Skip to main content
Log in

Statistical Optimization for Geometric Fitting: Theoretical Accuracy Bound and High Order Error Analysis

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A rigorous accuracy analysis is given to various techniques for estimating parameters of geometric models from noisy data. First, it is pointed out that parameter estimation for vision applications is very different in nature from traditional statistical analysis and hence a different mathematical framework is necessary. After a general framework is formulated, typical numerical techniques are selected, and their accuracy is evaluated up to high order terms. As a byproduct, our analysis leads to a “hyperaccurate” method that outperforms existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akaike, H. (1977). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 16(6), 716–723.

    MathSciNet  Google Scholar 

  • Amari, S., & Kawanabe, M. (1997). Information geometry of estimating functions in semiparametric statistical models. Bernoulli, 3, 29–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Begelfor, E., & Werman, M. (2005). How to put probabilities on homographies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1666–1670.

    Article  Google Scholar 

  • Bickel, P. J., Klassen, C. A. J., Ritov, Y., & Wellner, J. A. (1994). Efficient and adaptive estimation for semiparametric models. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Bookstein, F. L. (1979). Fitting conic sections to scattered data. Computer Graphics and Image Processing, 9(1), 56–71.

    Article  Google Scholar 

  • Chernov, N., & Lesort, C. (2004). Statistical efficiency of curve fitting algorithms. Computational Statistics and Data Analysis, 47(4), 713–728.

    Article  MathSciNet  Google Scholar 

  • Chojnacki, W., Brooks, M. J., van den Hengel, A., & Gawley, D. (2000). On the fitting of surfaces to data with covariances. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1294–1303.

    Article  Google Scholar 

  • Chojnacki, W., Brooks, M. J., & van den Hengel, A. (2001). Rationalising the renormalisation method of Kanatani. Journal of Mathematical Imaging and Vision, 14(1), 21–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Chojnacki, W., Brooks, M. J., van den Hengel, A., & Gawley, D. (2004). From FNS to HEIV: A link between two vision parameter estimation methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 264–268.

    Article  Google Scholar 

  • Chojnacki, W., Brooks, M. J., van den Hengel, A., & Gawley, D. (2005). FNS, CFNS and HEIV: A unifying approach. Journal of Mathematical Imaging and Vision, 23(2), 175–183.

    Article  MathSciNet  Google Scholar 

  • Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Kanatani, K. (1993). Renormalization for unbiased estimation. In Proceedings of the 4th international conference on computer vision (pp. 599–606), Berlin, Germany, May 1993.

  • Kanatani, K. (1996). Statistical optimization for geometric computation: theory and practice. Amsterdam: Elsevier. Reprinted by Dover, New York (2005).

    Book  MATH  Google Scholar 

  • Kanatani, K. (1998). Cramer–Rao lower bounds for curve fitting. Graphical Models and Image Processing, 60(2), 93–99.

    Article  Google Scholar 

  • Kanatani, K. (2004). Uncertainty modeling and model selection for geometric inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1307–1319.

    Article  Google Scholar 

  • Kanatani, K. (2005). Further improving geometric fitting. In Proceedings of the 5th international conference on 3D digital imaging and modeling (pp. 2–13), Ottawa, Canada, June 2005.

  • Kanatani, K. (2006). Ellipse fitting with hyperaccuracy. IEICE Transactions on Information and Systems, E89-D(10), 2653–2660.

    Article  Google Scholar 

  • Kanatani, K., & Ohta, N. (2003). Comparing optimal three-dimensional reconstruction for finite motion and optical flow. Journal of Electronic Imaging, 12(3), 478–488.

    Article  Google Scholar 

  • Kanatani, K., & Sugaya, Y. (2000). High accuracy fundamental matrix computation and its performance evaluation. IEICE Transactions on Information and Systems, E90-D(2), 579–585.

    Article  Google Scholar 

  • Kanatani, K., & Sugaya, Y. (2007). Performance evaluation of iterative geometric fitting algorithms. Computational Statistics and Data Analysis, 52(2), 1208–1222.

    Article  Google Scholar 

  • Kanatani, K., Ohta, N., & Kanazawa, Y. (2000). Optimal homography computation with a reliability measure. IEICE Transactions on Info and Systems, E83-D(7), 1369–1374.

    Google Scholar 

  • Leedan, Y., & Meer, P. (2000). Heteroscedastic regression in computer vision: Problems with bilinear constraint. International Journal of Computer Vision, 37(2), 127–150.

    Article  MATH  Google Scholar 

  • Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16(1), 1–32.

    Article  MathSciNet  Google Scholar 

  • Ohta, N. (2003). Motion parameter estimation from optical flow without nuisance parameters. In 3rd international workshop on statistical and computational theory of vision, Nice, France, October 2003. http://www.stat.ucla.edu/~sczhu/Workshops/SCTV2003.html.

  • Okatani, T., & Deguchi, K. (2003). Toward a statistically optimal method for estimating geometric relations from noisy data: Cases of linear relations, In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 432–439), Madison, WI, USA, June 2003.

  • Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework for tensor computing. International Journal of Computer Vision, 66(1), 41–66.

    Article  MathSciNet  Google Scholar 

  • Rissanen, J. (1989). Stochastic complexity in statistical inquiry. Singapore: World Scientific.

    MATH  Google Scholar 

  • Sampson, P. D. (1982). Fitting conic sections to “very scattered” data: An iterative refinement of the Bookstein algorithms. Computer Graphics and Image Processing, 18(1), 97–108.

    Article  Google Scholar 

  • Taubin, G. (1991). Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11), 1115–1138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Kanatani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanatani, K. Statistical Optimization for Geometric Fitting: Theoretical Accuracy Bound and High Order Error Analysis. Int J Comput Vis 80, 167–188 (2008). https://doi.org/10.1007/s11263-007-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0098-0

Keywords

Navigation