Skip to main content
Log in

Region-Based Hierarchical Image Matching

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents an approach to region-based hierarchical image matching, where, given two images, the goal is to identify the largest part in image 1 and its match in image 2 having the maximum similarity measure defined in terms of geometric and photometric properties of regions (e.g., area, boundary shape, and color), as well as region topology (e.g., recursive embedding of regions). To this end, each image is represented by a tree of recursively embedded regions, obtained by a multiscale segmentation algorithm. This allows us to pose image matching as the tree matching problem. To overcome imaging noise, one-to-one, many-to-one, and many-to-many node correspondences are allowed. The trees are first augmented with new nodes generated by merging adjacent sibling nodes, which produces directed acyclic graphs (DAGs). Then, transitive closures of the DAGs are constructed, and the tree matching problem reformulated as finding a bijection between the two transitive closures on DAGs, while preserving the connectivity and ancestor-descendant relationships of the original trees. The proposed approach is validated on real images showing similar objects, captured under different types of noise, including differences in lighting conditions, scales, or viewpoints, amidst limited occlusion and clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, N. (1996). A transform for multiscale image segmentation by integrated edge and region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12), 1211–1235.

    Article  MathSciNet  Google Scholar 

  • Arora, H., & Ahuja, N. (2006). Analysis of ramp discontinuity model for multiscale image segmentation. In ICPR.

  • Barrow, H. G., & Burstall, R. M. (1976). Subgraph isomorphism, matching relational structures and maximal cliques. Information Processing Letters, 4(4), 83–84.

    Article  MATH  Google Scholar 

  • Basri, R., & Jacobs, D. (1997). Recognition using region correspondences. International Journal of Computer Vision, 25(2), 145–166.

    Article  Google Scholar 

  • Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999). The maximum clique problem. In D. Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial optimization (supplement Vol. A) (pp. 1–74). Boston: Kluwer Academic.

    Google Scholar 

  • Bomze, I. M., Pelillo, M., & Stix, V. (2000). Approximating the maximum weight clique using replicator dynamics. IEEE Transactions on Neural Networks, 11(6), 1228–1241.

    Article  Google Scholar 

  • Bunke, H., & Allermann, G. (1983). Inexact graph matching for structural pattern recognition. Pattern Recognition Letters, 1(4), 245–253.

    Article  MATH  Google Scholar 

  • Bunke, H., & Kandel, A. (2000). Mean and maximum common subgraph of two graphs. Pattern Recognition Letters, 21(2), 163–168.

    Article  Google Scholar 

  • Cohen, S., & Guibas, L. (1999). The Earth Mover’s Distance under transformation sets. In Proc. IEEE Int. Conf. Computer Vision (Vol. 2, pp. 1076–1083).

  • Cohen, L., Vinet, L., Sander, P., & Gagalowicz, A. (1989a). Hierarchical region based stereo matching. In Proc. IEEE Conf. Computer Vision Pattern Rec. (pp. 416–421).

  • Cohen, L., Vinet, L., Sander, P., & Gagalowicz, A. (1989b). Hierarchical region based stereo matching. In Proc. IEEE Conf. Computer Vision Pattern Rec. (pp. 416–421).

  • Demirci, M. F., Shokoufandeh, A., Dickinson, S., Keselman, Y., & Bretzner, L. (2004). Many-to-many feature matching using spherical coding of directed graphs. In Lecture notes in computer science: Vol. 3021. Proc. European Conf. Computer Vision (pp. 322–335).

  • Eshera, M. A., & Fu, K. S. (1986). An image understanding system using attributed symbolic representation and inexact graph-matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(5), 604–618.

    Article  Google Scholar 

  • Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping using the Nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 214–225.

    Article  Google Scholar 

  • Fuh, C. S., & Maragos, P. (1989). Region-based optical flow estimation. In Proc. IEEE Conf. Computer Vision Pattern Rec. (pp. 130–135).

  • Glantz, R., Pelillo, M., & Kropatsch, W. G. (2004). Matching segmentation hierarchies. International Journal of Pattern Recognition and Artificial Intelligence, 18(3), 397–424.

    Article  Google Scholar 

  • Golland, P., Eric, W., & Grimson, L. (2000). Fixed topology skeletons. In Proc. IEEE Conf. Computer Vision Pattern Rec. (Vol. 1, pp. 10–17).

  • Keselman, Y., & Dickinson, S. (2005). Generic model abstraction from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7), 1141–1156.

    Article  Google Scholar 

  • Keselman, Y., Shokoufandeh, A., Demirci, M., & Dickinson, S. (2003). Many-to-many graph matching via metric embedding. In Proc. IEEE Conf. Computer Vision Pattern Rec. (Vol. 1, pp. 850–857).

