a final experiment, we tested the algorithm on a dataset that contained piecewise constant albedo, shown

in Figure 11. In order to avoid the scale ambiguity, we rescale ρ1, ρ2, E0, L in each evolution to δ = E0/100;

E0 = E0/δ; |L| = |L|/δ; ρ1 = ρ1δ; ρ2 = ρ2δ;. Here 100 is just an arbitrary scale. Figure 12 shows the reconstructed

shape and partitioning curve for the synthesized painted ball illuminated by directional light. Figure 13 shows the

reconstructed shape for the Fish model. We also show the evolution process of the shape and partitioning curve

in Figure 14.
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Figure 4: Final shape estimated using the algorithm [12] with a combination of one positive light and one negative light.
The algorithm reconstructs the 3D object more accurately (compared with Figure 3), nevertheless the lighting configuration
if not physically plausible.

5 Conclusions

We proposed an image formation model for Lambertian scenes with piecewise constant albedos illuminated by

ambient and point light sources. We designed an algorithm to simultaneously infer all model parameters from

a collection of calibrated images by minimizing a single energy. We solved the resulting infinite-dimensional

optimization problem by numerically integrating partial differential equations that converge in steady states to a

local minimum of the first variation of the functional. Our work extends the prior art on Stereoscopic Segmentation

[38] by explicitly modeling and exploiting the light and the reflectance laws. It does so while enforcing physical

constraints, such as the positivity of the energy distribution of light sources.

We also addressed a structural problem related to shape estimation under the standard Lambertian shading

model, that results in unstable flows when the standard cost functional is minimized in a naive way. We introduced

a smooth auxiliary vector field, that is coupled to the normal field via an energy term, and show that this model

is not prone to instability like the naive one.

Naturally, the model we proposed is limited by the assumptions of Lambertian reflection and point/diffuse

illumination. The assumption of piecewise constant albedo is not very restrictive in theory, as many man-made

objects can be well approximated by this model, but in practice when objects become complex the topology and

geometry of the albedo boundaries become so difficult that our algorithm may fail to capture subtle variations.

One of the potential advantages of our approach is its potential to be integrated with multi-view stereo algorithms,

by providing additional constraints in cases where objects with simple albedo do not provide enough constraints

to establish point-to-point correspondence and therefore local feature-based approaches fail to provide a dense

reconstruction.
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Figure 5: Visualization of the auxiliary vector field V estimated in the same time as the surface displayed in Figure 4 via
the algorithm [12] (with the combination of one positive light and one negative light).

Figure 6: Final shape estimated via the proposed algorithm containing the various optimization improvements (in particular
the closed-form estimation of the auxiliary vector field) and the addition of the positivity constraint. The improvement on
3D shape details, especially around the hands and lower back, is visible.

Figure 7: Visualization of the auxiliary vector field via the proposed algorithm when we add the positivity constraint for
the light and when we estimate the auxiliary vector field in closed-form.
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Figure 8: Three views of the synthesized constant albedo sphere illuminated by a point light source of intensity 100 ×
located at (0,0,1), and an ambient light of intensity 100.

Figure 9: Final shape estimated by the algorithm. The ground truth shape is shown on the left.
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