Skip to main content
Log in

FLIRT with Rigidity—Image Registration with a Local Non-rigidity Penalty

  • Position Paper
  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Registration is a technique nowadays commonly used in medical imaging. A drawback of most of the current registration schemes is that all tissue is being considered as non-rigid (Staring et al., Proceedings of the SPIE 2006, vol. 6144, pp. 1–10, 2006). Therefore, rigid objects in an image, such as bony structures or surgical instruments, may be transformed non-rigidly. In this paper, we integrate the concept of local rigidity to the FLexible Image Registration Toolbox (FLIRT) (Haber and Modersitzki, in SIAM J. Sci. Comput. 27(5):1594–1607, 2006; Modersitzki, Numerical Methods for Image Registration, 2004). The idea is to add a penalty for local non-rigidity to the cost function and thus to penalize non-rigid transformations of rigid objects. As our examples show, the new approach allows the maintenance of local rigidity in the desired fashion. For example, the new scheme can keep bony structures rigid during registration.

We show, how the concept of local rigidity can be integrated in the FLIRT approach and present the variational backbone, a proper discretization, and a multilevel optimization scheme. We compare the FLIRT approach to the B-spline approach. As expected from the more general setting of the FLIRT approach, our examples demonstrate that the FLIRT results are superior: much smoother, smaller deformations, visually much more pleasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amit, Y. (1994). A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing, 15(1), 207–224.

    Article  MATH  MathSciNet  Google Scholar 

  • Brewer, J. W. (1978). Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems, 25, 772–780.

    Article  MATH  MathSciNet  Google Scholar 

  • Collignon, A., Vandermeulen, A., Suetens, P., & Marchal, G. (1995). 3d multi-modality medical image registration based on information theory. In Computational Imaging and Vision (Vol. 3, pp. 263–274).

  • Droske, M., & Rumpf, M. (2004). A variational approach to non-rigid morphological registration. SIAM Journal on Applied Mathematics, 64(2), 668–687.

    Article  MATH  MathSciNet  Google Scholar 

  • Fischer, B., & Modersitzki, J. (2003a). Combination of automatic non-rigid and landmark based registration: the best of both worlds. In M. Sonka & J. M. Fitzpatrick (Eds.), Proceedings of the SPIE: Vol. 5032. Medical imaging 2003: Image processing (pp. 1037–1048).

  • Fischer, B., & Modersitzki, J. (2003b). Combining landmark and intensity driven registrations. PAMM, 3, 32–35.

    Article  Google Scholar 

  • Fischer, B., & Modersitzki, J. (2003c). FLIRT: a flexible image registration toolbox. In J. C. Gee, J. B. A. Maintz, & M. W. Vannier (Eds.), Lecture notes in computer science : Vol. 2717. 2nd international workshop on biomedical image registration 2003 (pp. 261–270). Berlin: Springer.

    Google Scholar 

  • Fitzpatrick, J. M., Hill, D. L. G., & Maurer Jr., C. R. (2000). Image registration. In M. Sonka, & J. M. Fitzpatrick (Eds.), Handbook of medical imaging: Vol. 2. Medical image processing and analysis (pp. 447–513). Bellingham: SPIE.

    Google Scholar 

  • Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. London: Academic Press.

    MATH  Google Scholar 

  • Glasbey, C. (1998). A review of image warping methods. Journal of Applied Statistics, 25, 155–171.

    Article  MATH  Google Scholar 

  • Gurtin, M. E. (1981). An introduction to continuum mechanics. Orlando: Academic Press.

    MATH  Google Scholar 

  • Haber, E., & Modersitzki, J. (2004). Numerical methods for volume preserving image registration. Inverse Problems, 20(5), 1621–1638.

    Article  MATH  MathSciNet  Google Scholar 

  • Haber, E., & Modersitzki, J. (2005). Beyond mutual information: A simple and robust alternative. In H. P. Meinzer, H. Handels, A. Horsch, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2005 (pp. 350–354). Berlin: Springer.

    Chapter  Google Scholar 

  • Haber, E., & Modersitzki, J. (2006a). A multilevel method for image registration. SIAM Journal on Scientific Computing, 27(5), 1594–1607.