  • Liu, T. L., & Geiger, D. (1999). Approximate tree matching and shape similarity. In Proc. IEEE Int. Conf. Computer Vision (Vol. 1, pp. 456–462).

  • Medioni, G., & Nevatia, R. (1985). Segment-based stereo matching. Computer Vision, Graphics, and Image Processing, 31(3), 2–18.

    Article  Google Scholar 

  • Ming-Hsuan, Y., Ahuja, N., & Tabb, M. (2002). Extraction of 2d motion trajectories and its application to hand gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(8), 1061–1074.

    Article  Google Scholar 

  • Motzkin, T. S., & Straus, E. G. (1965). Maxima for graphs and a new proof of a theorem of Turan. Canadian Journal of Mathematics, 17(4), 533–540.

    MATH  MathSciNet  Google Scholar 

  • Pardalos, P., & Xue, J. (1994). The maximum clique problem. Journal Global Optimization, 4, 301–328.

    Article  MATH  MathSciNet  Google Scholar 

  • Pelillo, M. (1999). Replicator equations, maximal cliques, and graph isomorphism. Neural Computation, 11(9), 1935–1955.

    Google Scholar 

  • Pelillo, M. (2002). Matching free trees, maximal cliques, and monotone game dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(11), 1535–1541.

    Article  Google Scholar 

  • Pelillo, M., Siddiqi, K., & Zucker, S. W. (1999). Matching hierarchical structures using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11), 1105–1120.

    Article  Google Scholar 

  • Pelillo, M., Siddiqi, K., & Zucker, S. W. (2001). Many-to-many matching of attributed trees using association graphs and game dynamics. In Lecture notes in computer science: Vol. 2059. Int. Workshop Visual Form. (pp. 583–593).

  • Perrin, B., Ahuja, N., & Srinivasa, N. (1998). Learning multiscale image models of 2D object classes. In Proc. Asian Conf. Computer Vision (Vol. 2, pp. 323–331).

  • Randriamasy, S., & Gagalowicz, A. (1991). Region based stereo matching oriented image processing. In Proc. IEEE Conf. Computer Vision Pattern Rec. (pp. 736–737).

  • Richard, W. C., Hancock, E. R., & Luo, B. (2005). Pattern vectors from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7), 1112–1124.

    Article  Google Scholar 

  • Rubner, Y., Tomasi, C., & Guibas, L. J. (1998). A metric for distributions with applications to image databases. In Proc. IEEE Int. Conf. Computer Vision (pp. 59–66).

  • Sanfeliu, A., & Fu, K. S. (1983). A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 13(3), 353–362.

    MATH  Google Scholar 

  • Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2004). Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 550–571.

    Article  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., & Zucker, S. W. (2005). Indexing hierarchical structures using graph spectra. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7), 1125–1140.

    Article  Google Scholar 

  • Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision (2nd ed.). Pacific Grove: Brooks/Cole.

    Google Scholar 

  • Tabb, M., & Ahuja, N. (1997). Multiscale image segmentation by integrated edge and region detection. IEEE Transactions Image Processing, 6(5), 642–655.

    Article  Google Scholar 

  • Torsello, A., & Hancock, E. R. (2002). Matching and embedding through edit-union of trees. In Lecture notes in computer science: Vol. 2352. Proc. European Conf. Computer Vision (pp. 822–836).

  • Torsello, A., & Hancock, E. R. (2003). Computing approximate tree edit distance using relaxation labeling. Pattern Recognition Letters, 24(8), 1089–1097.

    Article  MATH  Google Scholar 

  • Torsello, A., & Hancock, E. R. (2006). Learning shape-classes using a mixture of tree-unions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6), 954–967.

    Article  Google Scholar 

  • Torsello, A., Rowe, D. H., & Pelillo, M. (2005). Polynomial-time metrics for attributed trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7), 1087–1099.

    Article  Google Scholar 

  • Tsai, W. H., & Fu, K. S. (1979). Error-correcting isomorphism of attributed relational graphs for pattern analysis. IEEE Transactions on Systems, Man, and Cybernetics, 9(12), 757–768.

    Article  MATH  Google Scholar 

  • Umeyama, S. (1988). An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5), 695–703.

    Article  MATH  Google Scholar 

  • Xuguang, Y., & Ramchandran, K. (1999). A low-complexity region-based video coder using backward morphological motion field segmentation. IEEE Transactions on Image Processing, 8(3), 332–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinisa Todorovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorovic, S., Ahuja, N. Region-Based Hierarchical Image Matching. Int J Comput Vis 78, 47–66 (2008). https://doi.org/10.1007/s11263-007-0077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0077-5

Keywords

Navigation