    Article  MATH  MathSciNet  Google Scholar 

  • Haber, E., & Modersitzki, J. (2006b). Image registration with a guaranteed displacement regularity. International Journal of Computer Vision, 1 DOI: 10.1007/s11263-006-8984-4

  • Hajnal, J., Hawkes, D., & Hill, D. (2001). Medical image registration. Boca Raton: CRC Press.

    Google Scholar 

  • Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging, 21(5), 450–461.

    Article  Google Scholar 

  • Kabus, S., Franz, A., & Fischer, B. (2006). Variational image registration with local properties. In F. A. Gerritsen, J. P. W. Pluim, & B. Likar (Eds.), Lecture notes in computer science. Third international workshop, WBIR 2006: Biomedical image registration (pp. 92–100). Berlin: Springer.

    Chapter  Google Scholar 

  • Keeling, S. L., & Ring, W. (2005). Medical image registration and interpolation by optical flow with maximal rigidity. Journal of Mathematical Imaging and Vision, 23(1), 47–65.

    Article  MathSciNet  Google Scholar 

  • Little, J. A., Hill, D. L. G., & Hawkes, D. J. (1997). Deformations incorporating rigid structures. Computer Vision and Image Understanding, 66(2), 223–232.

    Article  Google Scholar 

  • Loeckx, D., Maes, F., Vandermeulen, D., & Suetens, P. (2004). Nonrigid image registration using free-form deformations with a local rigidity constraint. In Lecture notes in computer science: Vol. 3216. MICCAI (pp. 639–646).

  • Maintz, J. B. A., & Viergever, M. A. (1998). A survey of medical image registration. Medical Image Analysis, 2(1), 1–36.

    Article  Google Scholar 

  • MathWorks (1992). Matlab user’s guide. Natick.

  • Modersitzki, J. (2004). Numerical methods for image registration. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Modersitzki, J. (2007). Image registration with local rigidity constraints. In H. Handels, H. P. Meinzer, A. Horsch, T. M. Deserno, & T. Tolxdoff (Eds.), Informatik Aktuell: Bildverarbeitung für die Medizin (pp. 444–448). Berlin: Springer.

  • Peckar, W., Schnörr, C., Rohr, K., & Stiehl, H. S. (1999). Parameter-free elastic deformation approach for 2d and 3d registration using prescribed displacements. Journal Mathematical Imaging and Vision, 10(2), 143–162.

    Article  MATH  Google Scholar 

  • Pluim, J. P. W., Maintz, J. B. A., & Viergever, M. A. (2000). Image registration by maximization of combined mutual information and gradient information. IEEE TMI, 19(8), 809–814.

    Google Scholar 

  • Rohlfing, T., Maurer Jr., C. R., Bluemke, D. A., & Jacobs, M. A. (2003). Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging, 22(6), 730–741.

    Article  Google Scholar 

  • Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., & Hawkes, D. (1999). Non-rigid registration using free-form deformations. IEEE Transactions on Medical Imaging, 18(1), 712–721.

    Article  Google Scholar 

  • Staring, M., Klein, S., & Pluim, J. P. W. (2006). Nonrigid registration using a rigidity constraint. In J. M. Reihnardt, & J. P. W. Pluim (Eds.), Proceedings of the SPIE 2006: Medical imaging, 2006 (Vol. 6144, pp. 1–10). Boca Raton: SPIE.

    Google Scholar 

  • Trottenberg, U., Oosterlee, C., & Schüller, A. (2001). Multigrid. London: Academic Press.

    MATH  Google Scholar 

  • Wells III, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Multi-modal volume registration by maximization of mutual information. Medical Image Analysis, 1(1), 35–51.

    Article  Google Scholar 

  • Yoo, T. S. (2004). Insight into images: Principles and practice for segmentation, registration, and image analysis. AK Peters Ltd.

  • Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Modersitzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modersitzki, J. FLIRT with Rigidity—Image Registration with a Local Non-rigidity Penalty. Int J Comput Vis 76, 153–163 (2008). https://doi.org/10.1007/s11263-007-0079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0079-3

Keywords

Navigation